
exploring delay-based tcp
congestion control

a thesis submitted to

the national university of ireland

for the degree of

master of science

by

Gavin D. McCullagh

Based on research carried out in

The Hamilton Institute,

N.U.I. Maynooth

under the direction of Professor Doug Leith

N.U.I. Maynooth February 2008

Contents

1 Background 1
1.1 Structure of Thesis . 3
1.2 Contribution of this Work . 3

2 Congestion Avoidance in TCP 5
2.1 Introduction to TCP . 5
2.2 Congestion Control . 7

2.2.1 Problems in Reno . 10
2.3 Delay-Based Congestion Control 13

2.3.1 Vegas . 13
2.3.2 Delay-Based AIMD . 17
2.3.3 Hybrid Congestion Control 19

2.4 Summary . 19

3 Delay-based Congestion Control: Sampling and Correlation
Issues 21
3.1 Introduction . 21
3.2 Related Work . 24
3.3 Is low correlation an obstacle to congestion control ? 25

3.3.1 Congestion Control Analysis 26
3.3.2 Two important cases 29
3.3.3 Unsynchronised Flows 30
3.3.4 Filtered delay measurements 31

3.4 Experimental Measurements 33
3.4.1 Illustrating low correlation 33
3.4.2 Peak queueing delay vs number of flows 34
3.4.3 Asymptotic behaviour 38
3.4.4 Comparison with SACK Reno 43
3.4.5 Delayed ACKing and TSO 46

3.5 Scope . 47
3.6 Conclusions . 47

ii

0. CONTENTS

4 Estimation of Round-Trip Propogation Delay 50
4.1 Introduction . 50
4.2 Background . 51
4.3 Draining network buffers . 52

4.3.1 Detailed Analysis . 53
4.3.2 Discussion . 58

4.4 Conclusions . 66

5 Measurement of RTT for Congestion Control 67
5.1 Trusting Echoed Timestamps 67

5.1.1 Loss-based Congestion Control 68
5.1.2 Delay-based Congestion Control 69
5.1.3 TCP-LP . 69

5.2 Delayed ACKing . 71
5.3 TCP Segmentation Offload . 75

6 Conclusions 84

A Experimental setup 86

iii

Chapter 1

Background

The internet is undoubtedly one of the most pervasive, revolutionary tech-

nologies to gain widespread use in the last two decades. It’s effects and

influence can be seen throughout the world, particularly in the first world

but increasingly also in developing countries, many of whom see it as having

an economic levelling effect.

The network itself really only provides a (usually) moderately reliable sig-

nalling and routing system for sending small chunks (packets) of data from

one host to another. Packets may be lost or reordered without warning.

Hosts who wish to communicate across the network must work within these

constraints. Communicating hosts must provide for themselves any greater

level of reliability they need. This design is based on the ”end-to-end” princi-

pal [Saltzer et al., 1984] which places as much of the communications protocol

operations as possible at the end points.

There are currently two very common “transport protocols” running on

the end hosts. UDP simply sends packets and provides no extra reliability.

If the user doesn’t get a response to a request, they are usually expected

to request again if they so choose. TCP by contrast ensures that arrival of

1

1. Background

all packets at their destination is confirmed, retransmitting any which are

lost; ensures that any reordering of the packets is corrected, keeps different

communication sessions from interfering and attempts to send at the highest

rate it can without causing excessive packet loss due to congestion in the

network. This last responsibility of TCP is called “congestion control” and

was added in the late eighties in response to several instances of congestion

collapse on the early internet.

In the intervening years, TCP’s standard congestion control (Tahoe, Reno)

has evolved in small ways, but no major redesign has taken place. Various

problems have been shown, particularly in its achieved throughput on large

bandwidth-delay product (BDP) networks and its propensity to cause high

latency on network links with large available queues. In response to this,

various experimental schemes have been proposed and implemented. In par-

ticular, CUBIC [Xu and Rhee, 2005] is now the default congestion control in

Linux and Compound TCP [Tan et al., 2005] is now available in Microsoft

Windows Vista. These algorithms have not as yet been ratified by the stan-

dards body.

Both the current standard and most of the experimental congestion con-

trol methods are fundamentally loss-based, that is they rely on packet loss

to detect that the network is above full capacity. It is presumed that the

loss is caused by a full network queue. However, a second means of detecting

incipient congestion proposed in the late eighties is to observe that the round

trip time of a packet increases as network queues build [Jain, 1989]. This has

the advantage of warning early rather than merely waiting until the network

is over-utilised and packets are lost. This method has rarely been used in

real networks and is the main subject of this thesis.

2

1. Background

1.1 Structure of Thesis

The thesis begins with a short review of TCP and new congestion control

schemes in Chapter 2. Following this, chapter 3 explores the question of

whether correlation between congestion and the delay signal of each flow on

a link is really necessary for delay-based congestion control to function. It

also explores the behaviour of the delay-based AIMD (DB-AIMD) algorithm

in various network environments. Chapter 4 presents an experimental study

into the effectiveness of a particular delay-based methodology for emptying

network queues where congestion is detected. Finally, chapter 5 discussed

some practical issues involved in how one measures RTT in practice for the

purposes of congestion control.

1.2 Contribution of this Work

The contribution of this thesis includes:

• Establishing substantial experimental evidence that while the correla-

tion between the delay measured by an individual flow on a link and the

congestion on that link, this is not a fundamental barrier to succesful

control of congestion.

• A detailed study of the DB-AIMD congestion control scheme. This

explores the circumstances under which it successfully maintains op-

eration at the “knee of the curve” and the current limitations such as

a (albeit slow) linear scaling of peak network latency with number of

flows on the link.

• Experimental confirmation of the efficacy of the dynamic queue emp-

tying methodology used in H-TCP [D.J.Leith and R.N.Shorten, 2004]

3

1. Background

and DB-AIMD [Leith et al., 2007] which is also to that used in FAST

[Jin et al., 2004].

• Detailed information on some tricks, pitfalls and potential problems

which must be overcome in order to accurately measure network queue-

ing delay in TCP for the purpose of congestion control.

The work has resulted in submission of several representative publica-

tions. A paper entitled Delay-based AIMD congestion control appeared in the

Proceedings of the Workshop on Protocols for Fast Long-Distance Networks

(PFLDNet) 2007. A further two papers have been submitted: Delay-based

Congestion Control: Sampling and Correlation Issues Revisited to Transac-

tions on Networking; and Making available Base-RTT for use in congestion

control applications to IEEE Communications Letters.

The work has also led to a number of patches to the linux TCP stack

including

• a small bug fix accepted to 2.6.18 to H-TCP for very large BDP flows

[McCullagh, 2006]

• a patch to the TSO code bounding the amount of time which sending

could be deferred, written by John Heffner [Heffner, 2006]

• a change to the congestion control code and API by Stephen Hem-

minger which moved to using internal timing for congestion control

RTT instead of RFC1323 timestamps [Hemminger, 2007]

• a patch considerably improving the way RTT is calculated internally

for the purposes of congestion control [McCullagh, 2007]

most of which are discussed in Chapter 5.

4

Chapter 2

Congestion Avoidance in TCP

2.1 Introduction to TCP

Computer networking is usually conceived of as a hierarchy of (in this case

seven) layers. The top (application) layer interfaces directly with computer

programs which use the network. The bottom (physical) layer defines the

details of how signalling is carried out on specific media (cable, optical, etc).

The other layers in between look after everything else including how comput-

ers coexist and communicate on the medium, how they choose paths between

each other, how data is broken up in transit, how the data is encoded and

perhaps encrypted in transit, etc.

In practice, applications commonly pass data to the application layer

which feeds it down to the next layer, etc. before the data gets sent on the

medium. Each ”middle-box” device involved in the transfer implements a

subset of the layers. In the case of switches and routers, this is usually only

the bottom two or three layers as they are all that is required to route and

transfer packets. The two end points generally implement the full set, as an

application on each end communicates.

5

2. Congestion Avoidance in TCP

Layer Data Unit Function
7. Application Network process to application
6. Presentation Data Data Representation and Encryp-

tion
5. Session Inter-host communication
4. Transport Segment End-to-end connections and relia-

bility (TCP)
3. Network Packet/Datagram Path determination and logical ad-

dressing (IP)
2. Data Link Frame Physical Addressing (MAC &

LLC)
1. Physical Bit Media, signal and binary transmis-

sion

Figure 2.1: OSI Model of Network Layers

TCP/IP is the most commonly used pair of complementary protocols

used to implement layers three (IP) and four (TCP) on the current internet.

IP, the internet protocol defines the logical address scheme used by every

internet host, the routing header for each data packet containing the source

and destination address and how the path is determined from one host to

another. Higher layers can therefore assume data will be routed correctly if

they provide an IP address and data in suitably sized units.

TCP and UDP (among others) both implement the transport layer. UDP,

the user datagram protocol is a simple method used to send datagrams to

another host. It is stateless and does not ensure any reliability or ordering.

Applications using UDP cannot assume each packet arrives without dupli-

cation or at all and cannot assume the order the packets will arrive in. For

this reason it is commonly used in time sensitive applications (e.g. VoIP)

where retransmission of lost data is useless and in short request/response

applications such as DNS and broadcast/multicast applications where there

may be many receivers unknown to the sender.

6

2. Congestion Avoidance in TCP

TCP, by contrast, is designed for reliable, ordered data transmission.

TCP is responsible for breaking up data into pieces (segments) which are

suitable for IP 1, reassembling the stream in order at the receiver, retrans-

mission of lost segments and flow control. TCP is used by many applications,

In order to achieve this, the receiver advertises an amount of data which

it is currently willing to accept (known as the “advertised” or “receive” win-

dow). The sender then sends no more data than the receive window allows,

breaking it up into suitably sized segments. The sender places a sequence

number in the header of each segment to tell the receiver at what position

this packet fits in the data stream. The receiver can then reassemble the data

stream on arrival using the sequence numbers and send back short acknowl-

edgement (ACK) packets containing the sequence number of the last byte

of continuous data received. This ACK packet allows the sender to verify

receipt of data and the receiver to revise the receive window. If a segment

arrives out of order (i.e. before a previous one in the sequence), the receiver

responds by sending back a duplicate ACK, repeating the sequence number

up to which it has full receipt. If the sender sees three such duplicate ACKs

or a segment goes unacknowledged for a substantial time, a loss is detected

and the lost packet is retransmitted.

In order that TCP can be bi-directional, every packet can simultaneously

carry data being sent and an acknowledgement of data received.

2.2 Congestion Control

In the late 1980s the internet experienced a number of “congestion collapses”,

where the amount of data being sent began to exceed the available bandwidth

1The maximum segment size, MSS is the amount of data which with IP and TCP
headers added will fit under the maximum transmission unit or MTU.

7

2. Congestion Avoidance in TCP

of the core internet backbone. This resulted in widespread packet loss, in

response to which the senders resent, further exacerbating the issue. The

only guide the sender had to control flow was the receive window and the

speed of its local network interface, neither of which bore any relation to the

available bandwidth over the link as a whole. As a result, it sent data in

bursts as the receive window changed.

In response to this, Jacobson et al proposed a series of measures which the

sender would implement, known collectively as “Congestion Avoidance” for

TCP[Jacobson, 1988]. The main modification was to introduce a new limit

to control the rate of data sending called Cwnd, the congestion window. The

purpose of the congestion window is to restrict the amount of data sent so

as to avoid congestion collapse. The amount of unacknowledged data is then

constrained above both by the receiver window (which prevents overloading

the receiver) and by the congestion window (which prevents overloading the

network).

The algorithm used to calculate the congestion window was very impor-

tant. It was recognised that packet loss was usually a signal that the network

was congested and therefore when a loss was detected, rather than simply

retransmitting, the sending rate (i.e. the congestion window) should be low-

ered to relieve the congestion. It was also recognised that the rate should

be increased in a controlled manner. A principle of ‘packet conservation’

was employed in that a new packet would only be sent onto the network in

response to the return of an existing packet.

The initial standard algorithm, ‘Tahoe’ has two modes of operation, ‘slow-

start’ and ‘congestion avoidance’. Slowstart mode is used to quickly increase

up to a reasonable equilibrium rate, then congestion avoidance mode probes

gradually above that. An estimated equilibrium rate is stored in sshthresh

8

2. Congestion Avoidance in TCP

if(cwnd < ssthresh)
/* if we’re still doing slow-start
* open window exponentially */

cwnd += 1
else

cwnd += 1/cwnd

Figure 2.2: The Tahoe Increase algorithm as described in [Jacobson, 1988]

(the slowstart threshold). When Cwnd exceeds ssthresh, the flow switches

to congestion avoidance mode.

Initially, Cwnd is set to one and slowstart mode operates, Cwnd is in-

creased by one packet for each ACK received. This causes Cwnd to double

each round trip time and corresponds to an exponential increase in send rate,

see fig. 2.3(a). In Tahoe TCP, when loss is detected, ssthresh is set to half

the current Cwnd, Cwnd is reset to one and slowstart begins again. Once

Cwnd reaches ssthresh, the flow switches to congestion avoidance mode.

In congestion avoidance mode, Cwnd is only increased once each round

trip time, so as to increase the sending rate roughly2 linearly in time. At some

point, the rate will again exceed the available bandwidth, the router queue

will fill and packet loss will again be detected. Each time this happens,

ssthresh is set to half of Cwnd, Cwnd resets to one, and slowstart begins

again.

‘Tahoe’ distinguishes loss detected due to three duplicate ACKs (where

ACKs are clearly still arriving) and loss detected due to a timeout. In the

former case, congestive loss is supposed and a mechanism known as fast

retrasmit is employed, immediately retransmitting the lost packet.

The next increment of the standard, ‘Reno’, adds the ‘Fast Recovery’

2In reality, the increase is linear in RTT, but as the router queue length also increases
with Cwnd, the RTT gets longer, hence the slightly sub-linear increase in fig. 2.3(b).

9

2. Congestion Avoidance in TCP

[Stevens, 1997] mechanism so that rather than resetting Cwnd to one after

fast retransmit, instead it is set to the same value as ssthresh. Slowstart is

therefore skipped and the algorithm proceeds in congestion avoidance mode.

This steady state behaviour, linearly increasing to congestion, then halv-

ing is usually called “Additive Increase, Multiplicative Decrease” (AIMD).

A number of extra tweaks have since been added to ‘New Reno’, including

improvements to fast recovery as well as SACK (selective acknowledgements).

However, the broad congestion control scheme remains the same.

2.2.1 Problems in Reno

A number of problems have been identified in New Reno, particularly on

large BDP links

Throughput Performance on large BDP links is poor as the linear increase

function can take a long time to reach full utilisation of a link after a

congestion event.

Convergence When an additional flow starts up, convergence to a steady

state takes a long time, due to long times between congestion events

RTT Unfairness There is some debate as to what share of bandwidth two

competing flows should have if their RTTs differ. Reno gives greater

throughput to flows with shorter RTTs.

Buffer Provisioning Reno’s performance is sensitive to the amount of buffer-

ing in the bottleneck link but the optimal amount of buffering depends

on the RTT of a given path. If the queue is too short for a given path,

throughput will suffer. If it is too long, network latency will be high as

Reno will maintain a standing queue.

10

2. Congestion Avoidance in TCP

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Cw
nd

 (p
kt

s)

t (sec)

Reno

(a) Reno Slowstart

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40

Cw
nd

 (p
kt

s)

t (sec)

Reno

(b) Reno Slowstart and Congestion Avoidance

Figure 2.3: Cwnd time-history for an example Reno TCP flow on an ex-
perimental testbed with the linux kernel (v2.6.24) as sender. The initial
exponential slowstart phase can be seen in the first couple of seconds, after
which the linear increase phase takes over. Congestion (a lost packet) is
detected at around 16 and 28 seconds and Cwnd is halved each time. Bot-
tleneck bandwidth: 10Mbps, round trip propagation delay: 102msec, router
queue length: 125KB, delayed ACKing disabled on the receiver for simplicity.

11

2. Congestion Avoidance in TCP

With the above problems in mind, a number of new loss-based congestion

avoidance algorithms have been suggested by various researchers, including

Cubic [Xu and Rhee, 2005] (the current default in Linux), H-TCP [D.J.Leith

and R.N.Shorten, 2004], HS-TCP [Floyd, 2003], Scalable TCP [Kelly, 2003],

and Westwood [Mascolo et al., 2001] (all of these are available in linux).

Most are similar loss-based schemes which steepen the cwnd AIMD additive

increase rate (α) and modify the multiplicative decrease factor (β) during

the congestion avoidance phase. Some novel ideas used within them include:

Behave like Reno for small Cwnd Many of these algorithms behave like

or attempt to emulate the behaviour of Reno on paths with low BDP.

This can give backward compatibility on links where Reno behaviour

is satisfactory (Scalable, Cubic, HS-TCP).

AIMD Increase as a function of Cwnd Scalable TCP increases Cwnd

by a constant amount on each ACK (not each RTT), so Cwnd increase

is a linearly increasing function of Cwnd. Similar to slowstart, this

leads to an exponential increase, albeit with a lower exponent. HS-

TCP increases Cwnd as a sub-linear (usually logarithmic) function of

Cwnd.

AIMD Increase as a function of time between congestion events H-

TCP increases Cwnd as a polynomial function of ∆, the time between

congestion events. Cubic increases Cwnd as a function both of ∆ and

Cwnd.

Mitigate RTT unfairness H-TCP (optionally) and Cubic attempt to in-

crease Cwnd as a function of RTT, in order that two flows competing

with different RTTs get the same Cwnd.

12

2. Congestion Avoidance in TCP

Empty queue at congestion H-TCP estimates the minimum round trip

propagation delay and the current RTT and attempts to empty the

queue by setting β, the multiplicative decrease factor to the ratio of

the propagation delay and the round trip time.

These algorithms are all fundamentally loss-based, i.e. loss is the primary

congestion signal used3. Several implementations have however, made use of

the queueing delay either as part of their increase function (H-TCP, CUBIC)

or as part of their decrease (H-TCP, FAST).

2.3 Delay-Based Congestion Control

An alternative form of congestion control was proposed by Jain in the early

nineties. In [Jain, 1989], it was suggested that the throughput and round

trip time delay on a network relate to network load as shown in figure 2.4.

He also pointed out that the throughput had a “knee” bend around the point

where the queue began to fill and that increasing network load beyond this

point would result in a minimal gain in throughput, but at the cost of extra

latency due to queueing. It was therefore proposed that congestion avoidance

schemes (distinct from congestion “control” schemes) should be designed to

keep the network operating at the knee of the curve regardless of the amount

of buffering in the network.

2.3.1 Vegas

A number of schemes were suggested including CARD [Jain, 1989], Tri-S

[Wang and Crowcroft, 1991], Vegas [Brakmo et al., 1994] and later FAST

[Jin et al., 2004]. Among these, one of the most thoroughly analysed and

3Apart perhaps from ECN, which foretells of impending loss.

13

2. Congestion Avoidance in TCP

Figure 2.4: Jain’s “knee of the curve” figure, taken from [Jain, 1989]

implemented algorithm is Vegas. What Vegas proposes is to estimate the

expected throughput and the actual throughput being achieved based on

τ , the queueing delay, Cwnd, the congestion window and minRTT , the

minimum observed round trip time, which is used an estimate of the round

14

2. Congestion Avoidance in TCP

trip propagation delay, baseRTT .

ExpThruput =
Cwnd

minRTT
(2.1)

ActThruput =
Cwnd

minRTT + τ
(2.2)

ε = (ExpThruput − ActThruput) ∗ minRTT (2.3)

The algorithm then adjusts the window in response to changes in queueing

delay as follows:

Cwnd ←

Cwnd + 1 ε < a

Cwnd ε ∈ [a, b]

Cwnd − 1 ε > b

(2.4)

where a and b are design parameters (often 2 and 4 respectively). These

effectively define an upper and lower bound on the number of packets a

vegas flow will attempt to maintain in the queue.

The Vegas algorithm has been observed to have a number of flaws. Some

of these are specific to Vegas, but some are more general problems which are

exhibited in other delay-based congestion avoidance schemes.

Knee of the Curve Each Vegas flow which operates across a bottleneck

will attempt to maintain a positive number of packets in the queue

(in the range a–b), regardless of the delay it experiences. As a result,

the queue length increases linearly with the number of flows sharing

the link. Operation at the knee of the curve is therefore only achieved

where there is a small number of flows.

Measuring baseRTT As Vegas flows seek always to maintain non-zero queue-

ing delay, the queue may never empty while flows operate. New flows

15

2. Congestion Avoidance in TCP

must estimate the throughputs based on the minimum round trip time,

but will overestimate this value if the queue is never empty. They will

then overestimate the expected throughput leading to unfairness be-

tween competing flows.

Coexistence For practical reasons, it is necessary that any new algorithm

can coexist reasonably with the existing ones (particularly Reno) for

it to gain adoption on the internet. When competing with loss-based

flows such as Reno, Vegas consistently reduces its window too early

and achieves a very poor share of the available bandwidth [Ahn et al.,

1995].

The first two issues noted above are specific to the Vegas algorithm, but

the third seems to be a more general issue with any scheme which proposes

to back off before the queue fills. Some other general issues which have been

noted in the context of delay-based algorithms are:

Measuring baseRTT #2 Obtaining a reliable estimate of baseRTT can be

troublesome when it may change over time due, for example, to routing

changes. Also, if the link is shared with loss-based flows, a standing

queue may develop regardless of the actions of the delay-based flow.

This issue is partially investigated in chapter 4.

Correlation Some measurements have been made [Prasad et al., 2004; Mar-

tin et al., 2003] suggesting that the correlation between the delay-signal

observed by a single flow may be only very weakly correlated to the

network congestion, e.g. where many flows share a single link. It is sug-

gested that congestion control may be problematic using delay-based

methods under these conditions. This issue is investigated further in

chapter 3.

16

2. Congestion Avoidance in TCP

Reverse Path Queueing Assuming accurate baseRTT estimation, the de-

lay signal measured on a link is the sum of the queueing delay on both

the forward and reverse paths. Unless these components can somehow

be separated, it seems likely that delay-based flows will reduce Cwnd

in response to congestion on the reverse path, even though their actions

may not be able to affect this and there may not be congestion on the

forward path.

Noise Round-trip delay is affected not just by queueing but also by other

causes unrelated to congestion, such as delayed acks, TCP segmentation

offload and wireless MAC delay. Some of these issues are approached

in chapter 5.

2.3.2 Delay-Based AIMD

Recently, a new experimental delay-based congestion control algorithm has

been developed [Leith et al., 2007] called Delay-based AIMD. This new al-

gorithm aims to take the existing Reno AIMD scheme and make minimal

changes to produce a delay-based congestion control algorithm.

The main modification to the Reno scheme is to define an extra congestion

event. The algorithm stores the minimum observed RTT (assumed to be the

baseRTT), the current RTT and thereby infers the queueing delay, τ . When

the queueing delay exceeds some threshold value, τ0, cwnd is backed off.

The congestion window therefore evolves according to:

Cwnd ←

Cwnd + α/Cwnd τ ≤ τ0

β ∗ Cwnd τ > τ0

β ∗ Cwnd packet loss

(2.5)

17

2. Congestion Avoidance in TCP

60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

time (s)

cwnd (packets)
queue occupancy (packets)

Figure 2.5: Illustrating delay-based AIMD algorithm. (ns simulation, delay
120ms, link rate 50Mbps, 400 packet queue, τ0 20ms).

A suggested value for the queueing delay threshold, τ0 is 50 msec. In order to

have quick recovery from congestion events, α, the increase applied on each

ACK has been initially suggested to be the same as H-TCP’s cubic increase

function [D.J.Leith and R.N.Shorten, 2004], though Reno’s has also been

used in some tests and in principle most of those used in proposed loss-based

congestion control schemes could be used. For those tests used in this thesis,

the Reno linear increase is used as shown in equation 2.5.

The back off factor, β is similar to that in H-TCP and is defined as

β(t) = δ ∗ minRTT

RTT (t)
(2.6)

with RTT (t) the current observed round trip time and minRTT the mini-

mum observed round trip time – an estimate of the round trip propagation

delay, baseRTT . The factor δ < 1 (e.g. 0.8) is multiplied to ensure that if

18

2. Congestion Avoidance in TCP

baseRTT were overestimated and the ratio is too large to empty the queue,

each successive back off will empty further, forcing minRTT down to its

correct value. This choice of β was first proposed in [Leith et al., 2007] and

is investigated in more detail in chapter 4.

2.3.3 Hybrid Congestion Control

In addition to algorithms which use delay as a congestion indicator, a further

category of congestion control has been proposed which is in a sense a hybrid

of delay and loss-based congestion control. The two best-known current

examples are Compound TCP (which is suggested as an option in Microsoft

Windows) and TCP Illinois (available in linux). These algorithms seek to

be more aggressive than Reno where queueing delay is minimal, but to fall-

back to a Reno behaviour in the presence of queueing delay, as detected by

monitoring the round trip time.

Compound TCP [Song, 2006], for example uses a congestion window

which is the sum of two components, the regular Reno Cwnd component

and a Dwnd (delay window) value which is calculated in a similar same way

to Vegas. TCP Illinois [Liu et al., 2006] uses loss as the congestion signal

to decrease Cwnd, but sets α, the rate of increase and β the magnitude of

decrease, as a function of averaged round trip delay.

2.4 Summary

This chapter has provided a brief introduction to TCP and its standard

congestion control. Recently proposed extensions for large bandwidth delay

product networks have also been summarisd including Cubic, the default

linux scheme and Compound, Microsoft’s congestion control scheme which

19

2. Congestion Avoidance in TCP

is available in Windows Vista.

Delay-based congestion control has also been explored, particularly Vegas

and the experimental delay-based AIMD which is explored in more detail in

later chapters.

20

Chapter 3

Delay-based Congestion

Control: Sampling and

Correlation Issues

3.1 Introduction

In this chapter we revisit the recently voiced concern that low correlation

between measured delay and packet loss events means that delay may be

fundamentally flawed as a signal for congestion control. A related concern

is that on heavily multiplexed links the measured delay may be only weakly

correlated with the congestion window of a flow [Prasad et al., 2004]. These

concerns are particularly topical in view of a number of proposals to change

the TCP congestion control algorithm to make use of delay information.

Examples include not only FAST TCP [Jin et al., 2004] but also hybrid

congestion control algorithms based on the use of both loss and delay, e.g.

TCP Illinois [Liu et al., 2006] and Compound TCP [Tan et al., 2005]. The

latter is now available in Windows Vista and is currently undergoing review

21

3. Delay-based Congestion Control: Sampling and
Correlation Issues

at the IRTF and IETF standards bodies.

A number of recent independent measurement studies [Biaz and Vaidya,

2003; Martin et al., 2003; Rewaskar et al., 2005] have indeed found that

there may be only low correlation between packet loss events and the delay

measured by a flow. That is, when packet loss occurs, and thus some network

queue is full, nevertheless all flows need not observe high delay. In fact,

any given TCP flow may observe high delay at only a small proportion of

packet loss events. This behaviour is confirmed by our own experimental

measurements.

[Martin et al., 2003], [Prasad et al., 2004] consider possible reasons for the

low correlation observed and suggest that sampling issues are a fundamental

factor. To see this, consider Figure 3.1 which presents an example queue oc-

cupancy time history at a bottleneck link carrying many flows. Packets from

a single flow “sample” the queueing delay at the bottleneck link. However,

when many flows share a link, the proportion of queued packets that are

associated with a given flow can become small. The queueing delay is then

only very sparsely sampled by that flow – for example, the “samples” for one

flow are marked by solid squares in Figure 3.1. As a result, the flow cannot

accurately estimate the state of the queue and may fail to detect even large

changes in queue occupancy and, in particular, may fail to detect queue full

events. Thus, in general, the correlation between the queueing delay mea-

sured by a given flow and the actual queueing delay at a bottleneck link may

be low.

While the possibility of low correlation between packet loss events and

the delay measured by a flow thus seems well established, our aim in this

chapter is to investigate the implications for congestion control. A natural

concern is that low correlation between measured delay and packet loss events

22

3. Delay-based Congestion Control: Sampling and
Correlation Issues

means that delay measurements are prima facie an inadequate indicator

of network congestion and thus their use for congestion control could be

fundamentally flawed. Indeed, precisely such concerns are raised in [Martin

et al., 2003; Prasad et al., 2004; Rewaskar et al., 2005]. This potentially

has direct implications not only for recent delay-based proposals (FAST,

Compound TCP etc) but also for our understanding of the fundamental

constraints on congestion control within the current Internet architecture.

Our main contribution in this chapter is to demonstrate that in fact what

matters for congestion control is the aggregate behaviour of the flows sharing

a link. Hence, perhaps somewhat surprisingly, while any given single flow

may measure delay which is only weakly correlated with the actual queueing

delay, this is not in itself an obstacle to congestion control. In this chapter

we demonstrate this constructively via detailed experimental tests and also

confirm analytically the general nature of our conclusions.

It is important to emphasise that this result does not preclude the exis-

tence of other factors that may limit the practical application of delay-based

congestion control, it only states that low correlation is not itself an obstacle.

For example, obtaining good delay measurements in the presence of “noise”

such as delayed acking and hardware offload is also potentially an important

issue – in fact we touch on this issue here although it is not the main focus of

the present chapter. Despite the existence of such issues that require further

study, we nevertheless argue that the work here is an important first step in

exploring the nature of fundamental constraints on congestion control.

The chapter is organised as follows. In Section 3.3 we consider the require-

ment for correlation between delay and loss events, analyse the congestion

control properties of the delay-based AIMD algorithm and establish condi-

tions under which it achieves congestion control, in the sense of bounding

23

3. Delay-based Congestion Control: Sampling and
Correlation Issues

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

60

70

80

90

100

time (s)

qu
eu

e
oc

cu
pa

nc
y

(p
ac

ke
ts

)

Figure 3.1: Illustrating sampling issues when estimating queue state – exam-
ple queue occupancy time history with packets of one selected flow marked
by solid squares.

the queue occupancy. Section 3.4 presents experiments to validate this anal-

ysis, including in heavily multiplexed regimes. We briefly summarise our

conclusions in Section 3.6. Further experimental analysis of performance of

delay-based AIMD in the presence of delayed acking and TSO is described

separately in chapter 5.

3.2 Related Work

In parallel with work on the development of delay-based algorithms, a num-

ber of concerns have been raised as to practicality of delay as a congestion

signal. Potentially one of the most serious is the observation that there can be

low correlation between measured and actual queueing delay and loss. This

is discussed in detail in the experimental studies in [Biaz and Vaidya, 2003;

24

3. Delay-based Congestion Control: Sampling and
Correlation Issues

Martin et al., 2003; Rewaskar et al., 2005]. These studies do not investigate

any specific delay-based algorithm but rather make use of experimental mea-

surements to evaluate correlation. [Prasad et al., 2004] considers a number of

possible reasons for low correlation to occur, including in particular sampling

issues.

3.3 Is low correlation an obstacle to conges-

tion control ?

On the face of it, the existence of situations where low correlation exists

between the queueing delay measured by a flow and the actual queueing

delay appears to create an obstacle to congestion control. That is, how can

we expect to succeed at congestion control if some flows are unable to reliably

detect congestion events where the queue occupancy is high. We demonstrate

that in fact what matters for congestion control is the aggregate behaviour

of the flows sharing a link. Hence, while any given single flow may measure

delay which is only weakly correlated with the actual queueing delay, this is

not in itself an obstacle to achieving congestion control.

To explore this question we use the delay-based AIMD algorithm as an

example and investigate its congestion control behaviour in more detail. We

note that our purpose here is not to advocate use of the delay-based AIMD

algorithm. Rather the delay-based AIMD algorithm is simply one approach

to delay-based congestion control that happens to provide a useful vehicle for

demonstrating some fundamental issues in a concrete manner. Our analysis

makes use of the following basic observation.

Key Observation. Sparse sampling of the queue occupancy means that

25

3. Delay-based Congestion Control: Sampling and
Correlation Issues

packets from some flows may not detect an event where the queueing delay

rises above a threshold τ0. Nevertheless, if the queueing does rise above τ0

then we always have that some packets do experience queueing delay greater

than τ0 – namely, the very packets that are responsible for filling the queue

above threshold τ0.

We immediately have that as long as the queueing delay remains above

threshold τ0, then each RTT the delay-based AIMD algorithm will lead to

at least one flow backing off. Moreover, since every packet participating

in the overshoot in queue occupancy above τ0 measures the high queueing

delay, the magnitude of the aggregate flow backoff is roughly proportional

to the overshoot in queue occupancy (we make this statement more precise

below). Intuitively, this creates pressure to drain the queue occupancy below

τ0, thereby achieving congestion control. This argument does not require that

every flow be able to detect events when the queueing delay becomes high,

it only requires that in aggregate the flows respond to each such congestion

event. By the foregoing key observation, the latter is always the case. We

develop this argument in more detail next.

3.3.1 Congestion Control Analysis

Consider n delay-based AIMD flows sharing a common bottleneck. Let wi,

baseRTTi be the respective cwnd and round-trip propagation delay of flow i.

Let W (k) = [w1(k), · · · , wn(k)] where k corresponds to the time of the k’th

congestion event, i.e. a network event where at least one flow backs off its

cwnd. Figure 3.2 illustrates an example cwnd and queue time history. From

26

3. Delay-based Congestion Control: Sampling and
Correlation Issues

the AIMD algorithm we have that

wi(k + 1) = βi(k)wi(k) + αiTi(k) (3.1)

where αi is the AIMD increase parameter in packets/RTT, βi is the AIMD

backoff factor with βi(k) = 1 corresponding to no back off of flow i at event

k and β ≤ βmax < 1 otherwise. Ti(k) is the number of flow i RTTs between

congestion events k and k + 1.

Figure 3.2: Illustrating cwnd and queue time histories.

The queue occupancy q(k) at the k’th congestion event is

q(k) =
n∑

i=1

[wi(k) − bi(k)baseRTTi] (3.2)

27

3. Delay-based Congestion Control: Sampling and
Correlation Issues

where bi(k) is the bandwidth being consumed by flow i and
∑n

i=1 bi(k) = B

with B the link bandwidth in packet/s.

We let q0 denote the queue occupancy corresponding to the backoff delay

threshold τ0. Note that this implicitly assumes that a one to one correspon-

dence exists between queue occupancy and queueing delay. This assumption

is satisfied, for example, for any link with constant service rate.

Also assume, for the moment, that a delay-based flow backs off its cwnd

whenever one or more packets measures queueing delay above threshold τ0.

We return to this assumption later in Section 3.3.4. We then have the fol-

lowing identity:

n∑

i=1

βi(k)wi(k) ≤ βmax(q(k) − q0) +
n∑

i=1

wi(k) − (q(k) − q0) (3.3)

≤
n∑

i=1

wi(k) + (βmax − 1)(q(k) − q0) (3.4)

Hence, combining (3.2) and (3.4),

q(k + 1) =
n∑

i=1

[wi(k + 1) − bi(k + 1) ∗ baseRTTi]

=
n∑

i=1

[βi(k)wi(k) + αiTi(k) − bi(k + 1) ∗ baseRTTi]

≤ βmaxq(k) + (1 − βmax)q0 +
n∑

i=1

αiTi(k)

+
n∑

i=1

[wi(k) − bi(k + 1) ∗ baseRTTi − q(k)] (3.5)

When flows are synchronised, in steady state1 bi(k+1) = bi(k) and the terms

in the square brackets sum to zero. Hence, the queue length is constrained

1The existence of a unique, stable steady-state solution for synchronised AIMD-based
TCP networks is shown in, for example, [Shorten et al., 2004].

28

3. Delay-based Congestion Control: Sampling and
Correlation Issues

by

q(k + 1) ≤ βmaxq(k) + (1 − βmax)q0 +
n∑

i=1

αiTi(k)

Since βmax < 1 this recursion is convergent and so as k → ∞

q(k) ≤ q0 +
n∑

i=1

αiTi(k)/(1 − βmax) (3.6)

Since the time between congestion events is necessarily bounded (trivially,

since the network capacity is bounded the flow cwnds cannot increase indef-

initely), we have that q(k) is upper bounded.

The bound in (3.6) is potentially very conservative. Nevertheless, it es-

tablishes that a network of synchronised delay-based AIMD flows will always

converge to operation with bounded queues and so achieve congestion con-

trol. This result holds even when the delay measured by any given single

flow may be weakly correlated with queue excursions above the threshold τ0.

Thus we have established that low correlation is not in itself an obstacle to

achieving congestion control. Of course we need to validate this theoretical

analysis via experimental measurements and this is the subject of Section

3.4. Before that, however, we first consider some important extensions of our

analysis.

3.3.2 Two important cases

Tighter bounds on the queue occupancy can be readily obtained in two com-

mon cases.

Case 1: Queue occupancy falls below q0 (i.e. below the delay threshold

τ0) on flow cwnd backoff following congestion event k. In the worst case (i.e.

29

3. Delay-based Congestion Control: Sampling and
Correlation Issues

corresponding to peak queueing delay), congestion event k + 1 occurs when

all flows increase their cwnd’s at the point where the queue is just below q0.

That is,

q(k + 1) ≤ q0 +
n∑

i=1

max(αi, 1) (3.7)

The bound (3.7) has a natural interpretation. Due to network delays, no flow

can detect an event where the queue exceeds τ0 until at least one RTT after

the event. During this RTT it can therefore happen that every flow increases

its Cwnd and injects additional packets into the network. As a result, the

size of the resulting queue overshoot can, in the worst case, be proportional

to the number n of flows.

Case 2: Queue occupancy remains above q0 following congestion event

k. In this case the time until the next congestion event is ≤ maxi∈{1,2,..,n}ti

and so

q(k) ≤ q0 +
n∑

i=1

max(αi, 1)/(1 − βmax) (3.8)

3.3.3 Unsynchronised Flows

The foregoing analysis is for networks where flow backoffs are synchronised.

The analysis can be readily generalised to situations where the flows are not

synchronised. In more detail, taking expectations in (3.5) yields

E[q(k + 1)] ≤ βmaxE[q(k)] + (1 − βmax)q0 +
n∑

i=1

αiE[Ti(k)]

+
n∑

i=1

[E[wi(k)] − E[bi(k + 1)]ti − E[q(k)]]

30

3. Delay-based Congestion Control: Sampling and
Correlation Issues

In steady state2 E[bi(k + 1)] = E[bi(k)] , the terms in the square brackets

sum to zero and length is constrained by

E[q(k + 1)] ≤ q0 +
n∑

i=1

αiE[Ti(k)]

Thus our conclusion that low correlation is not an obstacle to congestion

control remains unchanged in unsynchronised networks.

3.3.4 Filtered delay measurements

The foregoing analysis assumes that the delay-based AIMD algorithm backs

off its cwnd whenever one or more packets measure queueing delay above

threshold τ0. However, in practice we expect to use a smoothed estimate of

queueing delay in order to avoid backing off in response to spurious delays.

In other words we expect to backoff cwnd only after a sufficient number of

packets have experienced high queueing delay.

The choice of an appropriate smoothing filter is a design question that

is outside the scope of the present chapter. Instead, our interest here is

in understanding the impact such smoothing may have on the congestion

control properties of a delay-based algorithm. One direct approach is to seek

a class of filters under which the previous analysis remains applicable. It can

be seen immediately that as long as we maintain the identity (3.4), then the

general bound (3.6) remains unchanged. For example, this holds when we

2Under mild assumptions, the existence of a unique stationary distribution for unsyn-
chronised TCP networks is shown in, for example, [Shorten et al., 2006].

31

3. Delay-based Congestion Control: Sampling and
Correlation Issues

modify the delay-based AIMD algorithm to be

cwnd ←

cwnd + α/cwnd − γ, on each ACK

min[β(cwnd + Sγ), cwnd], if τ ≥ τ0

β × cwnd, if packet loss

where γ > 0 if the currently acknowledged packet has experienced queueing

delay above τ0 (this may be estimated via the packet time stamp), otherwise

γ = 0. Thus the algorithm makes a small reduction in cwnd when individual

packets experience high delay. This satisfies (3.4) by ensuring that cwnd is

always backed off at least in proportion to the number of packets with high

queueing delay. Sγ is a running total of γ values and is reset to zero on a

full backoff (i.e. when τ ≥ τ0). It is therefore the overall amount, since the

last full backoff, subtracted from cwnd due to individual delayed packets.

We use Sγ to adjust the decrease in cwnd at a full backoff to avoid double

counting of delayed packets. The delay signal τ triggering full backoff may

be any smoothed estimate of queueing delay, thereby decoupling the baseline

congestion control behaviour of the algorithm from the choice of smoothing

filter.

The per packet backoff factor γ may differ from the standard backoff

factor β. One natural choice is γ = 1−β which ensures back off to β× cwnd

when a full windows worth of packets are delayed. Since we might expect

to choose the smoothing filter such that τ exceeds τ0 when a full cwnd of

packets exceeds τ0 (indeed, perhaps when less than a full cwnd of packets

exceed τ0), then the per packet backoff simply acts as a conservative “safety

net” .

Again, we have that low correlation is not an obstacle to congestion con-

trol even when a filtered delayed signal is used.

32

3. Delay-based Congestion Control: Sampling and
Correlation Issues

3.4 Experimental Measurements

To help build confidence in the validity of the foregoing analysis for real

network traffic, in this section we explore delay-based congestion control

behaviour using experimental measurements taken on a hardware testbed.

Use of experimental tests seems particularly important in the context of

delay-based control as issues such as scheduling granularity, hardware offload,

packet bursts etc are difficult to model accurately yet may have a direct

impact on delay measurements and performance.

This section is organised as follows. We begin by demonstrating that low

correlation between delay and loss is prevalent on heavily multiplexed links.

Initially delayed acking is disabled, as is TCP segmentation offload (TSO)

in order to focus on correlation issues. We explore the congestion control

behaviour of the delay-based AIMD algorithm and compare experimental

measurements with the analysis in Section 3.3. In Section 3.4.3 we discuss

in more detail some observations on asymptotic behaviour as the number of

flows becomes very large. In Section 3.4.5 we enable delayed acking and TSO

and consider the impact on delay measurement and congestion control. A

full description of the experimental setup can be found in Appendix A.

3.4.1 Illustrating low correlation

We begin by considering a heavily multiplexed link where we expect low cor-

relation between delay and loss to be prevalent. Figure 3.3 demonstrates the

congestion control action of the delay-based AIMD algorithm on a 10Mbps

link shared by 80 TCP flows. The flows have a range of round-trip times

from 20-200ms. Figure 3.3(a) plots the correlation between the queueing

33

3. Delay-based Congestion Control: Sampling and
Correlation Issues

delay measured by flow 1 and the queueing delay measured by flows 2-803.

These results are representative, with similar correlation values obtained for

flows other than flow 1. It can be seen that the correlation between mea-

sured queueing delay is close to zero for all flows. Figure 3.3(b) shows typical

time histories of the measured queueing delay (i.e. measured RTT minus the

known propagation delay), and the low level of correlation between measure-

ments is evident.

Despite the low correlation between measured queueing delay, the delay-

based algorithm successfully regulates the flow cwnds to prevent queue over-

flow and congestion. This is illustrated in Figure 3.4(a) which plots the sum

of the flow cwnds while Figure 3.4(b) plots typical cwnd time histories for

individual flows. During this test run no packet losses occurred. Note that

the small flow cwnds in Figure 3.4(b) are feature of the link being highly mul-

tiplexed and reflect the fact that here we are intentionally seeking to explore

situations where flow delay measurements may be weakly correlated.

3.4.2 Peak queueing delay vs number of flows

To explore congestion control performance in more detail we consider the

measured queueing delay as a function of the number of flows sharing a

link. Figure 3.5 plots the mean and peak queueing delay as the number

of competing flows is varied on a link. Also marked on Figure 3.5 is the

analytic bound (3.7). This worst case bound captures the fact that no flow

can detect a queue overshoot above τ0 until one RTT after it occurs. Thus

it can happen that all flows increase their cwnd and insert extra packets

with one RTT, creating an overshoot above τ0 that is proportional to the

3Queueing delay is the measured from the packet time-stamps less baseRTT , where
baseRTT is the minimum observed delay. We confirmed that flow baseRTT estimates of
propagation delay were accurate. Time histories are aligned based on the peak correlation.

34

3. Delay-based Congestion Control: Sampling and
Correlation Issues

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

flow number

co
rre

la
tio

n
co

ef
fic

ie
nt

(a) Correlation between queueing delay measured by flow 1 and by flows
2-80.

221 222 223 224 225 226 227 228 229
0

20

40

60

80

100

120

140

160

180

200

time (s)

m
ea

su
re

d
qu

eu
ei

ng
 d

el
ay

 (m
s)

(b) Time histories of measured queueing delay for flow 1 and flow 2.

Figure 3.3: 80 concurrent, long-lived flows. 10Mbps link, flow baseRTTs
uniformly randomly chosen from 20-200ms.

35

3. Delay-based Congestion Control: Sampling and
Correlation Issues

0 100 200 300 400 500 600 700
125

130

135

140

145

150

155

160

165

time (s)

Ag
gr

eg
at

e
cw

nd
 (p

ac
ke

ts
)

(a) Sum of flow cwnds.

221 222 223 224 225 226 227 228 229
1

1.5

2

2.5

3

3.5

4

time (s)

cw
nd

 (p
ac

ke
ts

)

flow 1
flow 2

(b) cwnd time histories for flow 1 and flow 2.

Figure 3.4: 80 concurrent, long-lived flows. 10Mbps link, flow baseRTTs
uniformly randomly chosen from 20-200ms.

36

3. Delay-based Congestion Control: Sampling and
Correlation Issues

number of flows. It can be seen that as we increase the number of flows the

peak queueing delay the analytic bound is generally quite tight. This not

only provides a degree of validation of the analysis in Section 3.3 but also

provides a concrete demonstration that a delay-based algorithm can indeed

achieve effective congestion control under low correlation conditions.

Investigating these experimental results in more detail, it can be seen

from Figure 3.5 (and Figure 3.7) that the peak queueing delay does not in-

crease monotonically with the number of flows but rather may decrease as

the number of flows increases. This arises due to quantisation of the num-

ber of packets in flight. To see this consider n flows sharing a link with

bandwidth-delay product P packets and with queue occupancy q0 packets

corresponding to the queueing delay threshold τ0. Assume, for simplicity,

that the flows are perfectly synchronised and have the same cwnd. Let

cwnd(n) = max {j : j × n − P < q0, j ∈ {0, 1, 2, ...}}. That is, cwnd(n) is

the largest cwnd such that the queueing delay still remains below the thresh-

old τ0. Overshoot in queue occupancy above q0 will then occur on the

next round-trip time when flows increase their cwnd by one packet, with

the magnitude of the overshoot being (cwnd(n) + 1) × n − P − q0. As

we increase the number of flows to n + k, then the flow cwnd just before

backoff initially remains unchanged i.e. cwnd(n + k) = cwnd(n), provided

cwnd(n)× (n + k)−P < q0 . Eventually, however, as n + k increases further

cwnd(n + k) must reduce to be smaller than cwnd(n). At this point the

delay overshoot will also decrease, leading to non-monotonic behaviour of

the overshoot. It can seen from Figures 3.5(a) that, as might be expected,

this effect is most pronounced when all flows have the same RTT and so are

almost synchronised. When flows have different RTTs, as in Figure 3.5(b),

and are unsynchronised the overshoot tends to show a simple rising trend.

37

3. Delay-based Congestion Control: Sampling and
Correlation Issues

Also plotted in Figure 3.5 is the mean queueing delay vs number of flows.

It can be seen that the mean delay also displays a rising trend. This has

implications for performance and operation at the “knee of the curve”. The

potential exists to modify the delay-based algorithm to mitigate this effect

e.g. by adjusting the threshold τ0 based on observed overshoot in delay.

However, we do not explore this possibility here.

3.4.3 Asymptotic behaviour

While our experimental results demonstrate that low correlation need not be

an obstacle to congestion control, they also highlight that other issues can

arise on links with very large numbers of flows. In particular, as the number

of flows is increased the flow cwnd’s will eventually decrease until they are

only one packet in size. This is inevitable since newly added flows must have

a cwnd of at least one packet and therefore existing flows must, if possible,

reduce their cwnd to make space for new flows (or rather backoff their cwnds

to maintain the queueing delay below τ0). Eventually, however, we will reach

the situation where all flows have reduced their cwnd to one packet.

This behaviour is illustrated in Figure 3.6, which plots the flow cwnds as

the number of flows is increased. It can be seen that as the number of flows

is increased the flow cwnds tend to fall, until eventually all flows have cwnd

of one packet. The point where this occurs can be calculated as follows. In

Figure 3.6(a) flows with a base RTT of 100ms share a 10Mbps link. The

number of packets required to fill the pipe and create a queueing delay of τ0

is B(baseRTT + τ0), where B is the link rate in packets per second. With

τ0=50ms and 1500 byte packets, B(baseRTT +τ0)=130 packets i.e. our limit

is 130 flows with cwnd of 1 packet. This is confirmed by inspection of Figure

3.6(a). In the mixed base RTT case shown in Figure 3.5(b) it is harder to

38

3. Delay-based Congestion Control: Sampling and
Correlation Issues

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200

Q
ue

ue
in

g
De

la
y

(m
se

c)

Number of Flows, N

Mean Observed Queueing Delay
Max Observed Queueing Delay

!0 = 50 msec
Analytic Bound

(a) All flows have baseRTT 100ms.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200

Q
ue

ue
in

g
De

la
y

(m
se

c)

Number of Flows, N

Mean Observed Queueing Delay
Max Observed Queueing Delay

!0 = 50 msec
Analytic Bound

(b) Flow baseRTTs uniformly random from 20–200ms.

Figure 3.5: Peak and mean queueing delay vs number of flows. 10Mbps link.
Bound (3.7) is labelled “Analytic Bound”. The vertical line in (a) marks the
point at which the number of flows equals the path bandwidth-delay product.

39

3. Delay-based Congestion Control: Sampling and
Correlation Issues

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

Ti
m

e-
Fr

ac
tio

n
Fl

ow
s

Sp
en

t a
t C

wn
d

Number of Flows, N

Cwnd=1
Cwnd=2
Cwnd=3
Cwnd=4
Cwnd=5
Cwnd>5

(a) 10Mbps link, 100ms baseRTT, 1500B packets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

Ti
m

e-
Fr

ac
tio

n
Fl

ow
s

Sp
en

t a
t C

wn
d

Number of Flows, N

Cwnd=1
Cwnd=2
Cwnd=3
Cwnd=4
Cwnd=5
Cwnd>5

(b) 10Mbps link, baseRTTs 20-200ms, 1500B packets

Figure 3.6: Fraction of time that flows take values of cwnd vs the number
of flows. It can be seen that flow cwnd’s tend to decrease as the number of
flows increases, until all flows have cwnd of one packet.

40

3. Delay-based Congestion Control: Sampling and
Correlation Issues

analytically calculate the number of flows where the limiting regime occurs.

Nevertheless, the qualitative behaviour is similar as can be seen from Figure

3.6(b).

In this asymptotic regime, each additional new flow leads to an increase in

the level of queue occupancy. This occurs despite the fact that the queueing

delay may then remain persistently above τ0, since flows all have cwnd of

one packet and so cannot backoff their cwnd further to reduce the queueing

delay. Note also that when the delay is persistently above τ0, delay-based

AIMD flows will not increase their cwnd. Hence, we have that the queueing

delay simply increases linearly with the number of flows. This behaviour is

evident in Figure 3.5(b) when the number of flows is greater than 130 – it

can be seen that the delay rises linearly, parallel to the analytic bound (3.7).

We discuss SACK Reno in more detail in the next section, but note here

that once the cwnd of a flow falls below three packets, fast retransmit no

longer operates (since it requires two duplicate acks after loss of one packet)

and congestion control falls back retransmit timeouts (RTO). SACK Reno

behaviour is the asymptotic regime is thus complex and, for example, prone

to prolonged unfairness between competing flows due to sensitivity to loss of

retransmitted packets when in RTO.

The fact that flow cwnds are constrained to have a minimum value of one

packet appears to place a limit on the use of delay-based congestion control.

Namely, as the number of flows is increased to the point where a flow cwnd

of less than one packet is needed to maintain low queueing delay, then low

delay operation becomes impossible and packet loss eventually occurs as the

number of flows becomes sufficiently large.

The limit is, however, not a fundamental one. For example, while cwnd

is constrained to be at least one packet, we might reduce the packet size

41

3. Delay-based Congestion Control: Sampling and
Correlation Issues

to prevent queue buildup. For example, we re-ran our experiments using

a packet size of 512 bytes rather than 1500 bytes. Figure 3.7 shows the

corresponding results – we can now fit more than 390 flows on the link before

the flow cwnds are all reduced to only one packet. Reducing packet size

may not be an attractive solution, however, as it increases the transmission

overhead (packet headers and link framing overhead remain unchanged as

the packet payload is decreased in size). One alternative is to insert delays

between packet transmissions so as to pace packets at a slower rate, which

would soften the impact of the one packet lower bound on cwnd. However,

situations where this limit is reached are essentially corner cases where flows

are all getting very low throughput and the user experience is likely to be

poor regardless of changes to TCP. For example, on a 10Mbps link with 130

flows, each flow is has a throughput share of less than 75Kbps, i.e. similar

to a dialup modem. With 512B packets, for >390 flows the per share is less

than 25Kbps.

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400 450

M
ax

 O
bs

er
ve

d
Q

ue
ue

in
g

De
la

y
(m

se
c)

Number of Flows, N

Mean Observed Queueing Delay
Max Observed Queueing Delay

!0 = 50 msec
Analytic Bound

Figure 3.7: Peak and mean queueing delay vs number of flows. 10Mbps link,
100ms baseRTT, 512B packets.

42

3. Delay-based Congestion Control: Sampling and
Correlation Issues

3.4.4 Comparison with SACK Reno

To illustrate that effective congestion control is indeed being achieved by

the delay-based algorithm even when correlation is weak, it is informative to

compare behaviour with that of the standard SACK Reno loss-based TCP.

Figures 3.8 and 3.9 compare the performance of the delay-based algorithm

with that of the standard Linux SACK Reno algorithm. Figure 3.8 show

measurements when flows have the same base RTT of 100ms and Figure

3.9 shows measurements when the flow base RTTs are distributed between

20-200ms. It can be seen that for a given packet size link utilisation is at

worst slightly reduced with delayed-based AIMD i.e. the low delay achieved

by the delay-based AIMD algorithm does not come at the cost of a signifi-

cant lowering of throughput. As discussed previously, the negative impact on

throughput of using a smaller packet size is evident in Figure 3.8(a). While

the aggregate link utilisation is similar, it can be seen from Figure 3.8(b)

that the delay-based algorithm achieves better inter-flow fairness than Reno

on heavily-multiplexed paths. It can also be seen from Figure 3.9(b) that the

difference in fairness behaviour is less pronounced when there is wider mix of

flow RTTs, and so of flow cwnds. At low cwnds, fast recovery is ineffective

and congestion control in Reno reverts to RTO operation. Unfairness then

arises because flows in RTO become very sensitive to packet loss – follow-

ing an RTO, if the first retransmitted packet is lost then the RTO timer is

doubled and can easily increase to several seconds duration. In contrast, the

delay-based algorithm avoids packet loss even in quite extreme regimes.

43

3. Delay-based Congestion Control: Sampling and
Correlation Issues

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140 160 180 200

Ag
gr

eg
at

e
G

oo
dp

ut
 O

bs
er

ve
d

(M
bi

t/s
ec

)

Number of Flows

DB-AIMD
Reno

DB-AIMD MTU=512B

(a) Goodput vs number of flows.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120 140 160 180 200

Ja
in

 F
ai

rn
es

s
In

de
x

Number of Flows

DB-AIMD
Reno

(b) Fairness vs number of flows.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 20 40 60 80 100 120

Av
g.

 G
oo

dp
ut

 (M
bi

t/s
ec

)

Flow Number

DB-AIMD
Reno

(c) Fairness between flows when 128 concurrent flows.

Figure 3.8: Goodput and fairness for Reno and delay-based AIMD algo-
rithms. 10Mbps link, 100ms baseRTT.

44

3. Delay-based Congestion Control: Sampling and
Correlation Issues

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140 160 180 200

Ag
gr

eg
at

e
G

oo
dp

ut
 O

bs
er

ve
d

(M
bi

t/s
ec

)

Number of Flows

DB-AIMD
Reno

(a) Goodput vs number of flows.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 20 40 60 80 100 120 140 160 180 200

Av
er

ag
e

G
oo

dp
ut

 (M
bi

t/s
ec

)

Flow Base RTT (msec)

32 Reno Flows
64 Reno Flows

128 Reno Flows
32 DB-AIMD Flows
64 DB-AIMD Flows

128 DB-AIMD Flows

(b) Fairness between flows when 32, 64 and 128 flows.

Figure 3.9: Goodput and fairness for Reno and delay-based AIMD algo-
rithms. 10Mbps link, 20-200ms baseRTT.

45

3. Delay-based Congestion Control: Sampling and
Correlation Issues

3.4.5 Delayed ACKing and TSO

The foregoing experimental results disable delayed acking and TSO in order

to focus clearly on the fundamental performance of the delay-based algo-

rithm. In this section we consider the impact of delayed acking and TSO in

more detail. Although our primary focus in this chapter is on the impact of

low correlation in congestion control, we found that our experimental tests

also helped to throw some light on the issue of obtaining clean delay mea-

surements. In particular, we found that some significant sources of “noise”

in delay measurements can be removed by simple sender side changes to de-

lay measurement within the network stack. These changes have since been

incorporated into the Linux kernel and are discussed in detail in chapter 5.

With the changes to RTT measurement and TSO handling discussed in

chapter 5, Figure 3.10(a) plots the measured queueing delay vs number of

flows with delayed acking and TSO enabled. In these tests we also make a

change to the delay-based AIMD algorithm to prevent delay backoff reducing

the cwnd below two packets (loss backoff and RTO behaviour is unchanged).

This is because with delayed acking enabled we need at least two packets

in flight in order to obtain a clean delay measurement using the approach

discussed above. It can be seen from Figure 3.10(a) that the performance

is similar to that without delayed acking and TSO – compare with Figure

3.5(b). In particular, the queueing delay remains bounded even for large

numbers of flows where the correlation between measured and actual queue-

ing delay is low. The point at which the link enters the asymptotic regime

is changed, however, from around 130 flows to around 90 flows owing to the

lower bound on cwnd of two packets in Figure 3.10(a) while in Figure 3.5(b)

the lower bound is one packet.

Also shown in Figure 3.10(b) is the corresponding measured link goodput.

46

3. Delay-based Congestion Control: Sampling and
Correlation Issues

It can be seen that the goodput is almost identical to that without delayed

acking and TSO. Although not shown here, throughput fairness between

flows is also very similar to that without delayed acking and TSO.

3.5 Scope

This work focusses on the specific question of whether low correlation between

measured and actual queueing delay and loss is a fundamental obstacle to

congestion control. This issue is of particular interest as it is a commonly

voiced concern and has been the subject of a number of published studies. We

emphasise that many other issues that are not addressed here remain to be

considered before any decision could be made as to the suitability or otherwise

of delay as a congestion signal for use other than on a purely experimental

basis. For example, we do not consider the issue of co-existence between flows

operating loss-based and delay-based congestion control, performance over

multiple bottlenecks, performance over wireless links and so on. Nevertheless,

we argue that the work here is an important first step in exploring the nature

of fundamental constraints on congestion control.

3.6 Conclusions

In this chapter we revisit the commonly voiced concern that low correlation

between measured delay and packet loss events means that delay may be

fundamentally flawed as a signal for congestion control. This concern is

particularly topical in view of a number of proposals to change the TCP

congestion control algorithm to make use of delay information. Examples

include not only FAST TCP [Jin et al., 2004] but also hybrid congestion

47

3. Delay-based Congestion Control: Sampling and
Correlation Issues

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140 160 180 200

O
bs

er
ve

d
Q

ue
ue

in
g

De
la

y
(m

se
c)

Number of Flows, N

Mean Observed Queueing Delay
Max Observed Queueing Delay

50 msec
Analytic Bound

(a) Peak and mean queueing delay vs number of flows

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200

Ag
gr

eg
at

e
Th

ro
ug

hp
ut

Number of Flows

(b) Goodput vs number of flows

Figure 3.10: Performance with delayed acking and TCP segmentation offload
enabled. 10Mbps link. Flow baseRTTs uniformly random from 20-200ms.

48

3. Delay-based Congestion Control: Sampling and
Correlation Issues

control algorithms based on the use of both loss and delay, e.g. TCP Illinois

[Liu et al., 2006] and Compound TCP [Tan et al., 2005]. The latter is now

available in Windows Vista and is currently undergoing review at the IRTF

and IETF standards bodies.

The main contribution of this work is to demonstrate that in fact what

matters for congestion control is the aggregate behaviour of the flows sharing

a link. Hence, perhaps somewhat surprisingly, while any given single flow

may measure delay which is only weakly correlated with the actual queueing

delay, this is not in itself an obstacle to congestion control. We demon-

strate this constructively via detailed experimental tests and also confirm

analytically the general nature of our conclusions. This potentially has di-

rect implications for our understanding of the fundamental constraints on

congestion control within the current Internet architecture.

49

Chapter 4

Estimation of Round-Trip

Propogation Delay

4.1 Introduction

Estimation of round-trip propagation delay, also referred to as baseRTT ,

is a fundamental part of many congestion control algorithms. It is usually

estimated using minRTT , the minimum observed round trip time for a flow.

Apart from its evident importance in delay-based algorithms such as FAST

TCP [Jin et al., 2004] and TCP Vegas [Brakmo et al., 1994], it also plays an

important role in recently proposed loss-based (and hybrid) schemes such as

TCP Westwood [Mascolo et al., 2001], Compound TCP [Song, 2006], and H-

TCP [D.J.Leith and R.N.Shorten, 2004] in which flows aim to adaptively set

their backoff factor to β = baseRTT/RTTmax, where RTTmax is related to

the measured RTT at backoff. In this latter context, the ability to estimate

baseRTT effectively decouples the congestion control algorithm from the

issue of queue provisioning and enables high utilisation to be achieved with

small buffers [Shorten and Leith, 2006].

50

4. Estimation of Round-Trip Propogation Delay

Accurate estimation of baseRTT is, however, known to potentially be

problematic. A primary issue is interactions between baseRTT estimation

and the congestion control algorithm itself. For example, in TCP Vegas

and related algorithms a standing queue is induced as part of the correct

operation of the congestion control algorithm. Thus, when flow start times

are staggered, later flows tend to over-estimate baseRTT due to the stand-

ing queue created by earlier flows. Similar issues can also arise with loss-

based algorithms. For example, if the AIMD backoff factor used is β =

minRTT/RTTmax (as in H-TCP and some versions of Westwood), then over-

estimation of baseRTT may mean that flows do not empty network queues,

allowing the overestimate to persist indefinitely. Statistical multiplexing of

flow backoffs on links shared by many loss-based flows can also lead to later

flows experiencing a standing queue and so overestimating baseRTT .

In this chapter we revisit the interaction between baseRTT estimation

and congestion control action. We develop a simple AIMD-based scheme

that allows network buffers to drain and thus demonstrate in a constructive

manner that, with proper design, it is indeed possible for flows traversing a

bottleneck link to estimate their base RTT reliably.

The full experimental testbed setup is described in appendix A

4.2 Background

As mentioned in 2.3.2, the delay-based AIMD algorithm has the following

backoff factor, β

β(t) = δ ∗ minRTT

RTT (t)
(4.1)

with minRTT , an estimation of baseRTT as before. As mentioned in chapter

2, the factor δ < 1 (eg 0.8) is multiplied to aid in corect measurement of

51

4. Estimation of Round-Trip Propogation Delay

baseRTT , as described in Leith et al. [2007]. If the measured minRTT

were initially an overestimate of baseRTT , the queueing delay would be

underestimated, the ratio would therefore be too large to empty the queue

and the error in minRTT would be maintained. The additional δ factor

causes a back off by slightly more than necessary to empty the “apparent”

queueing delay. Each successive back off will empty further, lowering the

estimate until minRTT = baseRTT .

The impact of this choice of β is the primary focus of the present work.

While we often illustrate results with reference to the delay-based AIMD

algorithm, all our analysis extends to general AIMD algorithms including

loss-based algorithms. To make this explicit, we therefore also include ex-

amples illustrating loss-based AIMD operation. Our main result is that with

the choice of backoff factor (4.1) only very mild conditions are needed for

the bottlenecked buffer to drain and for the true value of baseRTT , to be

available to network flows regardless of initial estimation errors. This fact is

shown both analytically and experimentally.

4.3 Draining network buffers

To help gain some insight into the mechanics of the backoff algorithm, con-

sider for the moment a network with a single flow. Let B denote the link

bandwidth in packets/s, baseRTT the round-trip propagation delay. Con-

sider the k’th backoff event and let w(k) denote the congestion window of

the flow at backoff and Qk the network buffer occupancy. At backoff, we

have that RTT (k) = baseRTT + Qk/B and w(k) = B ∗ RTT (k). Following

52

4. Estimation of Round-Trip Propogation Delay

backoff, the flow cwnd is β(k)w(k). Selecting β(k) according to (4.1),

β(k)w(k) = δ
minRTT (k)

RTT (k)
B ∗ RTT (k) = δ ∗ B ∗ minRTT (k)

If minRTT (k) = baseRTT , then since δ < 1 it can be seen that cwnd

falls below the link bandwidth-delay product B ∗ baseRTT . Thus the queue

empties thereby providing an opportunity for the flow to observe the propa-

gation delay baseRTT . If minRTT (k) > baseRTT then the queue need not

empty after backoff. The buffer occupancy after backoff is qk = β(k)w(k) −

B ∗ baseRTT = B ∗ (δ ∗ minRTT (k) − baseRTT) and the round-trip delay

is baseRTT + qk/B = δ ∗ minRTT (k). Since δ < 1, the round-trip delay

is lower than the previous lowest observed delay minRTT (k). Hence, the

flow can update minRTT to a value that is closer to the true propagation

delay baseRTT . In effect, we are using the multiplicative decrease action

to probe the network to discover whether an RTT below our current best

estimate minRTT is possible. After a number of congestion events (the

number being dependent on the size of the initial error in minRTT and on

the value of δ), we can see the flow is eventually guaranteed to obtain an

accurate estimate of the propagation delay baseRTT . This is illustrated in

Figure 4.1, which shows experimental measurements of minRTT converging

to baseRTT .

4.3.1 Detailed Analysis

Consider n flows sharing a bottleneck link. Let wi(k) denote the cwnd of

flow i at the k’th backoff event, let baseRTTi be the round-trip propagation

delay of flow i. Let Qk be the queueing delay at the k’th congestion event.

Note that this need not be the maximum buffer size when delay-based AIMD

53

4. Estimation of Round-Trip Propogation Delay

 0

 1

 2

 3

 4

 5

 6

 7

 8

 32 32.5 33 33.5 34

Er
ro

r i
n

m
in

RT
T

(m
se

c)

Time (sec)

delta=0.5
delta=0.8
delta=0.9
delta=1.0

(a) Delay-based AIMD

Figure 4.1: Experimental measurements of estimation error minRTT −T vs
time. Measurements are shown for a range of values of the design parameter
δ. Initial estimate of base RTT is hard-wired to an incorrect value to illustrate
convergence. 10Mbps link, baseRTT 200ms, one delay-based AIMD TCP
flow.

54

4. Estimation of Round-Trip Propogation Delay

is used. When delay-based congestion control it also need not be the same at

every congestion event (due to burstiness etc). At congestion we have that

the aggregate flow rate equals the link rate, i.e.

n∑

i=1

wi(k)

baseRTTi + Qk
= B (4.2)

Following backoff, the aggregate rate becomes
∑n

i=1 βi(k) wi(k)
baseRTTi+qk

, where

qk is the queueing delay after backoff (qk < Qk) and βi(k) is the backoff factor

of flow i.

If the queue empties on backoff, then qk = 0 and flows have the opportu-

nity to measure their base round-trip time baseRTTi. If the queue does not

empty on backoff, then the aggregate flow rate continues to equal the link

rate, i.e.
n∑

i=1

βi(k)
wi(k)

baseRTTi + qk
= B (4.3)

Assume that flow backoffs are synchronised i.e. every flow backs off at each

congestion event (this assumption is relaxed later). Also assume for the

moment that each flow observed the RTT at the k − 1’th backoff when the

queueing delay was qk−1 (again, we relax this assumption later). The flow

backoff factors then satisfy

βi(k) ≤ δ
baseRTTi + qk−1

baseRTTi + Qk
∀i ∈ 1, .., n

Substituting into (4.3),

B =
n∑

i=1

βi(k)
wi(k)

baseRTTi + qk
≤

n∑

i=1

δ
baseRTTi + qk−1

baseRTTi + qk

wi(k)

baseRTTi + Qk

(4.4)

55

4. Estimation of Round-Trip Propogation Delay

Using (4.2), it then follows that ∃i such that

δ
baseRTTi + qk−1

baseRTTi + qk
≥ 1

i.e.

qk ≤ δqk−1 − (1 − δ) ∗ baseRTTi

Thus, provided δ < 1 the queue occupancy at backoff qk decreases monoton-

ically until eventually the queue empties, providing an opportunity for flows

to measure their base round-trip time. This is illustrated for example in Fig-

ure 4.2 which shows the error in baseRTT for 16 reno flows on a 10Mbps link.

Further illustration is in figure 4.3 which shows the baseRTT error histories

for a variety of different BDP links all heavily loaded with DB-AIMD flows.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300 350 400 450

M
in

RT
T

Er
ro

r (
m

se
c)

Time (sec)

Figure 4.2: Experimental measurements illustrating queue draining with mul-
tiple flows. 10Mbps link, 125KB buffer, mix of flow baseRTTs 20-200ms,
δ = 0.8, 16 TCP Reno flows with adaptive backoff and randomised start
times. Initial base RTT estimates for all flows are hard-wired to incorrect
values to confirm insensitivity of convergence to estimation errors.

56

4. Estimation of Round-Trip Propogation Delay

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140

M
in

RT
T

Er
ro

r (
m

se
c)

t (sec)

(a) 128 Kbps, 2 DB-AIMD Flows

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

M
in

RT
T

Er
ro

r (
m

se
c)

t (sec)

(b) 1Mbps, 9 DB-AIMD Flows

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300

M
in

RT
T

Er
ro

r (
m

se
c)

t (sec)

(c) 10Mbps, 48 DB-AIMD Flows

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600

M
in

RT
T

Er
ro

r (
m

se
c)

t (sec)

(d) 50Mbps, 192 DB-AIMD Flows

Figure 4.3: Further experimental measurements showing the queue draining
with multiple flows. In each case there is 1xBDP of queueing on the router
and the baseRTT is spread evenly within 20–200msec.

57

4. Estimation of Round-Trip Propogation Delay

4.3.2 Discussion

Convergence Rate

The rate of decrease is evidently influenced by the choice of δ, decreasing δ

increasing the rate at which the queue drains. This can be seen, for example,

in Figure 4.1.

Unsynchronised Drops

We can capture unsynchronised backoffs by setting βi(k) = 1 for flows which

do not backoff at the k’th congestion event. The foregoing analysis can then

be immediately extended to the case of unsynchronised flows under mild

assumptions. Specifically, assume that at congestion events synchronised

backoffs occur with probability lower bounded by ps > 0. That is, it occa-

sionally happens that all flows backoff together at a congestion event. This

assumption can be relaxed in various ways but this is beyond the scope of

the present work.

Observability

Our analysis assumes that each flow observes the RTT after the k’th backoff.

It is easy to see that this assumption may, however, be further relaxed to the

much weaker requirement that there is a non-zero probability pi that over a

congestion event flow i observes an RTT less than or equal to the RTT after

the k’th backoff.

Quantisation of cwnd

Our analysis assumes that the specified backoff factor (4.1) is successfully

applied to the flow cwnd. A notable exception to this occurs when the flow

58

4. Estimation of Round-Trip Propogation Delay

cwnd is only one packet in size. Since this is the lowest admissible cwnd, the

backoff factor specified by (4.1) cannot be applied. This is illustrated, for

example, in Figure 4.4(a) which plots the worst-case (over all flows) error in

estimated baseRTT as the number of flows is increased. Also shown in Figure

4.4(b) is the distribution of flow cwnd values vs the number of flows. It can

be seen that the worst case estimation error begins to rise as the number of

flows increases above 60. This corresponds to a regime where around 60%

of flows have a cwnd of only one packet and around 35% have cwnd of two

packets. Above around 100 flows, > 90% of flows have a cwnd of one packet.

Since flows can no longer backoff their cwnd, a standing queue develops at

the link buffer and the estimation error of later flows inevitably increases.

We note that this issue can potentially be resolved by introducing more fine-

grained control of the flow send rate at low cwnd via, for example, pacing.

Consideration of such extensions is, however, beyond the scope of the present

work.

Fairness

When modifying the back off factor, it is important to consider the effect

this will have on the relative throughput achieved by competing flows (the

“fairness”). There is some debate as to what fairness is desirable (window,

throughput, network resource, . . .). This will not be entered into here. How-

ever, it is important to note where a modification changes the fairness be-

haviour.

With Reno, when a source i receives an ACK, cwnd is incremented by

1
cwnd , or by one packet per round trip time. When a packet loss is detected

cwnd is backed off by a factor β = 1
2 . When wi(k) is the congestion window

size for flow i at congestion event k, we have that at the k + 1th congestion

59

4. Estimation of Round-Trip Propogation Delay

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160

Pe
ak

 E
rro

r i
n

m
in

RT
T

Number of Flows

"=0.8

(a) Worst case estimation error

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120 140 160

Fr
ac

tio
n

of
 C

wn
ds

Number of Flows, N

Cwnd=1
Cwnd=2
Cwnd=3
Cwnd=4
Cwnd=5
Cwnd>5

(b) Flow cwnd distribution

Figure 4.4: Illustrating quantitisation issues as the number of flows on a link
is increased and flow cwnds tend towards one packet. 10Mbps link, mix of
flow baseRTTs 20-200ms, δ = 0.8, delay-based AIMD (similar results are
obtained for Reno with adaptive backoff).

60

4. Estimation of Round-Trip Propogation Delay

event

wi(k + 1) = βi(k)wi(k) + αiT (k) (4.5)

where T (k) is the time, in seconds between congestion events k and k + 1

and αi is the cwnd increase rate in pkt/sec. αi is therefore roughly 1
RTTi

, the

inverse round trip time of that flow. If flow i detects the congestion event

βi = 1
2 and otherwise βi = 1.

If we represent the average Cwnd of flow i as E[cwndi], and the packet

drop ratio per flow as λi, the ratio of windows for two flows with differing

round trip times [Leith and Shorten, 2006] is

E[wi]

E[wj]
=

αi/(1 − E[βi])

αj/(1 − E[βj])
≈ 1/λiRTTi

1/λjRTTj
(4.6)

Where congestion events are synchronised, λi = 1 for all flows, ie all flows

experience all congestion events, regardless of their cwnd.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

#

T

= baseRTT / (baseRTT+50)
= baseRTT / (baseRTT+100)

Figure 4.5: Variation of the back off factor, β with base round trip time,
baseRTT for two example propagation delays, 50msec and 100msec.

61

4. Estimation of Round-Trip Propogation Delay

The scheme proposed here modifies the back off factor, β to be a function

of the ratio of base round trip time and round trip time at congestion (eqn.

4.1). For a given queueing delay, this ratio increases with the base round trip

time, see fig. 4.5. In the unsynchronised case, β and E(cwndi) will therefore

be greater for flows with larger round trip times.

It would therefore be necessary to also correspondingly modify the in-

crease rate αi if window fairness is to be maintained in unsynchronised envi-

ronments.

E[wi]

E[wj]
= 1 (4.7)

αi/(1 − E[βi])

αj/(1 − E[βj])
= 1 (4.8)

One simple solution to which is

αi = n(1 − βi) (4.9)

for some constant factor n, eg for compatibility with reno n = 2.

Transient Flows

In previous tests, we have shown flows successfully detecting baseRTT where

N such long-lived flows share a bottleneck. In most network environments

however, long-lived flows are seldom seen in isolation and indeed are very

often the exception. Much of the TCP traffic consists of short-lived flows (eg

web, email, file-sharing traffic), lasting at most a few seconds.

Such short-lived flows may never exit slowstart so many aggregated to-

gether can be quite an aggressive use of bandwidth. On the other hand,

as they come and go they force the long-lived flows to back off, then dis-

62

4. Estimation of Round-Trip Propogation Delay

appear, which is akin to choosing β = 0 so they could potentially improve

measurement of baseRTT in some instances.

With this in mind, some measurements have been done on long-lived flows

sharing a link with multiple http flows whose data size is Pareto distributed,

as suggested in [Willinger et al., 1997]. Figures 4.6(a), 4.7(a) and 4.8(a) show

the error in observed round trip time for a set of long-lived flows saturating

a bottleneck link. Data from a similar experiment is shown in figures 4.6(b),

4.7(b) and 4.8(b) but with the addition of a number of extra web flows in

each case. Despite the reduced bandwidth share per flow, it can be seen that

flows with error in their baseRTT estimate seem to correct themselves at

least as often and sometimes more often in the presence of web flows. The

32-flow example with 40 web flows (fig. 4.8(b)) seems to finish with less error

in baseRTT than without web flows. This is perhaps due to the web flows

forcing the long-lived flows to back off and then emptying the queue when

they finish shortly afterward.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160

ba
se

RT
T

Er
ro

r (
m

se
c)

t (sec)

(a) 10 flows with no web traffic

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160

ba
se

RT
T

Er
ro

r (
m

se
c)

t (sec)

(b) 10 flows with 4 extra web flows

Figure 4.6: The effect of extra transient flows. BW=1Mbit/sec, N=10, δ =
0.8, delay-based AIMD (similar results are obtained for Reno with adaptive
backoff). Where the extra web flows are added, although one flow initially
gets stuck with a higher error in baseRTT , it is clear that queue emptying
events are more common and baseRTT gets corrected.

63

4. Estimation of Round-Trip Propogation Delay

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160 180

ba
se

RT
T

Er
ro

r (
m

se
c)

t (sec)

(a) 12 flows with no web traffic

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160

ba
se

RT
T

Er
ro

r (
m

se
c)

t (sec)

(b) 12 flows with 4 extra web flows

Figure 4.7: The effect of transient web flows. BW=1Mbit/sec, N=12, δ =
0.8, delay-based AIMD.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250 300 350 400

M
in

RT
T

Er
ro

r (
m

se
c)

t (sec)

(a) 32 flows with no web traffic

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400 450

M
in

RT
T

Er
ro

r (
m

se
c)

t (sec)

(b) 32 flows with 40 extra web flows

Figure 4.8: The effect of transient web flows. BW=10Mbit/sec, N=32, δ =
0.8, delay-based AIMD.

64

4. Estimation of Round-Trip Propogation Delay

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600 700 800 900

M
in

RT
T

Er
ro

r (
m

se
c)

t (sec)

Figure 4.9: Illustration of the adaptive backoff breaking down. The first
200 or more flows quickly correct their estimate of minRTT , but subse-
quently some flows begin tp show persistent errors, though only of the order
of 10msec. BW=50Mbit/sec, N=256, δ = 0.8, delay-based AIMD. Points are
omitted where the error becomes less than 2ms.

65

4. Estimation of Round-Trip Propogation Delay

4.4 Conclusions

In this chapter we revisit the interaction between baseRTT estimation and

congestion control action. We use the previously described delay-based AIMD

scheme that allows network buffers to drain and thus demonstrate in a con-

structive manner that, with proper design, it is indeed possible for flows

traversing a bottleneck link to estimate their base RTT reliably.

66

Chapter 5

Measurement of RTT for

Congestion Control

While implementing delay-based AIMD, it became clear that obtaining a

clean, reliable measure of network round trip times was not trivial and while

all TCP stacks currently measure round trip time, this value was probably

not well suited to use in congestion control. A number of hurdles have been

overcome which we document here to save others from repeating this work.

Most of the solutions have since been incorporated into the linux kernel’s

core TCP congestion avoidance code so all delay-based algorithms developed

on linux will benefit. However, other TCP implementors may still benefit

from this information.

5.1 Trusting Echoed Timestamps

Since the earliest days of TCP, hosts have measured the evolving round trip

time of each flow in order that they could correctly determine the RTO

(retransmit timeout). Following [Jacobson, 1988], modern TCP implemen-

67

5. CHAPTER 5. MEASUREMENT OF RTT FOR
CONGESTION CONTROL

tations maintain a smoothed round trip time (sRTT) which is updated with

each raw sample (RTT) using a simple smoothing mechanism.

sRTT =
1

8
RTT +

7

8
sRTT (5.1)

In order to reduce the work of the sender in timing each packet, RFC1323

introduced the TCP Timestamps option. This allows either end of the con-

nection to request that two 32-bit timestamp fields be included in the tcp

headers, one for each host. On sending a packet, each host places a times-

tamp in the header. The receiver then echoes this timestamp back to the

sender in the acknowledgement. On receiving the ACK, the sender can then

infer the round trip time from the echoed timestamp and the current time.

The RFC states that the timestamp values “must be at least approximately

proportional to real time, in order to measure actual RTT”, but later states

in the PAWS (protection against wrapped sequence numbers) that “values

are monotone non-decreaasing in time”.

By using echoed timestamps to calculate the RTT, the sender is trusting

the receiver to honestly return these timestamps. There is probably little

benefit for a receiver to alter the RTO so this seems safe. However, where

the round trip time is used in congestion control to alter Cwnd, there is a

clear benefit for a receiver who can alter the sender’s estimate of the round

trip time in order to increase his share of network bandwidth.

5.1.1 Loss-based Congestion Control

Some loss-based congestion control algorithms attempt to correct RTT un-

fairness by increasing Cwnd more quickly for longer round trip times (e.g.

Cubic, H-TCP). If they use timestamp-generated round trip times, they can

68

5. CHAPTER 5. MEASUREMENT OF RTT FOR
CONGESTION CONTROL

be fed an over-estimated RTT causing them to be more aggressive. This

could potentially be used by a receiver either to increase share of bandwidth

or perhaps as part of a distributed denial of service.

Prior to linux v2.6.22, Cubic made direct use of the echoed timestamps

in order to calculate the round trip time which it used to scale Cwnd. We

discovered that this allowed a dishonest receiver to gain substantially greater

bandwidth over competitors, simply by subtracting a constant integer from

the timestamp value it sent back in its acknowledgements, see Fig. 5.1.

5.1.2 Delay-based Congestion Control

Both delay-based (e.g. Vegas, FAST) and hybrid (e.g. Compound, Illinois)

congestion control algorithms measure the queueing delay for use as a signal

of congestion and to some degree all back off when they measure an increas-

ing delay. These potentially can have the increasing delay hidden from them.

For example, a receiver can use a ping to measure the real queueing delay

and then dynamically alter the sender’s timestamp to reduce the apparent

queueing delay. This can give them a greater bandwidth share over compet-

ing flows.

5.1.3 TCP-LP

A further case of timestamp trust is TCP-LP [Kuzmanovic and Knightly,

2003] which attempts to act as a bandwidth scavenger. By monitoring the

queueing delay TCP-LP attempts to back off wherever there is queueing delay

so as to only use bandwidth where there is spare capacity. In order to avoid

backing off due to reverse-path congestion, TCP-LP attempts to estimate the

one-way transmission time by monitoring the receiver’s timestamps. Even if

internal timing is used to calculate the round trip time, a cheating receiver

69

5. CHAPTER 5. MEASUREMENT OF RTT FOR
CONGESTION CONTROL

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

Cw
nd

 (p
ac

ke
ts

)

t (sec)

Cubic (RTT Shift=100ms)
Cubic (Normal)

(a) Cwnd

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20 25 30

iP
er

f G
oo

dp
ut

 (K
b/

se
c)

Time (secs)

Goodput (RTT Shift=100ms)
Goodput (Normal)

(b) Bandwidth

Figure 5.1: Congestion window and resulting achieved bandwidth histories
for two competing Cubic TCP flows. One of the receivers is subtracting
100msec from the timestamps it echoes back so the sender behaves as though
the RTT is longer. Here we can see the effect of the different round trip
times apparent to the sender (5msec, 105msec). Link bandwidth: 10Mbps,
BaseRTT: 5msec, Queue Length: 50KB

70

5. CHAPTER 5. MEASUREMENT OF RTT FOR
CONGESTION CONTROL

could in principle craft its own timestamps to suggest that all of the queueing

is on the reverse path. However, as a bandwidth scavenger, TCP-LP may

still be useful where both sender and receiver timestamps can be trusted to

behave predictably.

Following our report of these issues, the linux congestion avoidance code

was modified in v2.6.22 [Hemminger, 2007] so as not to use timestamps for

the calculation of RTT (though timestamps are still used for RTO). Cubic

was also modified so as not to directly use the timestamps. Instead, either an

internal timestamp is stored in each control block (scb->when) in the retrans-

mit queue, or where necessary a microsecond-granular ktime is used where

fine grain timestamps are desired (e.g. Vegas, Veno). The only exception is

TCP-LP which by design must use the receiver’s timestamps.

Linux has so far used internal timing to prevent a receiver from forging

timestamps. An alternative approach would be to craft verifiable timestamps.

One limitation is that timestamp values in the tcp headers are required to be

monotone for each flow. Nevertheless, one or more of the rightmost bits of the

timestamp could be reserved for use as a signature to verify the timestamp

contained in the remaining bits. The signature could then be recalculated

on return. Where the verification failed, the sender could choose a suitable

recourse, e.g. backing off Cwnd or resetting the connection.

5.2 Delayed ACKing

Acknowledgements are cumulative in TCP. This means that a single ACK

of byte n implies acknowledgement of all previous bytes in the session. It is

therefore unnecessary to ackowledge every received packet. Based on this,

an optimisation of TCP was proposed in RFC813 such that when data is

71

5. CHAPTER 5. MEASUREMENT OF RTT FOR
CONGESTION CONTROL

received an acknowledgement is not sent immediately. If a quick response is

produced by the application (e.g. response to a keystroke in a telnet session)

the ACK may be carried on the data response instead of on a separate ACK

packet. If no quick response occurs, the next incoming packet will generate

an ACK for both packets or if sufficient time passes the single ACK will even-

tually be sent. This optimisation is useful for reducing traffic, particularly

in interactive sessions (e.g. telnet, ssh).

The optimisation, called “Delayed ACKing” was mandated for use in

RFC1122 which stated:

A TCP SHOULD implement a delayed ACK, but an ACK should

not be excessively delayed; in particular the delay should not be

more than 0.5 seconds, and in a stream of full-sized segments

there SHOULD be an ACK for at least every second segment.

Almost all modern TCP stacks implement this. When RFC1323 introduced

timestamps for RTO calculation it was decided that, in order that delayed

ACKs would not cause timeouts, the echoed timestamp should be that of the

earliest packet being ACKed:

Many TCP’s acknowledge only every Kth segment out of a group

of segments arriving within a short time interval; this policy is

known as “delayed ACKs”. The data-sender TCP must measure

the effective RTT, including the additional time due to delayed

ACKs, or else it will retransmit unnecessarily. Thus, when de-

layed ACKs are in use, the receiver should reply with the TSval

field from the easliest unacknowledged segment.

The result is that RTTs calculated from timestamps can considerably

over-estimate the single-packet round trip time, particularly where Cwnd is

72

5. CHAPTER 5. MEASUREMENT OF RTT FOR
CONGESTION CONTROL

small, see fig. 5.2. This can incorrectly indicate congestion. Some RTT values

will have an extra delay due to the time which passed between sending a pair

of packets. Where there is a long time between two packets, a single packet

may go unacknowledged until the maximum allowed time (the delayed ACK

alarm) and be acknowledged singly. On FreeBSD, this time is tunable but

100msec by default. On Linux it varies between 40msec and 200msec.

As in section 5.1, one answer is to use internal timing. When each ACK

arrives, if delayed ACKing is in operation, one can ignore ACKs which only

acknowledge one packet (those triggered by the delayed ack alarm) and cal-

culate RTTs based on the most recent of each pair of packets being acknowl-

edged (i.e. the packet which directly triggers each ACK).

The initial internal RTT timing code in linux emulated the behaviour

of the timestamps, using the timestamp of the oldest acknowledged packet

as these RTTs were used for RTO where timestamps were unavailable. A

fix has been accepted into Linux v2.6.24 separating the calculation of RTO

and congestion avoidance RTTs as above [McCullagh, 2007], both for the

microsecond and millisecond granular RTT code paths.

Figure 5.2(a) overlays rtt data calculated using the updated internal rtt

calculation and that calculated from timestamps, alongside Cwnd for those

flows in figure 5.2(b). Two flows with different round trip propagation delays

(20msec, 110msec) compete on a 10Mbps link. The rtt data clearly shows

the difference between the two delay signals and that the effect of delayed

ACKing is more pronounced for the lower Cwnd flow.

Figure 5.3 shows overlaid timestamp and internal RTTs calculated using

the microsecond-granular internal code. Figure 5.4 shows the same picture

with the fixed microsecond timer logic. With the unfixed stack (fig. 5.3),

delayed ack “noise” in the congestion signal causes Cwnd to back off con-

73

5. CHAPTER 5. MEASUREMENT OF RTT FOR
CONGESTION CONTROL

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 10 20 30 40 50 60

RT
T

(m
se

c)

t (sec)

baseRTT=110msec (timestamps)
baseRTT=20msec (timestamps)

baseRTT=110msec (internal)
baseRTT=20msec (internal)

(a) RTT

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

Cw
nd

 (p
kt

s)

t (sec)

baseRTT=110msec
baseRTT=20msec

(b) Cwnd

Figure 5.2: RTT and Cwnd histories for two competing flows with baseRTT
of 110 and 20 msec. RTT histories are overlaid from both the timestamps
(100msec: red, 20msec: green) and the internally calculated congestion con-
trol RTT values (100msec: blue, 20msec: pink). As Cwnd is smaller for the
110 msec flow, the interpacket time is greater so delayed ACKing has a much
more noticeable effect. In this example the delayed acking noise is of the
order of 50msec, the threshold delay for DB-AIMD, so it can cause a back
off without any queueing at all. Bottleneck bandwidth: 10Mbps, baseRTT :
20,110msec, Queue Length: 5MB. Delay-based AIMD congestion control.

74

5. CHAPTER 5. MEASUREMENT OF RTT FOR
CONGESTION CONTROL

stantly. Cwnd becomes so small for the 100msec flow that the delayed ACK

alarm (which seems to be about 90msec) is used regularly whereas in the

fixed graph (fig. 5.4) the delayed ACK “noise” is filtered from the conges-

tion signal so both flows have functional Cwnd and consequently the delayed

ACK “noise” seen in the timestamp data reduces considerably.

5.3 TCP Segmentation Offload

TCP Segmentation Offload (TSO) is an optimisation for TCP which is pro-

vided by some recent (usually GigE or faster) network cards. One task of

the TCP stack is to break up (segment) data into MTU sized segments. At

high speeds, this can be quite costly in cpu cycles. TSO allows the software

TCP stack to offload this task to the network card which does it in hardware,

freeing up cpu cycles for other work. TCP takes a large chunk of data (e.g.

64KB) to be sent and passes that to the network card along with template

TCP, IP and data-link headers. The network card then breaks the chunk

into segments (commonly 46 segments of 1448 Bytes) adds headers to each

and transmits the packets.

TSO can affect round trip time calculations. Firstly, the TCP times-

tamp is usually fixed in the template which gets passed to the network card.

Therefore, regardless of when the packets get sent, they will all have the same

timestamp. It follows that the later the packet is in the chunk, the larger

its timestamp-calculated RTT will be. If one uses internal timing, at least

in the linux implementation, the control block which contains the internal

timestamp corresponds to a single large unsegmented chunk, not to an in-

dividual packet, so any subsequent acknowledged packets after the first will

have an extra “TSO delay” added. However, to discard these other packets

75

5. CHAPTER 5. MEASUREMENT OF RTT FOR
CONGESTION CONTROL

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

RT
T

(m
se

c)

t (sec)

baseRTT=20msec (timestamps)
baseRTT=110msec (timestamps)

baseRTT=20msec (internal)
baseRTT=110msec (internal)

(a) RTT (unfixed)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

Cw
nd

 (p
kt

s)

t (sec)

baseRTT= 20msec
baseRTT=110msec

(b) Cwnd (unfixed)

Figure 5.3: RTT and resultant Cwnd histories for two competing flows cal-
culated using timestamps (red, green) and the microsecond-granular internal
method (blue, pink). The graphs show the data before the fix incorporated
into linux v2.6.24. It can be seen that the microsecond-granular internal tim-
ing emulates delayed ack noise. The effect on DB-AIMD is severe, causing
repeated back offs. The delayed ack noise is worse for smaller Cwnds (up to
90msec here), reinforcing the problem. It can be seen that there is delayed
ack “noise” on the larger Cwnd flow, immediately after each back off. Bot-
tleneck bandwidth: 10Mbps, baseRTT : 20,110msec, Queue Length: 5MB.
Delay-based AIMD congestion control.

76

5. CHAPTER 5. MEASUREMENT OF RTT FOR
CONGESTION CONTROL

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 10 20 30 40 50 60

RT
T

(m
se

c)

t (sec)

baseRTT=20msec (timestamps)
baseRTT=110msec (timestamps)

baseRTT=20msec (internal)
baseRTT=110msec (internal)

(a) RTT (fixed)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

Cw
nd

 (p
kt

s)

t (sec)

baseRTT= 20msec
baseRTT=110msec

(b) Cwnd (fixed)

Figure 5.4: RTT and resultant Cwnd histories for two competing flows cal-
culated using timestamps (red, green) and the microsecond-granular internal
method (blue, pink). The two graphs show the data with the fix incorpo-
rated into linux v2.6.24-rc5. The microsecond-granular timestamps no longer
emulate delayed ack noise but the timestamps still show it. For the smaller-
Cwnd flow, the magnitude of the delayed ACK noise is of the order of 40-
50msec, compared with 90msec in fig. 5.3. Bottleneck bandwidth: 10Mbps,
baseRTT : 20,110msec, Queue Length: 5MB. Delay-based AIMD congestion
control.

77

5. CHAPTER 5. MEASUREMENT OF RTT FOR
CONGESTION CONTROL

would reduce the number of available RTT samples substantially.

How TSO is implemented within the TCP stack is very important in

minimising this “TSO delay”. DB-AIMD was first implemented on v2.6.17.7

of the linux kernel. It was quickly discovered that TSO caused a severe

“smearing out” of the RTT values, see figure 5.5(a). Closer inspection (figure

5.5(b)) showed that TSO was causing regular oscillation in the RTT values of

the order of 50msec as each subsequent packet in a TSO chunk got a greater

“TSO delay”.

The reason for this “smearing” was that the linux kernel was attempting

to use TSO too aggressively. In order to make full use of off-loading, linux

would defer sending until a chunk of 40–45 packets was available. This would

then be passed down to the network card. The transmission time for each

of these chunks at 1Gbps is around 0.5msec so each leaves the sender almost

simultaneously. However, at 10Mbps the transmission time is around 50msec.

The result of this behaviour is that while the sender defers sending, the queue

drains, though perhaps not down to zero. When the chunk gets sent, the first

packet goes to the front of the queue and has a fairly short queueing delay.

Each subsequent packet will queue behind the others in the chunk. The last

packet will have the same queueing delay as the first, plus the queueing time

of the entire chunk (50msec). The result is the steep linear spikes of 50msec

seen in 5.5(b). This is not due to inaccurate measurement of the RTT, but

rather due to TSO causing bursts which make the real RTT fluctuate.

The effect of this can be to both overestimate or underestimate the con-

gestion in the network. Figure 5.7 shows the RTT of two independent, similar

Reno flows with TSO — one with a recent linux kernel (v2.6.24-rc6), one be-

fore this issue was fixed (v2.6.18.1). In both cases, there is only one flow on

the link. There are two clearly different cases:

78

5. CHAPTER 5. MEASUREMENT OF RTT FOR
CONGESTION CONTROL

• Where Cwnd is small, the time TSO defers is long enough to empty the

queue. Had the first packets in the chunk been sent earlier, some would

have been through the router so the later packets would have seen less

of a queue and therefore have a lower RTT. Instead, they must wait

the full 50msec. In these regions, the 2.6.18 kernel sees higher RTTs

than the 2.6.24 kernel, see figure 5.7(c).

• For larger Cwnds, TSO does not defer sufficiently long to empty the

queue. Therefore, had the first packet in the chunk been sent earlier,

it would still be in the queue for the later packets and their RTT

is unaffected. However, the queue has decreased in size during the

deferral, so the RTT experienced by the first packet in the chunk is

actually shortened compared to sending the packets evenly spaced. In

these regions, the 2.6.18 kernel sees lower RTTs than the 2.6.24 kernel,

as can be seen in figure 5.7(c).

On our discovery of this issue, a patch was written for the linux kernel

[Heffner, 2006] to restrict the amount of time the kernel would defer the

sending of data before passing a TSO chunk down to the network card (by

default to 5msec). The effect of this initial patch was to restrict the size of

each TSO chunk to as much data as has been ACKed in the past 5 msec

(otherwise Cwnd would be exceeded). This patch reduced the noise consid-

erably, though not quite to the level it was without TSO, see figure 5.6. The

TSO code has changed substantially since then and the issue seems no longer

to be a problem, see figure 5.7.

It was also discovered in v2.6.24-rc3 that the updated microsecond-granular,

internal timer in the linux kernel was treating TSO in a special way, some-

what analogous to the situation with delayed acking. When a portion of a

TSO chunk was acknowledged, linux would not calculate an RTT based on

79

5. CHAPTER 5. MEASUREMENT OF RTT FOR
CONGESTION CONTROL

 100

 110

 120

 130

 140

 150

 160

 170

 180

 0 10000 20000 30000 40000 50000 60000

RT
T

(m
se

c)

time (msec)
(a) RTT

 100

 110

 120

 130

 140

 150

 160

 170

 180

 22000 22500 23000 23500 24000

RT
T

(m
se

c)

time (msec)
(b) RTT (zoomed)

Figure 5.5: An example RTT time history for DB-AIMD with TSO enabled
on linux v2.6.17.7. The overall queue probing trend can be seen, but it is
clear in the zoomed picture that the queueing trend is coupled to a second
shorter time-scale oscillation caused by extra delays due to TCP Segmenta-
tion Offload. Bottleneck bandwidth: 10Mbps, baseRTT : 102msec, Queue
Length: 512KB, single delay-based AIMD TCP flow. Delayed ACKing is
disabled on the receiver for simplicity.

80

5. CHAPTER 5. MEASUREMENT OF RTT FOR
CONGESTION CONTROL

 100

 110

 120

 130

 140

 150

 160

 0 10000 20000 30000 40000 50000 60000

RT
T

(m
se

c)

time (msec)
(a) No TSO

 100

 110

 120

 130

 140

 150

 160

 0 10000 20000 30000 40000 50000 60000

RT
T

(m
se

c)

time (msec)
(b) TSO

Figure 5.6: RTT time history for DB-AIMD with TSO disabled (left) and
enabled (right) on linux v2.6.17.7 with John Heffner’s TSO patch. It can be
seen that the patch substantially reduces “TSO delay” by setting a maximum
time which the kernel can defer sending data due to TSO. Bottleneck band-
width: 10Mbps, baseRTT : 102msec, Queue Length: 512KB, single delay-
based AIMD TCP flow. Delayed ACKing is disabled on the receiver for
simplicity.

81

5. CHAPTER 5. MEASUREMENT OF RTT FOR
CONGESTION CONTROL

 60

 80

 100

 120

 140

 160

 180

 200

 25 30 35 40 45 50 55 60

Cw
nd

 (p
kt

)

t (sec)

2.6.24-rc6
2.6.18.1

(a) Cwnd

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 25 30 35 40 45 50 55 60

Q
ue

ue
 L

en
gt

h
(p

kt
s)

t (sec)

2.6.24-rc6
2.6.18.1

(b) Queue Occupancy

 100

 120

 140

 160

 180

 200

 220

 25 30 35 40 45 50 55 60

RT
T

(m
se

c)

t (sec)

2.6.24-rc6
2.6.18.1

(c) RTT

Figure 5.7: Example time histories of measured RTT with TSO enabled in
Linux 2.6.18.1 and 2.6.24-rc6 kernels using Reno congestion control. Delayed
ACKing disabled. Bottleneck bandwidth: 10Mbps, baseRTT : 100msec,
Queue Length: 1xBDP, single Reno TCP flow.

82

5. CHAPTER 5. MEASUREMENT OF RTT FOR
CONGESTION CONTROL

each acknowledgement but instead wait until the final acknowledgement cor-

responding to that chunk even though the stored timestamp corresponded

more accurately to the first packet in the chunk. This yields the maximum

available RTT including the full TSO delay for that chunk1.

As with delayed acking, TSO delay is not a helpful signal of congestion

so this was patched in v2.6.24 [McCullagh, 2007]. To prevent problems like

those in figure 5.5, the RTT based on the first acknowledgement would give

the cleanest RTT signal. However, ignoring all subsequent acknowledgements

in a chunk could severely hinder the system from detecting and responding

to congestion. It seems also that the smearing problems are best addressed

with the implementation of TSO. For these reasons an RTT is now calculated

for every acknowledgement in a TSO chunk, rather than just the first.

1Curiously, this accidentally filtered some of the delayed ACKing noise — where a
delayed ACK corresponded to the end of a chunk, the more recent timestamp would be
preferred over the older one.

83

Chapter 6

Conclusions

The objective of this thesis is to investigate the possibilities and limitations of

delay-based congestion control in general and to carefully examine criticisms

which have been made in the literature. In so doing, we have

1. Presented experimental evidence to show that, while the correlation be-

tween network congestion and individual flows’ estimate of the round

trip time may be very weak, this is not a fundamental barrier to con-

gestion control. We have shown congestion control being achieved in

the practical examples of low correlation. While every flow may not

detect each congestion event, what is important for congestion control

is the aggregate detection and reaction of all flows sharing the link.

2. Studied in greater detail the behaviour of the delay-based AIMD con-

gestion control algorithm. In particular, we have shown its ability to

constrain the queueing delay with multiple concurrent flows and shown

how the queueing delay scales as the number of flows increases to its

practical limit — where the flows can no longer back off.

3. Experimentally examined the practical utility of adaptive back-off meth-

84

6. Conclusions

ods used in H-TCP to ensure that the minimum round trip propagation

delay is measurable by all flows.

4. Examined the practical problems in accurately measuring network queue-

ing delay, via the round trip time. In particular, we have looked at

the problems associated with echoed timestamps, delayed acknowledg-

ments and TCP segmentation offload and have offered some solutions

which can be employed on the sender to minimise their effects. Most

of these solutions are now in use in the standard Linux kernel.

While much of this work sounds some positive notes for delay-based con-

gestion control, there are still many issues which must be addressed before

it could be considered for use in real networks. Among other remaining

concerns, further work is needed to

• examine the effects of other causes of increases in round trip time, such

as wireless MAC delay

• design a delay-based scheme which can coexist with loss-based flows

• design a delay-based scheme which will fully utilise a link in the pres-

ence of queueing delay on the reverse path

before delay-based congestion control can truly be practical. Considerable

further work lies ahead.

85

Appendix A

Experimental setup

Dummynet

Router

TCP1

receiver

TCP2

receiver

TCP1

sender

TCP2

sender

GigE

switch

GigE

switch

Figure A.1: The dumbbell network topology used in tests.

Experiments were carried out using a testbed consisting of commodity

PCs connected to gigabit switches to form the branches of a dumbbell topol-

ogy. All sender and receiver machines used in the tests have identical hard-

ware and software configurations as shown in Table I and are connected to the

switches at 1Gb/sec. The router, running FreeBSD v4 with the dummynet

module, can be configured with various bottleneck queue-sizes, capacities

and round trip propagation delays to emulate a range of network conditions.

We have implemented the delay-based AIMD algorithm in Linux 2.6.

The kernel version used (unless otherwise stated) is 2.6.23. For delay-based

AIMD, the minimum observed RTT measurement RTTmin is used as an

86

A. APPENDIX A. EXPERIMENTAL SETUP

Description

CPU Intel Xeon CPU 2.80GHz
Memory 512 Mbytes

Motherboard Dell PowerEdge 860
Kernel Linux 2.6.23

txqueuelen 1,000
max backlog 300

NIC Intel 82540EM
NIC Driver e1000

Table A.1: Hardware and Software Configuration.

estimate of propagation delay and queueing delay is then estimated as RTT−

RTTmin.

TCP Flows are injected into the testbed using iperf. TCP stacks are

instrumented using a modified version of the Linux tcpprobe module. Unless

otherwise stated, the queueing delay threshold used is τ0 = 50ms.

87

Bibliography

Ahn, J. S., Danzig, P. B., Liu, Z., and Yan, L. (1995). Evaluation of TCP Ve-
gas: emulation and experiment. ACM Computer Communications Review,
pages 185–195.

Biaz, S. and Vaidya, N. (2003). Is the round-trip time correlated with the
number of packets in flight? Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement, pages 273–278.

Brakmo, L. S., O’Malley, S. W., and Peterson, L. L. (1994). TCP Vegas:
New techniques for congestion detection and avoidance. In Proceedings of
SIGCOMM, pages 24–35.

D.J.Leith and R.N.Shorten (2004). H-TCP protocol for high-speed long-
distance networks. In Proc. 2nd Workshop on Protocols for Fast Long
Distance Networks. Argonne, Canada, 2004.

Floyd, S. (2003). Highspeed TCP for large congestion windows. IETF RFC
3649, Experimental, Dec 2003.

Heffner, J. (2006). Bound tso defer time (resend). Linux netdev
mailing list http://www.mail-archive.com/netdev@vger.kernel.org/
msg24484.html.

Hemminger, S. (2007). Tcp congestion control rtt patches. Linux netdev
mailing list http://www.mail-archive.com/netdev@vger.kernel.org/
msg42876.html.

Jacobson, V. (1988). Congestion Avoidance and Control. ACM Computer
Communication Review; Proceedings of the Sigcomm’88 Symposium in
Stanford, CA, August, 1988, 18:314–329.

Jain, R. (1989). A delay-based approach for congestion avoidance in intercon-
nected heterogeneous computer networks. ACM Computer Communication
Review, 19(5):56–71.

88

A. BIBLIOGRAPHY

Jin, C., Wei, D. X., and Low, S. H. (2004). FAST TCP: Motivation, archi-
tecture, algorithms, performance. In IEEE INFOCOM 2004.

Kelly, T. (2003). Scalable TCP: improving performance in highspeed wide
area networks. ACM SIGCOMM Computer Communication Review,
33(2):83–91.

Kuzmanovic, A. and Knightly, E. (2003). TCP-LP: a distributed algorithm
for low priority data transfer. INFOCOM 2003. Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications Societies.
IEEE, 3.

Leith, D., Heffner, J., Shorten, R., and McCullagh, G. (2007). Delay-based
aimd congestion control. In Proc. Workshop on Protocols for Fast Long
Distance Networks, Los Angeles.

Leith, D. and Shorten, R. (2006). On rtt scaling in h-tcp. http://www.
hamilton.ie/net/rtt.pdf.

Liu, S., Başar, T., and Srikant, R. (2006). TCP-Illinois: a loss and delay-
based congestion control algorithm for high-speed networks. Proceedings of
the 1st international conference on Performance evaluation methodolgies
and tools.

Martin, J., Nilsson, A., and Rhee, I. (2003). Delay-based congestion avoid-
ance for TCP. IEEE/ACM Transactions on Networking, 11(3):356–369.

Mascolo, S., Casetti, C., Gerla, M., Sanadidi, M., and Wang, R. (2001).
TCP westwood: Bandwidth estimation for enhanced transport over wire-
less links. Proceedings of the 7th annual international conference on Mobile
computing and networking, pages 287–297.

McCullagh, G. (2006). Fix integer overflow in h-tcp congestion control.
Linux netdev mailing list http://www.mail-archive.com/netdev@vger.
kernel.org/msg25076.html.

McCullagh, G. (2007). Tcp: use non-delayed ack for congestion control rtt.
Linux netdev mailing list http://www.mail-archive.com/netdev@vger.
kernel.org/msg57778.html.

Prasad, R. S., Jain, M., and Dovrolis, C. (2004). On the effectiveness of
delay-based congestion avoidance. In Second International Workshop on
Protocols for Fast Long-Distance Networks.

89

A. BIBLIOGRAPHY

Rewaskar, S., Kaur, J., and Smith, D. (2005). Why dont delay-based conges-
tion estimators work in the real-world. Technical report, Technical Report
TR06-001, Department of Computer Science, UNC Chapel Hill, July 2005.

Saltzer, J., Reed, D., and Clark, D. (1984). End-To-End Arguments in Sys-
tem Design. Technology, 100:0661.

Shorten, R. and Leith, D. (2006). On queue provisioning, network efficiency
and the delay-bandwidth product. IEEE Transactions on Networking, to
appear.

Shorten, R., Leith, D., Foy, J., and Kilduff, R. (2004). Analysis and design of
congestion control in synchronised communication networks. Automatica.

Shorten, R., Leith, D., and Wirth, F. (2006). Products of random matrices
and the internet: Asymptotic results. IEEE Transactions on Networking,
14(6), pp. 616-629.

Song, K. (2006). Compound TCP: A Scalable and TCP-Friendly Congestion
Control for High-speed Networks. Proceedings of PFLDnet 2006.

Stevens, W. (1997). RFC2001: TCP Slow Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms. Internet RFCs.

Tan, K., Song, J., Zhang, Q., and Sridharan, M. (2005). A compound
TCP approach for high-speed and long distance networks. In International
Workshop on Protocols for Fast Long-Distance Networks.

Wang, Z. and Crowcroft, J. (1991). A new congestion control scheme:
Slow Start and Search (Tri-S). ACM Computer Communication Review,
21(1):32–43.

Willinger, W., Taqqu, M., Sherman, R., and Wilson, D. (1997). Self-
similarity through high-variability: Statistical analysis of ethernet lan traf-
fic at the source level. IEEE/ACM Trans Networking, 5.

Xu, L. and Rhee, I. (2005). CUBIC: A new TCP-Friendly high-speed TCP
variant. In Proc. Workshop on Protocols for Fast Long Distance Networks,
2005.

90

