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Abstract

The main focus in this thesis is the analysis of alternative approachestifoagsn and
control of automotive vehicles based on sound theoretical principlepa@tular impor-
tance is the problem rollover prevention, which is an important problem pliggehicles
with a high center of gravity (CG). Vehicle rollover is, statistically, the mosip@aous ac-
cident type, and it is difficult to prevent it due to the time varying nature ofpttedlem.
Therefore, a major objective of the thesis is to develop the necessargtibaband practi-
cal tools for the estimation and control of rollover based on robust aaptizd techniques

that are stable with respect to parameter variations.

Given this background, we first consider an implementation of the multiple nsedtehing
and tuning (MMST) algorithm for estimating the unknown parameters of auteeneghi-
cles relevant to the roll and the lateral dynamics including the position of GiS ré&sults in
high performance estimation of the CG as well as other time varying paramelich, can
be used in tuning of the active safety controllers in real time. We then look intoretive
rollover prevention control based on a robust stable control desigrochatigy. As part of
this we introduce a dynamic version of the load transfer ratio (LTR) as aveslldetection
criterion and then design robust controllers that take into account taimdgrin the CG
position. As the next step we refine the controllers by integrating them with thighau
model switched CG position estimation algorithm. This results in adaptive consralldr

higher performance than the robust counterparts.

In the second half of the thesis we analyze extensions of certain thebresiglis with im-
portant implications for switched systems. First we obtain a non-Lyapuiatwlisy result
for a certain class of linear discrete time switched systems. Based on this wasgug-
gest switched controller synthesis procedures for two roll dynamicarement control
applications. One control design approach is related to modifying the dyabregponse

characteristics of the automotive vehicle while guaranteeing the switchinijtgtabhder



parametric variations. The other control synthesis method aims to obtain trafreie
reference tracking of vehicle roll dynamics subject to parametric switching later dis-
cussion, we consider a particular decentralized control design praebéadsed on vector
Lyapunov functions for simultaneous, and structurally robust modeteate tracking of
both the lateral and the roll dynamics of automotive vehicles. We show thatahisoller
design approach guarantees the closed loop stability subject to certasnafypuctural

uncertainty.

Finally, assuming a purely theoretical pitch, and motivated by the problenssdevad dur-
ing the course of the thesis, we give new stability results on common Lyapsoiotion

(CLS) existence for two classes of switching linear systems; one is awett@rith switch-
ing pair of systems in companion form and with interval uncertainty, and trer attcon-

cerned with switching pair of companion matrices with general inertia. For footfiems
we give easily verifiable spectral conditions that are sufficient for th§ Existence. For
proving the second result we also obtain a certain generalization of trecalkalman-

Yacubovic-Popov lemma for matrices with general inertia.
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Chapter 1

Introduction and Overview

In this chapter we first explain the motivation for the thesis and the prob-
lems considered in it, and then give a detailed literature review of the multiple
model control literature, which is utilized extensively in this thesis. We provide
a critical review of the recent literature in this area and also point out therop
problems, some of which we consider in the later chapters. We concitide w

a summary of the chapters and explain the contribution of this work.

1.1 Background and motivation

In this thesis, we are concerned with switched estimation and control protilatwsiginate
from and are motivated by automotive vehicles. The work of the thesis isradtivated by
the practical importance of switched linear systems and the known factutlatsystems
can become unstable even when they are constructed by switching bendegdually

stable constituent systems [89]. This requires easily verifiable and aotigtrmethods for
designing feedback systems that guarantee the stability of switched liramsyunder

arbitrary switching rules. While viewing automotive vehicles as time varyingsanithing



1.1 Background and motivation

dynamical systems is not a traditional approach preferred by the indiigtrio complexity
issues, it is possible to obtain sound control and estimation algorithms baseteaarying
principles and utilizing only the stock sensors and actuators, which cantjadieimprove
the overall vehicle performance and safety. In this thesis we consideraésuch methods

for a number of estimation and control problems.

An important motivation for this thesis is the problem of automotive vehicle raijovieich
is, statistically, the most dangerous vehicle accident type. Rollover is ayarlycimpor-
tant problem for vehicles with a high center of gravity, and its preventioiffisult due to
the time varying nature of the parameters affecting it. Considering the facthh@aom-
position of the current automotive fleet consists of nearly 36% light trucksivans and
SUVs [22] along with the recent increase in the popularity of SUVs worldwidakes the
rollover an important safety problem, as these vehicles have unusuallgdmgér of grav-
ity (CG) positions. While automotive manufacturers often provide the measusof CG
position and other vehicle parameters, this often pertains to an empty vehiclknaiti
load distribution. Considering the fact that passenger, and/or load distriin road vehi-
cles can vary significantly, and sometimes even dangerously, it is difficolteédook the
change in the CG position and its influence on the rollover tendency of auteawetiicles.
Given the importance of this problem, the automotive industry can greatlyfibéoe
real-time CG position estimation capabilities. Such estimators can be used asimgwarn
system to the driver or can conveniently be integrated into active roatlihgror rollover
prevention controllers thus improving the overall vehicle and passeafgys Motivated
by these considerations, and inspired by the success of Multiple Mod&lHavg & Tun-
ing (MMST) methodology, we devote a significant portion of the thesis to impléngen
and analyzing the multiple model framework for the estimation and control ofraaiiee
rollover. Using the multiple model framework in conjunction with simple linear vehicle
models we design real time estimator structures that infer vehicle parametbrasthe

CG height and the linear suspension parameters in relation to the rollovengon prob-



1.1 Background and motivation

lem. This information, when used in conjunction with active rollover preverdimiems,
can significantly improve the roll stability of road vehicles without sacrificogrf the cor-
nering performance. We give a detailed implementation and analysis of auatiagtive

control structure as compared to alternative robust control designs faltbwing chapters.

There are two distinct types of vehicle rollover: tripped and un-trippetpp&d rollover
is usually caused by impact of the vehicle with something else, resulting in theewollo
incident. For example, a tripped rollover commonly occurs when a vehiclesdideways
and digs its tires into soft soil or strikes an object such as a curb or@ilafdriver induced
un-tripped rollover can occur during typical driving situations and pas®al threat for top-
heavy vehicles such as SUVSs. It is however, possible to preventrelioher accidents by
monitoring the car dynamics and applying appropriate control effortcabetime. In this
context, an important consideration for active rollover mitigation system desigelated
to the assessment of the rollover risk. In this thesis we introduce a dynasriteaion that
we name as "dynamic Load Transfer Ratio", to assess the rollover migpeha vehicle;
we utilize this criterion to trigger a range of active control mechanisms. Indt@nfing
chapters we suggest several such control designs with a rangatoblcobjectives, and
making use of a variety of control actuators that include active diffedemtiking, active
steering, and active suspension actuators, as well as their combindtibile.most of the
problems we tackle in this thesis relate directly to un-tripped rollover mitigation regste

many of our results can also be applied for tripped rollover mitigation.

In this thesis we also consider other alternative strategies based on ¢gdapiimov and
non-Lyapunov results for guaranteeing the stability of switched lineaesyss In this con-
text we consider the extensions of these results and implement them to autooutivol
problems related to roll and lateral dynamics control applications. Herer#tutiqal ob-
jective is the robust and transient free emulation of reference statese\le vehicle is
subject to arbitrary parameter switches. The solution of this problem is catgalidue to

undesirable interactions between the vehicle’s lateral and the roll dynaWEeslso con-
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sider control design methods that take these interactions into account;earabast with

respect to certain structural uncertainties in such applications.

Throughout this thesis at the beginning of each chapter there is a reléseature review.
For the literature on multiple model estimation and control, which is common to many

chapters, a review follows.

1.2 Overview of Multiple Model Control and Estima-

tion Methods

In this section we explain and motivate the need for the study of Multiple ModatrGl

(henceforth MMC) to meet the challenge of real world time-varying cortbjctives for
uncertain systems. This is followed by a review of the past and the cliterature on the
topic along with the description of the prominent approaches and their cetreslations,

thus presenting the state of the art in the area.

1.2.1 Motivation for MMC

Real world control problems of today’s highly sophisticated technologmeiety are diffi-

cult due to the four following reasons [83];

computational complexity,

nonlinearity,

uncertainty,

time-variations.
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Computational complexity relates to the ever growing high dimensionality of tHaeso
formulations, which require more calculations per solution. Nonlinearity gffarm is
a source of complexity as the general nonlinear analysis tools are still inemmprhile
uncertainty is a measure of how well we know about the system at hanahotteewe don’t
know the more difficult the control task will be. Finally, time variations may redué to
changes in operating conditions, external disturbances or completd/fsiltiee in some

of the subsystems of the plant, thus need to be compensated.

In the light of these challenges, adaptive and learning schemes wezpled to tackle
with the uncertainty problem, while in parallel neural network approacteze developed
to cope with the complexity and the nonlinearity problems. However none af thethods
can handle time variations properly [83]. Although the adaptive contrarthkas been
developed with the objective of controlling uncertain and time varying prohlemst of

the results given in this field assume, since the very beginning, that thepalearheters
vary very slowly compared to the dynamics of the system. This in theory cak gien

the model is accurate enough and the initial parameter errors are smallvétahis can
not be guaranteed in all the real world applications, as in most cases naoegisor and
control designers have difficulty in finding a parametrization for the dynalmodels such

that they represent the systems under interest accurately.

As reported in various publications in the literature [14, 77, 78, 79, 88 B33], numerical
studies as well real world experience suggest that the classical stigévae controllers
suffer from lack of robustness. When the initial parameter errors age,lghe adaptive
controllers tend to perform poorly in their tracking task and usually resutisiillatory

control errors along with unacceptably large amplitudes during the trandiease of their

dynamics.

In order to achieve the ultimate objective of stable robust adaptive coianéndra and
Balakrishnan suggested in 1992 the use of the multiple models and switchitrgl@in

gorithm in the seminal technical report [77]. In this report as well asdhev-up papers

5
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that appeared in the literature [78, 84] they elaborated the use of ancinditaptive con-
trol approach and proposed the use of multiple identification models thaizeelpup with
corresponding controllers, which was derived as an extension to pieiebdRAC (Model
Reference Adaptive Control [136], [135]) method. Their propcslgadrithm drew serious
attention as the improvement in the transient tracking performance of thelbentwas
consequential, and as a result it inspired many researchers to work omutiple model
switching & tuning paradigm that developed into a whole methodology todapr&ero-
ceeding with the details of the prominent work in the literature related to MMC, mek fi
it appropriate to list the specific reasons for using multiple models and switclinigol

algorithms as described in [83], and [89].

(i) Local dynamicsA model is a mere representation of a dynamical process in a conve-
nient form [83], which is usually based on the laws of physics undeaicesimplify-
ing assumptions. While such simplifications (e.g. linearization) are usuallyregiqu
to assure mathematical tractability of the problem, the best choice of assumptions
may change depending on the operating condition. This naturally calls fas¢thef

multiple locally valid models and corresponding linear switched controllers [56]

(i) Multi-modal performance:Many engineering systems are inherently multi-modal
[89], meaning that their operation consists of different operating mo@g¢sehult in
different dynamical characteristics. Use of multiple model and switchingaibers
can yield better performance compared to traditional robust linear cagign
techniques based on a single model. The best application example for this is the
longitudinal speed regulator [117] (cruise controller) of an automobiferasulated
in [118]. In this problem, the car goes through different modes of djperdictated
by each gear shift. A design based on switched controllers can pesfgnificantly

better compared to a single linear controller.

(iii) Robustness and adaptatiofhe requirements for a good control system are speed,

accuracy and stability. The biggest interest for the need for supeyvsdgtching

6
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stems from the modern adaptive control problems, which aim for fastisprand
stable operation under uncertain and time-varying environments. Of kpdeia
est is the reconfigurable controller structure in the event of subsysteonmgponent
failure [56]. Such objectives can be archived ugimgjtiple models switching & tun-
ing (MMST) controllers which can detect such changes rapidly and aetyrand
compensate accordingly [77, 78, 79, 84]. As mentioned earlier, clastidde adap-
tive controllers and robust control design methods can not achievkgrtormance

under time varying and uncertain conditions.

(iv) Decentralized designt is common practice to design complex engineering systems
in a decentralized manner. Subsystems are designed in relative isolatitrearitle
entire system is constructed by combining each component. The interactibe of
subsystems are governed by a supervisory logic and such an applisatit@ally

suitable for switched control systems [56].

(v) Constrained control: Practical control systems operate under sensor and actuator
constraints. Switching between multiple control designs can provide satisfac

performance while still satisfying the constraints of the system [56, 89].

In the literature, control designs that possess the above qualities anerefitered to as
intelligent controlsystems [85, 31]. There are a number of approaches suggestedeieeach

these objectives, which are described in detail in the following section.

1.2.2 MMC Literature Review

Formally speakindMultiple Model Contro(MMC) is a model based control strategy incor-
porating a set of model/controller pairs along with a logic-based supey\ssotching rule
rather than relying on a single robust controller to handle all operatinditioms [105].

There are two prominent approaches to answering the question of i@m, and to which
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model/controller pair to switch. The first approach is itndirect MMC approach in which
the switching is made in a discontinuous fashion as in the MMST algorithm [779784].
This requires multiple identification models, and a model is chosen to reptibsepiant
based on minimizing a cost function of the identification error. The corretipg control
input is used to control the plant. As opposed to the hard switching of MMiToach, the
direct MMC approach uses a weighed sum of the multiple controllers such that titwkco

action is performed in a continuous fashion as in [105, 12].

To the best of our knowledge, the first ideas on multiple model arrayswaitching started
to appear in the literature as early as mid 1960s in the PhD thesis of Magill thdheted in
the paper [61]. In his paper Magill suggested an optimal (in the meanesgeiase) adaptive
estimator for sampled Gauss-Markov random process with a certain sg@wétunknown
parameters. He showed that the optimal adaptive estimate is an appropreigghyad sum
of the conditional estimates of a set of elemental linear estimators. The calowétioe
weighting factors required nonlinear probability calculations on the meadsia®. Also,
the feasibility of his algorithm required that the unknown parameter vectorimeleng to a
finite set of possibilities that are known a priori. He suggested that hisitdgomay be im-
plemented to time-varying problems but provided no analysis of it. Althougkilkdagork
brought a new perspective into the optimal and adaptive control thib@rgssumptions he

made limited the use of his approach.

In the following decade the works of Lainiotis [52, 53], Athans et al. [A2§l Baram et al.
[15, 16] contributed to the development of the topic. In [52] and [53] icgis defined his
multiple model estimation and control method asmagtitioning Algorithm He suggested
the use of multiple Kalman filters with the same structure but different paramnedterig,
running in parallel to estimate the state of the plant. He used the residualsgiiomsy of
the Kalman filters to compute the posterior probabilities to decide which one ofaimesit
filters is the correct one. Eventually the sum of the weighted estimates of thKilters

yields the state estimate along with the most likely parametrization. The appropctece
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only Gaussian white noise on the state and the measurement equationg.hie § tried
to extend the same method to nonlinear plants with unknown parameters, whitgrese
the use of nonlinear state estimators or extended Kalman filters. In [53] Ligimtegrated
his multiple model estimation algorithm with multiplanear Separatiorcontrollers (an
optimal quadratic-cost stochastic control design that assumes known padeneters)
to obtain a closed loop estimator/controller structure that he ndfagdioning Adaptive
Controller shown in Figure 1.1. The nonlinear computation of the posterior probabilities
pertaining to each model constitutes the adaptive part of the control algonithile the
linear separation controller implementation is the non-adaptive linear parholtics be
pointed out that the controller is suboptimal unless probability attached to thel mvat
the correct parametrization is 1, because the eventual control eftbe iseighted of sum
of multiple controllers running in parallel. Also, given the difficulties of implem&ata
of the Kalman filters, especially the extended Kalman filters, along with the asisunob
white noise on the process and the measurement model (as it is required Kglthan
filter) renders this algorithm difficult to implement.

Kalman Filter
&=8

Kalman Filter
&=6

x(k+1) = Ax(k)+ Bu(n)+w(r)

(k) =Cx(k)=v(@)

u(t)
— Plant

?| Kalman Filter

=5,

p

e Py

A Posteriori g
Probability

Computation
PG |0). i=12..N

Figure 1.1: Partitioned adaptive controller.

An early real-life application of the MMC (which was missing in Lainoitis and Magjtite-

vious publications) to our knowledge was the equilibrium flight controller impleaten

9
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for an F-8C supersonic jet fighter [12] published by Athans et al. oF Electronic Sys-
tems Laboratory. In this paper Athans et al. assessed the use of the Mbi@hen for the
simple task of obtaining equilibrium-flight speed regulators at differenttfliggimes. They
represented the highly nonlinear aircraft dynamics by a set of simple lnedels that are
valid within certain speed regimes. Here the problem was to get the bedblpgssrfor-
mance from the directional and the lateral control surfaces at difféigint speeds ranging
from subsonic flight dictated by laminar aerodynamic flow conditions to sopéar flight
governed by shock waves, which has totally different dynamics cordpartbe former. As
a consequence, a linear feedback controller optimized for one flighit@mwould not be
suitable for another. Their controller concept was a complete Lineadi@tie-Gaussian
(LQG) design for each flight condition as shown in Figure 1.2, and evé&@ consisted of
a Kalman filter to process the noisy sensor data as well as to infer some stabdegasuch
as the angle of attack and the sideslip angle, which were assumed to be urabkaand
were required to obtain the control command. The adaptive controlletsteuesembles to
that of Lainiotis in [53] for the most part, only differing in the optimal stochastintroller
design rule as well as in the use of steady state Kalman filters, in order toeréuicom-

putational overhead. The LQG controllers, designed\fdinear stochastic time-invariant

—t| LQG Controller

#1

LQG Contraller
#2

x(k+1) = Ax(k)+ Bu(t)+w(t)
2(K) = Cx(k)+v({)

ufty Plant z(t)

7 (Aircraft) ¥ LaG Controller

4 #N

A Posteriori
Probability
Computation
P(G|r). 1=1.2__ N

Figure 1.2: Multiple model adaptive controller implementation of Atfsaet al.
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dynamic systems, generated two signals at each time step, which are;

(i) The control vectow;(t), which would be the optimal control if the aircraft was flying

at the flight regime corresponding it parametrization,

(i) The residual innovations vectoy(t) generated by each Kalman filter (that is inside

theit" LQG compensator).

The residuals can be used to recursively calculate the conditionalkpliba denoted by
R(t). In the paper they argue that since they used steady state Kalman Riteréor i =
1,2,..N are not the exact conditional probabilities. Using the control vectorsrgésd by

each LQG controlley;(t), one can then compute the “adaptive” controller input as follows;

u(t) = iF’.(t)ui (t).
is

They showed using real flight data that the suggested algorithm wdnkedver they did

not present a comparison with alternative gain scheduling controlléssalko pointed out

in the paper that there is no rigorous proof of asymptotic convergentteeafonditional
probability R (t) associated with the true model, to unity. This brings in the question of sta-
bility in the case when erroneous models are used to estimate the states due to Ineidmatc
or badly tuned Kalman filters. Such an implementation therefore would novbeatale in

the case of time-varying parameters as the tuning of Kalman filters for time vasgatan

pose to be a difficulty.

To the best of our knowledge, the first proof of stability for a multiple modsiheation
algorithm was shown by Baram et al. and was detailed in the papers [@9]L&h They
again used a Kalman filter based approach, where it was assumed thartesidnodels
for the Kalman filters were linear, and dynamic equations as well as measurastaions
were corrupted by uncorrelated white noise. The unknown parametettsef Kalman fil-
ters were assumed to belong to a finite set with arbitrary size. Their proofodicequire
the actual model parameter vector to be in the model set as this would begiragem un-

realistic assumption. They further assumed that error covariancestbédflalman filters

11
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corresponding to the parameters in the set are positive definite, finitellahd residuals
(innovations) are ergodic. Under these assumptions they showed timadtied in the near-
est probabilistic neighborhood of the actual parameter vector will minimize igtende
measure based on Kullback information metric. They also proved asymptatiergence
of the parameter vector under these assumptions. Although mathematicalljnattthese
results are difficult to implement in real life simply because the assumptions roatteef

proof were too limiting and hard to comply with.

In all the MMC publications that appeared since mid 1960s till late 1970s, @mifraious
control signals were considered which were composed of the convelication of a set
of linear optimal controllers. What's more, the stability analysis of the resultimgroller
was usually missing, or was proved only under very strict constraintismenst of the time
the problem of using multiple models/controllers was considered only fromptieality
perspective. In the context of stabilization of adaptive systems, switskimgmes assumed
importance towards the end of 1980s with a trend that was initiated with the Phi3 tie
Bengt Martenson [63] which he later detailed in the papers [64], arid [[B€hese publica-
tions he proved the stability of discontinuous switching (which occurs ad@sing intervals
i.e., switching gets slower in time) between a set of stabilizing adaptive consrdisigned
to stabilize a linear time invariant plant. He neither made stochastic assumptioressysth
tem nor he assumed persistently exciting reference signals. The stratMidtenson’s
direct switched adaptive control implementation is shown in Figure 1.3, whexee oper-
ators each representing a finite set of stabilizing controllers that arerkaqgwiori. Also
the direct controller parameter adaptation rule is a continuous increasiatioin and was
based on the input and the output of the plant. The biggest achievemptétrtghsson’s
work was the relaxation of the common stochastic assumptions made in the prpulais
cations on multiple switching models/controllers, up to that date. He also sudglestese

of discontinuous switching between adaptive controllers to stabilize lineatspla

Following the trend started by Martensson, two kinds of switching algorithms ywe-

12
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Switching Rule

Plant

vit)

Figure 1.3: Martensson’s switching function controller.

posed in the literature. The first of them was the direct switching apprasah Martens-
son’s implementation, where the choice of when and to which controller to swgteh
determined based on the output of the plant. Although this is a conceptually sideplat
was reported to be impractical to utilize in complex systems [79, 31]. The dexggproach
is the indirect approach that was initially suggested by Middleton et al. inié®3h in-
volves using multiple identification models to estimate the unknown parameters détte p
based on a suitable performance index. Estimated plant parameters ares¢ideto im-
plement a controller based on the certainty equivalence principle. Theirrimeplation
required the assumption that the identified parameter belongs to a finite grecopvex
sets (not necessarily disjoint), where models corresponding to the parante each of
these sets are uniformly stabilizable. In a separate paper, the same yedletdh and
Goodwin reported their findings on the adaptive control of time-varyinglisgstems in
[68]. In this paper they proved that their adaptive algorithm achiev&SEBounded Input
Bounded State) stability without the persistency of excitation requirementpoaodt with
respect to unmodeled dynamics for the time varying linear system. They a$garsan-
eter variations to be bounded yet slowly varying or have infrequent jurfieough this
method was designed for adaptive control based on a single model, itldf@possible to

extend the results to the multiple model case by dividing the arbitrarily largerregitihe

13
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parameter space into multiple convex regions.

In the following years Morse [71] studied the use of multiple fixed models atichzation
for robust set point control. He suggested the use of a supervibalg-fevel" algorithm
that is capable of switching to a sequence of linear positioning or set-pmitriodlers from
a set of candidates in order for the output of the process to approactiseck a constant
reference input for a single input single output (SISO) plant. Thersigme continuously
evaluated each candidate controller using a performance criterion basesrm-squared
estimation errors of the candidate nominal process identification models. iHdd&ded
his method in the papers [72], and [73] and looked into the theoreticat@spiehe robust-

ness as well as the steady state tracking performance of the switchinighadgor

In the mean time, Narendra and Balakrishnan suggested in a 1992 techpiwal[77] that

it is possible to improve the transient performance of adaptive controllatogerate in
rapidly time varying environments, using both switching and tuning along with a raultip
model structure. They developed and presented the idea during the ih¥8eries of pa-
pers[14, 77,78, 79, 84, 85] and named the resulting algorithm multiple rsadtehing &
tuning (MMST) controller. They also referred to it as "intelligent controldiect attention

to its ability of recognizing the environment that it is operating and act asuglydin a fast,
accurate manner while guaranteeing stability. They defined the intelligersceasftroller
as the speed and accuracy with which it responds to a sudden andHargged79]. In the
papers [77] and [84] the MMST algorithm was considered as an extetsithe indirect
MRAC method, where multiple identification methods were used to identify an LTt pla

with unknown and time varying parameters.

In the MMST algorithm each identification model is paired-up with an adaptivrcller
as seen in Figure 1.4, and based on a performance index of the identifieator the
model/controller pair is chosen to control the plant at every instant. The fgldre con-
trolled has the inputi(t) and outputy(t). A reference model provides the desired output

Yref(t) and the task is to drive the control errey(t) = y(t) — yref(t) to within specified

14
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Figure 1.4: Multiple model switching & tuning Controller (MMST).

bounds or, if possible, to zerdl identification models{lj}'j\':1 with corresponding outputs
{¥; (t)}’j\l:]_a where each one has identical structure but different parameterigaticnused
in parallel to estimate the parameters of the plant. The identification error ¢brreadel
is defined awj(t) = y(t) —y;(t). Motivated by quadratic optimal control, the following

performance criteria is used to select the model representing the plaatainstant;
t
3(t) = aél(t) +B/ e M-I (r)dr.
0

wherea > 0 is the weighting factor for the instantaneous chang@es, O is the weight
for steady state error variations aAd> 0 is the forgetting factor. It is assumed that the
model that minimizes this cost function is the closest model to the plant, and based
the certainty equivalence principle, the corresponding control inptitedimodel is used
to control the plant. Narendra and Balakrishnan explained the reasosifay an indirect
control method with the fact that stable control of identification error in tiead- would
lead to a stable control of the plant. This argument however is shadowtt bgct that

there is no 11 correspondence between the identification error and the controbased
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on their switching criterik

The global stability of the MMST algorithm applied to linear time invariant (LTI)rp$a
was proved in [77] and [84] using candidate Lyapunov functions. skakility proof made
no assumptions on the switching sequence given that there is a certain minislintirde

between each switches (i.e., the controller is not allowed to switch too quickiyater

papers [78],[79] and [85] the algorithm was extended to include fixed (tiwegiant) mod-
els, adaptive models with fixed initial conditions, and adaptive models withitielired

initial conditions, as well as various combinations of these. In these papeas shown
hypothetically as well as through numerical simulations that while the use of fixalels
are computationally more efficient and they provide fast transient respsiow adaptive
models are required to obtain zero steady state control error and longntgnoved per-

formance.

Figure 1.5: Switching between fixed models and tuning using adaptation.

The idea of using a combination of fixed and adaptive models can be illustviateBigure

1.5, whereSis a closed bounded set that symbolizes the finite parameter spac§, and
represents subsets $tach corresponding to a fixed modpil.dénotes the parametrization
for theit" fixed model which represents the plant in the sulSsetVe designate the actual

plant parameters witp*. Now assume that the algorithm is initializedmt &t this point

1We shall explain this problem in detail later in Chapter 2.
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the MMST algorithm will switch top]” (perhaps after several switches) as it is the closest
fixed model (based on the given performance criteria) to the actualgdsaneters. At this
point we can initialize the adaptive model fropah let it converge asymptotically o
(tuning). In [79] and [85] it has been shown that using multiple fixed modalelsg with a
free-running and a re-initialed adaptive model performs quite satisilgGtothe control of

plants with rapidly time-varying environments.

The extension of the MMST algorithm to nonlinear plants was first suggés{éd] using
neural networks, however stability proof was missing in this paper. In & me@ment paper
[87] however, stability of the MMST algorithm for a simple class of nonlingatems was
proved. Also, application of the MMST algorithm for adaptive stochastitrobof discrete
time systems was presented in the recent papers [82],[141],[86], anel hid thesis [31].
Summing up, MMST algorithm has theoretically, as well as through numericalaions,
been shown to be a high performance alternative way to tackle the adeguitrel problem
without the limitations of the previous approaches. However there are stditigns that
remains unanswered in the current literature on MMST, such as the psgvimentioned
1-1 non-correspondence between the parameter space and thespatpelt This problem
partly relates to the selection of the performance criteria to be minimized. Ththeger-
formance criteria was chosen seems to be heuristic and intuitive. The quieskie asked
is; what is the correct choice of the performance index as a functioneafiimtification
errors such that nearness in the parameter space uniquely correlagesress in the out-
put space of the models? Another problem is related to the distribution of miodsls
parameter space, as having too many models for achieving sufficiemaagenay impose
a computational overhead and limit the use of the algorithm in cost sensitlieatpns.
Having too few models however, may limit the accuracy or the transientrpesfoce gained

by the algorithm.

In parallel to the development of the MMST algorithm, a direct multiple model switch

ing adaptive controller algorithm, advocated by Michael G. Safonov amg-Thing Tsao,
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emerged in the late 1990s. Preliminary versions of the idea appeared in th@90slHow-

ever it made its debut in a 1997 paper [103]. They called it “Unfalsifiedt@’ motivated

from the scientific process of experimental validation, or unfalsificatioexperimental
data against various parameterized classes of plausible models in seanehtioat has the
best fit to the data according to some selected criteria. As it is a direct tappach, the
algorithm does not require any identification models, which can exhibit mthesaspects
of the real plant. This prevents the designer from making crude and limitswnastions
on the plant structure or its stochastic characteristics. The idea is bad@@cirevaluation
of the performance of all candidate controllers to identify and switch to thealter that

will guarantee the specified performance criteria (by performance it istttest how close
the closed-loop plant would follow the reference signal had the candidateoller been
in the feedback loop). This does not necessarily require the candintati®iéers to be put
into feedback-loop with the plant before they could be unfalsified, rdtban be done with
stored input and output data. Through elimination (falsification) of theitatda controller
structures, a data driven adaptive learning scheme is achieved. Asgourt in [103], the

algorithm is a generalization of open loop model validation techniques tode&dlystems.

Plant

Reference Control Output

Input
(0 Controller uft) Plant y(t)

kek (Y

Figure 1.6: Unfalsified control concept.

Unfalsified control concept can be illustrated as in the Figure 1.6 wherga#lds to use
the controllersc € K to control the planP to ensure a certain closed loop system response,
which we denote witllspee Notice that any control law using any minimal representation
can be chosen to design the candidate controller. Further, we can tlemspace of inputs,

outputs and reference inputs with Y andR respectively, such thatt) € U, y(t) € Y and
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r(t) € R. Now the unfalsified controller problem can formally be stated as follow8]{13

Given,

(i) Measurements of the plant input-output signaigs yo) € U x Y,
(i) A candidate set of controlles € K C RxY x U,

(iii) A closed loop performance criteriofspecC RxY x U,

then determine whether or not the control law satisfies the performanagoerite

In order to perform model free direct adaptive control one then steitts a candidate
controller in the loop, where it remains till it is falsified by the data. In the cdgealsifi-
cation it is replaced by another candidate controller from the array afsified controllers
which manifests the inherent switching nature of the algorithm. Furthermardachthat
controllers do not need to be inserted in the feedback loop to be falsifiagamtees fast
response and improved transient performance compared to traditiahadcontrollers

based on single models.

The questions regarding robustness, stability (whether the switchingscata point stabi-
lizing the plant) and asymptotic convergence characteristics of the unfaldifiect adap-
tive control algorithm was addressed in the recent papers [129]4&jdby Safonov et al.
They argued in a heuristic manner that from a practical point of view, ¢haisition of an

unfalsified controller is not asymptotic but rather immediate. This is due to thehatc
the controller in the feedback loop is always the unfalsified one, which wélantee the
stability and convergence regardless of the plant being linear time-invararon-linear
time-varying. Furthermore, they linked the robustness of the algorithm dte following

two facts;

(i) The set of controllers is monotone decreasing and bounded belovelanipty set,
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(i) An unfalsified controller that is not stabilizing is unlikely to remain unfalsifieda

long time.

In a recent paper, Paul and Safonov [94] compared the perfomwrice unfalsified adap-
tive control concept to that of Narendra’'s MMST algorithm for the MRA@blem. In
terms of tracking performance both controllers obtained similar resultsr&@eyplications
and theoretical extensions of the unfalsified control concept hasrbperted in the recent
literature [13, 19, 21, 93]. Summing up, we believe that the simplicity of implementafio
the unfalsified control algorithm has inspired many researches andeengito implement
the idea as evidenced by a high number of application papers in the rezest $implicity
is partly due to the fact that the algorithm does not need identification modelseuer
there are still questions regarding the choice of the candidate contrakgecially for
complex systems. The size of the controller bank and the fact that the cdiopatae-
sources need to be facilitated to store and process the input output dat tmre may
come with computational overhead. Nevertheless, when the class of stapbdarnirollers
are known (say through experience or some nominal model) then unfhlsifiegrol algo-
rithm offers quite good transient performance improvements without usimglex models
for the process. This algorithm can prove to be quite useful for widedg psoportional-
integral-derivative (PID) controller design and on-line tuning for imgbperformance as

presented in [44].

Slight variations of the methods described thus far have also been publishfb] ideas
from MMST and unfalsified control approaches has been somewbat fuvhere identi-
fication models as well as a falsification algorithm were employed. They steghyénvo
different falsification criteria based on Lyapunov function variations astatistical falsi-
fication based on closed loop variables. They named their approach Bwgipervisory
Control (SSC), and demonstrated the improvement in the transient coatfotpance of
an uncertain linear time-varying plant through simulations. The algorithm &ées bx-

tended for non-linear systems in [10].
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A flashback to the Kalman filter based methods occurred recently with thespgs,
[34], and [35] by Fekri et al. The method is very similar to that implemented thaks

in the 1977 paper [12], where the fixed controller gains in the origina¢épagere replaced
with robust controllers designed with mixedsynthesis. They appropriately named the

algorithm Robust-MMAC (Robust Multiple Model Adaptive Control or RMMIA

Before finalizing this section we should mention that by no means this revienaustive,
and there are many other authors publishing in the field of MMC. Howevdyeheve the
methods reviewed so far covers the general trend in the area. In theaotion we cite and

briefly describe several applications of MMC.

1.2.3 Applications of MMC

The applications of MMC has been primarily focused on aircraft and missiiepdots
and dynamics control, as well as chemical process control, while seygphtations in-
cluding spacecraft attitude and structural control, air traffic contreig dielivery control,
solar power plant control, robotic manipulator arm control, and automotinga has also
been reported. The common divisor for all these applications is that thelvénmnultiple

operating modes and/or multiple operating environments.

Aerospace industry has been a constant driving factor for rds@acontrol theory. With-

out much surprise, the first implementation of MMC was for an aircraft cbptoblem, as
the need for the re-configurable, fast and accurate flight contratersf cardinal impor-
tance for increasing aircraft safety and survivability in the presehselssystem failure and
structural damages [31]. As mentioned earlier, Athans et al. [12] didtarfiplementa-
tion of MMC in 1977 for the autopilot of the F-8C fighter aircraft, and foe usequilibrium

flight control at different operating regimes. They used an indirect oggltlased on multi-
ple parallel-running Kalman filters that are connected in series to LQG dlengras seenin

Figure 1.2. In the 1990s Maybeck continued the use of Kalman filter bas&aBAMulti-

21



1.2 Overview of Multiple Model Control and Estimation Methods

ple Model Adaptive Estimation) and MMAC algorithms and implemented itin a F-1BIST
(Short Take Off and Landing) aircraft [65, 66]. BoSkownplemented the MMST idea of
Narendra et al. for detection of sensor failures in aircraft [17].dl#ified control algorithm
found use in robust on-line PID parameter tuning of a missile autopilot [R@Ing these
implementations, a somewhat related topic of multiple model air traffic control éas b

addressed by Bar-Shalom and Li in [57].

Multiple model control algorithms, in part due to their increasing popularitytesiato
appear in the space applications recently. A good example is the geostatiateallite
attitude controller implementation reported in a recent paper by Safonov[&88l. using
the unfalsified control algorithm. In an earlier paper by Maybeck et @] [BVAE and
MMAC algorithms that are based on the Kalman filter approach, were siagfes use in

the control of structural vibrations of large flexible space structures.

Chemical process control is another area that can benefit from multiplel wanatrol appli-
cations as the problems in this field usually involve nonlinear dynamical diesistics and
multiple operating environments. In [106] Schott and Bequette applied Kaltem@ased
MMAC algorithm for the control of Van de Vusse reactor and classic extatic continuous
stirred tank reactor. Same authors applied the MMAC method to the drug infasidrol
problem in [105], where infusion rate of nitroprusside is used to cottieblood pressure
in animal experiments. The same paper has a review of literature for theirdosipon

control using multiple model approaches.

Robotic manipulator arm control using MMST approach has been repbytétarendra
et al. in [14], while a similar implementation using the unfalsified control algoritias h
been reported in [129] by Safonov et al. Safonov’s implementation walinear, and was

shown to be robust with respect to load variations on the manipulator arm.

The adaptive control of a solar power plant is the subject matter of {@&re the power

plant employs a distributed collector field to direct and collect the solar griergugh a
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1.3 Thesis Overview and the Contributions

heat exchanger. The heat energy is transferred to oil that circtitetegstem and is used to
generate electric power. The electric power generator requires thatithet temperature
of the circulating oil needs to be kept constant under changing daily saad&tion cycle
and atmospheric conditions. The paper concluded that multiple model switabritigpller

implementation performed better than the traditional adaptive control designs.

Automotive applications of the multiple model estimation and control algorithms, which
are addressed in this thesis, are quite new. A recent PhD thesis [2Bjruggple model
adaptive estimation and adaptive control for the adaptive cruise cgAte@) problem. In
this thesis we tackle the problem of automotive rollover estimation and mitigation using
the MMST framework. The summary of these and the other specific contniisutibthe

current thesis follows next.

1.3 Thesis Overview and the Contributions

In Chapter 2 we introduce a real time parameter estimation algorithm basedronlitipe
model switching framework for inferring the unknown, and time varyingpeeters of au-
tomotive vehicles. Among the estimated parameters are the center of gravitp¢€iGon,
which has primal importance for vehicle dynamics control applications. Aftptaining
the estimation algorithm we give an analysis of the switching criterion of the multiptiemo
switching algorithm with important conclusions. Based on these, we suggastiel space
adaptation method in conjunction with the multiple switched estimator structure, éor ov
coming the limitations of the switching criteria and present the efficacy of thgestied

technique with numerical examples.

In Chapter 3 we consider a novel approach for designing robustatitee rollover preven-
tion controllers. As part of this analysis we introduce a dynamic versioredbtd transfer

ratio (LTR) as a rollover detection criterion and then design robust dersdhat take into
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1.3 Thesis Overview and the Contributions

account uncertainty in the CG position. The control methodology we utilizesedan
guaranteeing a set of linear matrix inequality (LMI) conditions, which rdaautbntrollers
that arel, stable. We also consider a controller mode switch to increase the perfamianc
the resulting robust controllers, which does not affect the stability ofldsed loop system.

Again we present the resulting controllers with numerous numerical simulations

In Chapter 4 we fuse the results of the previous two chapters to obtainieutartype of
switched adaptive rollover mitigation control design. Based on the real titmeag®n of
certain vehicle parameters, our controllers switch among a set of cordraberh of which
guarantee robust, stability of the closed loop system. We also show numerically that this

results in stable adaptive controllers with higher performance than thetrobunterparts.

In Chapter 5 we consider a discrete time extension of a certain stability resaltfass of
switched discrete time linear systems and show that the stability result do reshydiotiow
from the continuous time versions with this property. We obtain the conditiorstdoility
of this system class by using a non-Lyapunov technique. This resulhatsan important
interpretation for switched systems; the bilinear transform may not alwagegve the sta-
bility properties between the continuous & discrete time counterparts of dyabsggtems,
and their stability properties need be analyzed separately. We then styggesnstructive
pole-placement control design procedures based on the main resulesalfapter; one is
related to enhancement of driver experience subject to parameter esvidnold the second
is related to transient free model reference tracking of vehicle roll motgardless of

arbitrary switches that can occur in the vehicle parameters.

In Chapter 6, we consider a particular decentralized control desigreguoe based on
vector Lyapunov functions for simultaneous, and structurally robusehreference track-
ing of both the lateral and the roll dynamics of automotive vehicles. We shatntlis

controller design approach guarantees the closed loop stability subjesttaindypes of

structural uncertainty, which we demonstrate with detailed numerical simulations
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1.3 Thesis Overview and the Contributions

Finally, in Chapter 7 we extend certain theoretical results on the stability ofredtinear
systems. Particularly, we consider the problem of common Lyapunov soli@ioB) exis-
tence for two classes of switching linear systems; one is concerned witthswifoair of
systems in companion form subject to interval uncertainty, and the othenigted with
switching pair of companion matrices with a regular inertia. For both problemgivee
easily verifiable spectral conditions that are sufficient for the CLS exdsteFor proving
the second result we also obtain a certain generalization of the classinat&acubovic-

Popov lemma for matrices with general regular inertia.
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Chapter 2

Realtime Vehicle Parameter
Estimation using Multiple Models

and Switching

In this chapter we present an implementation of the multiple models and switch-
ing framework to the realtime parameter estimation in automotive vehicles.
Among the estimated parameters, the center of gravity position is of primary
importance, which directly affects the handling of the vehicle in extreme driv-
ing situations, and which can not be measured directly. The online estimation
method utilizes well-known linear vehicle models for lateral and roll dynam-
ics, and assumes the availability of standard automotive sensors. We ilkustra
the technique with numerical simulations as well as with off-line sensor data
from a test vehicle; we also give comparisons to traditional estimation tech-
niques. The chapter concludes with a brief theoretical analysis of the eultip
model estimation algorithm, based on which we suggest a novel refihefme

the estimation method in the form of adapting model spaces.
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2.1 Chapter contributions

2.1 Chapter contributions

The scientific contribution of this chapter over the state of the art is twofalgtlys we suc-
cessfully applied the multiple model switching framework for realtime parameiarason

in automotive vehicles. We showed through numerical simulations that the m@thvdes

fast and accurate estimations of unknown vehicle parameters. We atgessedja number

of automotive applications for the suggested estimation technique. Thedsematnibution

of the chapter is a theoretical analysis of the MMST cost function (switctrikgria) uti-
lized in conjunction with the multiple model estimation algorithm. We proved that under
certain conditions (e.g. a coarse model space), the algorithm can leadrig @stimations.

As a remedy and as a further contribution, we suggested a simple methathfaiime the
model space in conjunction with the multiple model estimation algorithm, while making
use of the same cost function. We showed the benefits of this approacigthmumerical

simulations.

The work in this chapter has culminated in the following publications:

() Solmaz S., Akar M., Shorten R.Method for Determining the Center of Gravity
for an Automotive Vehicle Irish Patent Ref: (S2006/0162), March 2006. (PCT

application filed in March 2007).

(i) Solmaz S., Akar M., Shorten R.Online Center of Gravity Estimation in Automotive
Vehicles using Multiple Models and Switchin§th IEEE International Conference

on Control, Automation, Robotics and Vision, Singapore, Dec 5-8, 2006.

(i) Solmaz S., Akar M., Shorten R., Kalkkuhl JR€altime Multiple-Model Estimation
of Center of Gravity Position in Automotive Vehic¢le®ehicle System Dynamics

Journal. Accepted for publication, 2007.
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2.2 Introduction

Vehicle center of gravity (CG) position and inertial properties are of primabrtance in
the assessment of vehicle handling and performance characteristiedl as s accident
behavior. Although automotive manufacturers often provide the measntaihese pa-
rameters, such information often pertains to an empty vehicle with known logihdisn.
Considering the fact that passenger, and/or load distribution in roadie®lcan vary sig-
nificantly, and sometimes even dangerously, it is difficult to overlook thagdan the CG
position and its consequences. While the importance of this is known on thérttahe-
havior, automotive manufacturers usually employ robust active roadling control strate-
gies to account for the unknown and changing CG position; they simplyrd&sithe worst
case scenario. Another common approach in the case of Sport Utility \Veli#glgVvs) is
to intentionally design the vehicle heavier than usual by adding ballast in therecarriage,
which aims to lower the CG position while reducing the percent margin of the lagd v
ation and thus constraining the variation of the CG location. While such appeeare
successful up to certain extent, they also come with obvious drawbaetsrmance loss

under normal driving conditions and reduced efficiency due to adaéghitv

Analysis of recent car accident data indicates that vehicles with a higkreehgravity
such as vans, trucks and SUVs are more prone to rollover accidentsttieas [1]. More-
over it is known that rollover accidents alone constitute only a small pegemtall car
accidents, while they cause disproportionately high rates of fatalitiesA88prding to [1]
rollover occurred in only % of all vehicle crashes during 2004 in the USA, while it was
responsible for a massive 29 fatality rate, rendering it to be the most dangerous type
of accident. Again according to the same data, light trucks (pickups, &gs) were
involved in nearly 70% of all the rollover accidents, with SUVs alone resiixa for al-
most 35% of this total. It has been also reported in the literature based on statlatics,
that rollover was involved in about 90% of the first harmful events of-calfision fatal

accidents [25]. Considering the fact that the composition of the curtgntretive fleet
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2.2 Introduction

consists of nearly 36% light trucks, minivans and SUVs [22] along withélaemt increase
in the popularity of SUVs worldwide, makes the rollover an important safeiplpm. As
CG height is the most prominent factor in un-tripped rollover occurrethé®problem can
greatly benefit from real-time CG position estimation capabilities. Such estimatorisec
used as a warning system to the driver or can conveniently be integrabedciive road
handling or rollover prevention controllers thus improving the overall Jeldad passen-

ger safety.

With this background in mind, and inspired by the success of Multiple Modék8ing &
Tuning (MMST) methodology suggested initially by Narendra et al. to improgértmsient
performance of adaptive controllers as described in [84, 78, 14hresent in this chapter
multiple model and switching estimation approach based on simple linearized vebidie

els and employing only standard stock automotive sensors [122]. Theeafdhe multiple
model approach over the conventional methods (such as the leastgjimmotivated by

the fact that the method does not require the linearity of the parametricaimtgrAlso the
method is ideally suited for automotive applications, where a rapid estimatiorknbwum
parameters is required. Moreover, use of Kalman filter based methodstfmmotive pa-
rameter and state estimation applications are quite limited due to robustness limitations as
well as computational resource requirements of such methods. Motivatbede consid-
erations, we considered simplified linear vehicle models such as the singleoael (i.e.,
linear bicycle model) and the second order roll plane model in conjunctiontigtimul-

tiple model switching framework. These models can only represent theat@spvehicle
behavior in a limited range of maneuvers and speeds, but it is possible tornaHitude

of these simplistic models and switch between them in an intelligent way in real time, to
track the vehicle behavior accurately over the complete operating conditMoszover,
proper parametrization of these models gives way to the rapid estimation méwnlkand
time-varying vehicle parameters through the selected models. Using thébedsalti-

model approach in conjunction with linear roll plane models, one can estimatmeters
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2.2 Introduction

such as the CG height and linear suspension parameters in relation to tkerrpleven-

tion problem. Through a similar implementation of multiple single track models one can
also estimate parameters relevant to lateral dynamics control, such as thedoad CG
position and linear tire stiffnesses. One of the benefits of this realtime estimatitoodne

is the fact that it is immune to the nonlinear dependance of unknown vehiaempters in

the models as shall be apparent in the Section 2.3. During the applicationroéthed in
Section 2.4 we make no assumptions about the parameter vector having déipeadance

on the states.

Recent publications related to automotive CG position measurement and estimeltioe
that of Mango [62], where he described a method for accurately célogithe CG location
based on portable wheel scales. His method requires external measueguigment and
is not intended for online measurement during regular driving conditisnisraquires the
vehicle to be stationary. In another recent article, Allen et al. [8] madetiatital anal-
ysis of vehicle inertial properties and CG positions as a function of weighthydength
and the height of the vehicle using the data for several existing stock Ak®ugh their
analysis is useful in demonstrating the relationship between several ghyaiameters and
vehicle's handling characteristics, their method can not be employedditinte estimation
purposes. There has been a number of recent publications ablbimeesstimation of ve-
hicle parameters including the CG position. Vahidi et al. suggested a recilinear least
squares estimator with multiple forgetting factors in [131], for simultaneous etimaf
the road grade and the vehicle mass in real time. Their algorithm took into ractteu
different rates of change in both unknown parameters and incorpattdterent forgetting
factors into the cost function of the recursive least squares algorithm. Theittsesre
promising as demonstrated with both numerical and measured data. Howisveethod

assumes that vehicle model is linear in the unknown parameters, which issncadé for

1The concept of forgetting implies that older measuremetat isagradually discarded in favor of

more recent sensor information [131].
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2.3 Vehicle modelling

the approach presented in the current chapter as shall be clear imtiet. 48 a recent the-
sis [7], a model based estimation method for road bank angle and CG heiglsiggested
using extended Kalman filters. The presented results showed slow geneerrates in the
estimations and the accuracy was questionable. In a recent Europgeangia 09180081
[55] an alternative method for estimating the height of the CG in real-time wasided.
The method utilizes an estimated drive/brake slip of at least one wheel usinghibel
speed sensors, which is then used to compute the instantaneous radaisafésponding
wheel. Using this information, the angle of the corresponding wheel axle@siiect to the
ground is computed and then used in an equation related to the lateral dyéthiescar
to compute the CG height. Since there are no other publications other then thpatet,
the details and the limitations of this method is not known to the authors. It should be
noted that all the rollover prevention methods suggested to date assume €Weight
[38, 25, 4, 88, 137, 138, 107, 22, 48]. However as we have exgain is particularly
unrealistic to assume the CG height to be known, and this parameter cangraficantly
with changing passenger and loading conditions especially in large p@sseahicles such

as SUVs.

2.3 Vehicle modelling

In this section we present three different models for the lateral motion ancbthplane
dynamics of a car. While we use a 4-state vehicle model with a combined rolaterdl
dynamics to represent the real vehicle behavior in our numerical simulatiensitilize
two linear second-order models (i.e., the single track model, and the roll pladel) in
conjunction with the multiple model switched parameter estimation algorithm that €hall b
introduced in the following section. We use the second-order linear modeis phify the
implementation of the algorithm as well as to keep the required sensory infomaite

minimum level. All the models introduced here assume small angles and are valictiadn
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2.3 Vehicle modelling

steering input is small. Also, in the second order linear single track modeiided below,
a weak relationship between the lateral and the roll dynamics is assumedt,isithie case
when the steering angle is small [104]. Note that the choice of the modelssheeiteade
off between complexity and sensitivity to different operating conditionse assumption
of linear models and small angles in the following discussion is indeed a restrastju-
ment as the linear models are not dependable during extreme driving sifjatioere the
knowledge of the unknown vehicle parameters is required most (e.g.,dateployment
of a suitable control action). However, the method described in the seguéénded for
estimating the unknown parameters during normal driving conditions andlgfioge such

extreme driving conditions occur.

Notation and definitions of the model parameters and variables are givebia Z2.1. In
what follows we give three different dynamical equations of the motion efctr. For a
through coverage of the derivations see [50], and [104]. Note thairplicity, we assume
in the following equations that, relative to the ground the sprung mass of tieeveolls

about a horizontal axis along the centerline of the body.

2.3.1 Single track model

This two state linear model represents the lateral dynamics of a car in theftatiplane.
It is also referred to as “the 2-state single track model” or “the linear biegypcéel" in the
literature and is commonly used in automotive applications (see [132] forchapuication

example for vehicle lateral control).

For linearization, the model assumes that the motion of the vehicle is consttaitieel
horizontal plane at a constant speed such that the effects of he#vand pitch motions
are all ignored [2]. It is also assumed that only the front tire is usedéerisg the vehicle,
and the steering angle is small. Moreover, vehicle sideslip angle and the tirengligs

are assumed to be small as well. In the model, other sources of nonlineantiesas
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2.3 Vehicle modelling

Table 2.1: Model parameters and definitions

Parameter Description Unit

m Vehicle mass kgl

g Gravitational constant [m/s]
Vi Vehicle longitudinal speed [m/g]

o Steering angle [rad]
Jx Roll moment of inertia of the sprung mass measured at the (g n’|
Jzz Yaw moment of inertia of the chassis measured at the CG  [kg- n¥]

L Axle separation, such that= I, + Iy, [m]

T Track width [m]
ly longitudinal CG position measured w.r.t. the front axle [m]

In longitudinal CG position measured w.r.t. the rear axle [m]

h CG height measured over the ground [m|

c suspension damping coefficient [kg-m?/s

K suspension spring stiffness [kg-m?/<]
Cy linear tire stiffness coefficient for the front tire [N/rad]
Ch linear tire stiffness coefficient for the rear tire [N/rad]
B Sideslip angle at vehicle CG [rad]
ay Sideslip angles at the front tire [rad]
On Sideslip angles at the rear tire [rad]

[0) Roll angle measured at the roll center [rad]

) Roll rate measured at the roll center [rad]
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2.3 Vehicle modelling

aerodynamic forces, tire nonlinearities and non-smooth road disturbaneall assumed
to be negligible. See Figure 2.1 for the representation and notation of thd.nibatice
that in this model we lump left and right tires into a single one at the axle centdukinee

the name “Bicycle Model" or “Single Track Model".

Figure 2.1: Linear bicycle model.

We represent the horizontal dynamics in terms of the state varifibéewl (). The lateral
tire forcesS,, §, for front and rear tires respectively, are represented as lineatidms of
the tire slip angles such th& = C,ay, andS, = Cyan, where for small angles tire slip

angles are given as follows
Iy .
ay = 6-B——@ (2.1)
Vx
an = —B+_-¢. (2.2)

Also notice that since we assume small angles and constant longitudinatyedaeslip

anglep satisfies the following;

Vi -V
B%Vy, B%ny' (2.3)
X X
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Using the above relations and Newton’s 2nd law of motion, one can getltbeifrg state

space representation of the horizontal dynamics of the vehicle

B _9o P _4q B o)

_ my M2 ) +1 ™ |9, (2.4)
. . IV
L'U Jﬁzz o Jzivx L'U %

where the auxiliary parametegs p, andk are defined as follows

o £ C+GC,
P £ Chln —Cily (2-5)
K 2 CIZ+Gila.

For further details on the derivation of this model see [104] and [50].

We make use of this model mainly for the multiple model switched estimation of the un-
certain tire stiffness parameters (i€,,andC;), and the uncertain longitudinal position of
CG (i.e.,ly). Note that although (2.4) is linear in the state variables, it is nonlinear with
respect to unknown parameter variation€@fCy, andly; this is a factor limiting the use of
traditional recursive estimation methods such as the linear least squathe fstimation

of unknown parameters, as shall be demonstrated in Section 2.4.3.

Comment: In the version of the linear second-order single track model introdueesl h
the effect of the variations in longitudinal CG position on the variations in tleetfe yaw
moment of inertial,; were ignored on the grounds that such changes are insignificant for
small vehicles, where loading options are limited and the resulting changesiettia are
qguite small. For the sake of simplicity, parameters for a compact class vehideused

in the simulations in this chapter, and therefore this assumption makes sensevefo

for larger vehicles such as busses and trucks the changes in yaw mofieettia with
changing longitudinal CG position can be quite significant and thus caneniginored in

the analysis.

Comment: It is important to note here also that the single track model assumes a weak cou

pling from the vertical (i.e., roll) dynamics onto the lateral (see [2] for adbgh analysis
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2.3 Vehicle modelling

of the interactions between lateral and vertical vehicle dynamics). Tdretehere are no
terms in (2.4) that reflect the effect of vertical dynamics, which is reasienvhen the ve-
hicle is operating in the linear regime at low levels of lateral acceleration [@jveder, the
reverse argument is not true for the roll dynamics even under the sngddisamssumption,
since the roll motion is heavily influenced by the lateral dynamics via lateralexetion,

as shall be clear in the next subsection.

2.3.2 Roll plane model

We use the 2-state roll plane model described here for the realtime estima@@haighth
as well as the parameters of the suspension syktefrased on the multiple model switch-
ing method. This is the simplest model that captures the roll dynamics of thedatr ia
free from the effects of uncertainties originating from unknown tire stgBiparameters,

which in turn makes it suitable for the estimation task.

Assuming all vehicle mass is sprung, effective linear torques exertedebguspension

system about the roll center are defined as follows
Tspring = k o, (2-6)
Tdamper = C (»bv (2.7)
wherek, c denote the linear spring stiffness and damping coefficients respectiveiyg
these one can then apply a torque balance in the roll plane of the vehiclens téithe

effective suspension torques (see Figure 2.2 for the notation of thplaok model), and

obtain the following relationship

Jeea®+ CO + ko = mh(aycosp+ gsing). (2.8)

Note that for simplicity, it is assumed that, relative to the ground, the sprung rolis
about a fixed horizontal roll axis which is along the centerline of the baodlyad ground

level. In the last equatiody,, denotes the equivalent roll moment of inertia derived using the
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Figure 2.2: Second order roll plane model.

parallel axis theorem of mechanics taking into account the CG height varadidescribed

below
Jeq 2 Joc+MIT. (2.9)

For smallg, we can approximate the nonlinear terms in equation (2.8)g8~ 1, sinp~ @

and represent this equation as in the following state space form

® 0 1 ) 0

= : + ay. (2.10)
- _k=mgh ¢ ; ‘mh
¢ deeq Jeeq ¢ Jeq

Note that at steady state one can calculate the CG height using a single momdehé

relationship

ke
h=—— 2.11
m(ge+ay) @1D)

given that the roll anglep, and the lateral accelerati@y measurements as well as an ac-

curate knowledge of the spring stiffndsare available. While the former can be measured
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using suitable sensors, the spring stiffnkss unknown, which needs to be calculated de-
pending on the specific maneuver and loading conditions; it is also affegteatious other
factorg. As will be explained in Section 2.4, using the multiple model switching method
we neither need the exact knowledge of the suspension parametesieady state type
excitation to get an accurate estimation of the CG height. As a final remark weasing
that although (2.10) is linear in the state variables, it is nonlinear with regpecknown

parameter variations & c andh.
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Figure 2.3: Linear bicycle model with roll degree of freedom.

2.3.3 Single track model with roll degree of freedom

While we utilize the previous two models for the estimation task of the unknown leehic
parameters, we employ the linear bicycle model with roll degree of freedseridbed here
to generate the reference vehicle behavior. We shall also utilize varifathis anodel with

different actuators for controller design in later chapters. The modilasated in Figure

2Aerodynamic forces, vertical tire loads, and variationghiaroll center as a result of changes in

the suspension geometry can affect the instantaneous ofue
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2.3 Vehicle modelling

2.3 is the simplest model with coupled lateral and roll dynamics, which assuatés ¢ 3

are small and that all the vehicle mass is sprung. We can write the equatioioh for

the single track model with the extended roll degree of freedom as follows

0 %q  p heq 9 _ hc h(mgh-k
myg Jux mZ Jyx JxxVix JxVix
P K
X — Jzz Jz2Vx 0 0
_ho hop _c mgh-k
Jux Vxedyx Jxx Jxx
0 0 1 0

X+

Gy Jeq
M\ Jxx

Clv
‘JZZ

3, (2.12)

nc,
\]XX

0

wherex = [B 1T cp]T is the state vector. Representative state responses of this model

to a step steering input are shown in Figure 2.4 below, where the steerimgtotggwas 30

with a steering ratio of 1 : 18, and the vehicle velocity during the simulationavas30m/s.

States

— B [fald]

—o— dy/dt [rad/s]
—2— dq/dt [rad/s]

—v— @[rad]

time [sec]

Figure 2.4: State responses of the single track model with roll degréeeefilom to a step steering

input (vx = 30m/s, 6 =

300
18 -

2.3.4 Load transfer ratio, LTR

In order to show the relationship between the roll dynamics and the vehiclec@fBt, we

here define the lateral load transfer ratid R) parameter based on a torque balance in the
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roll plane of the vehicle model. Although this parameter is not utilized directly wittén
current chapter for the analysis, it is instrumental in understanding tienaigs of rollover.
In later chapters we shall utilize this background to develop controllers to teitighover.

LT Rappeared previously in the literature, most notably in [88] and [48] inrdmassess

the rollover threat.

TheLT Rcan be defined simply as follows

Load on Right Tires-Load on Left Tires
Total Load on All Tires

LTR= (2.13)

It is evident that this parameter varies in the intefval, 1], and during straight driving for

a perfectly symmetric car it is 0. The extremum is reached in the case of a hffheft of

one side of the vehicle, in which case it becomes % br Therefore, a direct measurement
or an estimation of this parameter can be used as a rollover warning, orvétch for

a rollover controller. Indeed Kamnik et al. in [48] used wheel speedsurements and
Kalman filters to estimateT R as a rollover controller activation switch for use in heavy

trucks.

In Figure 2.3, the left and right wheel loads are shown WijtlandFg respectively. Noticing

thatFR_+ Fr = mg, we can express (2.13) as follows

_R-R 2R-mg

LTR= =
A+ mg

(2.14)

We can obtain a simple steady state approximatidrTd®in terms ofay, andh as described

in [88], which is given below

2ay h
LTR~ T (2.15)

From this approximation the dependencé.®fR, thus the rollover threat, to the vehicle pa-
rametersa, /g andh/T is clearly visible. Note thad, is measurable via acceleration sensors
wheread is an unknown vehicle parameter that can not be measured directly. Aseapp
from this analysis, CG height is a prominent factor affecting rollover teoglef a vehicle,

yet it is not measurable Therefore any rollover mitigation controller can greatly benefit

40



2.3 Vehicle modelling

from the estimation of this specific parameter by tuning of the control parasreteed on
the estimated CG height. This in turn can significantly improve the lateral anéraogn
performance of the vehicle in extreme driving situations without sacrificetgcle safety
and handling capability. In Chapter 3 we will utilize a dynamic version oLfhiRin robust
feedback control design for the rollover prevention problem, whichhved tater in Chap-
ter 4 integrate with the CG position estimation algorithm that we describe in the foowin

sections.

2.3.5 Sensors and vehicle parameters

In this subsection we describe the configuration of sensors assumedanttmeotive ve-
hicle for use in conjunction with the multiple-model switching parameter estimation algo
rithm. Also we summarize the list of the assumptions on the known and estimatetevehic

parameters that appear in the analysis that follows.

Sensors:

In the estimation algorithm we assume the availability of lateral acceleraioyaw rate

P, velocity vy and the steering angl® measurements, which are available as part of the
standard sensor packs found in modern cars that are commonly utiliziedeial and yaw
dynamics control implementations such as the ESP (Electronic Stability Progtaaj) [
[133]. Moreover, a measurement or an estimation of the vehicle roll angégjisred for
the implementation in this chapter, which can be obtained through spring dismate
sensors (displacement transducers) found in vehicles with activersisep systems such

as the ABC (Active Body Control).

Comment: The analysis given here does not necessarily require the use dfculzeartype
of sensor to obtain the roll angle information: gyroscopic roll rate sensmrany other

suitable set of sensors can be utilized for computing the roll angle.
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2.4 Vehicle parameter identification through multiple modds & switching

Parameters:

We assume that the vehicle masgs known, which can be estimated as part of the braking
system, yet this is outside scope of this thesis (see for example [131]daitanre method

for the estimation of vehicle mass). Furtherm@geC,l,,k,c andh are all assumed to be
unknown parameters of the vehicle and are estimated through the multiple model switching
algorithm. We further assume that these parameters vary within certain étasedhls

C e, Chebh lve A, ce ¥, ke andh € 7, and these intervals can be found via
accurate numerical simulations as well as field tests. The number of modelkssagcto
estimate these parameters relates to the size of the interval and the aceimaryddn the

estimation, as shall be explained in the following section.

Comment: It is possible to extend the estimation scheme described in the next section to
include the unknown and time-varying vehicle mass. However, as theedtaneative and
dependable methods for estimating the vehicle mass [131], as well as fash®kexpo-

sition of the method described here, we omitted this parameter in the followingsdisou

2.4 \ehicle parameter identification through multi-

ple models & switching

While the conventional approach to parameter estimation is to employ a well-dstablis
linear least square type identification technique, such methods are tsbisctp loss of
identifiability due to feedback [120], [11] as is the case for the estimatidoigmodescribed
here. Also, the linear models introduced in Section 2.3 are nonlinear in thewnkve-
hicle parameters further complicating the formulation of the estimation problerg tren
traditional approaches. Although linear regression techniques typiaatlyecge quickly,
they require measurement signals that are persistently exciting [12D]HdHour problem

this would impose some specific maneuver requirements on the driver inghuttsat all
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2.4 Vehicle parameter identification through multiple modds & switching

the modes of excitation are covered and a dependable estimation of thewmjgamme-
ters could be made. Such a demand on the driver input would not onlyrealistic but
also unreliable. Thus there is a need for a different approach forateameter identifica-
tion task, which imposes no restrictions on the driver inputs, has faseagence rates,
and requires minimum additional output information (sensors). Here wedinteoa mul-
tiple model switching algorithm [122] to identify unknown vehicle parametepgdiy in
real-time. The method achieves this, in part, as a result of the fact that thel spate
representing the parameter uncertainty is bounded, and includes ongeasiblé parame-
ters of the vehicle. This restricts infeasible estimations in cases when Ségisals are not
persistently excited, and where the standard estimation methods such asitsaedinear
least squares are destined to fail. Although we have no theoretical {vatahe multiple
model estimation algorithm is more immune to persistence of excitation issues,rar-nu
ical analysis shows that this is the case, at least as compared to the dtaudasive least

squares algorithm for this problem.

A natural approach here would be to setup the multiple estimation models usir2g, (2.1
which in this setup would imply that there is no modelling error. However in thig,cas
the resulting parameter space would be too complex to handle. Instead wertadcular
approach of decoupling the vehicle dynamics into subsystems by assuméeakaelation-
ship from the roll dynamics onto the lateral. In the following two subsectiongresent our
methodology and give numerical simulation results corresponding to theipledadenti-

fication algorithms, which are then compared to recursive least squased bstimations.

Remark 2.4.1 As an alternative approach, the Extended Kalman Filter (EKF) can be uti-
lized to tackle the nonlinear parameter estimation problem described in this cheyie

do not cover the EKF approach in the current thesis as the assumptitives method are
too restrictive, and there are known robustness issues of the algonithrio dinearization

of the models, which can cause diverging estimations. While the EKF worksuneer

certain conditions (e.g. process corrupted by white noise only, small eaniip, etc.), we
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2.4 Vehicle parameter identification through multiple modds & switching

found the EKF to be difficult to tune and computationally complex to operatetarfthat
prevents its use for automotive control applications. Regardless, atiester’s thesis
[7] looks into EKF based estimation of CG height for automotive vehicles. dritthsis an
EKF implementation utilizing the measurements of lateral acceleragignyaw rate (),
steering angled), and roll rate §) based on the single track model with roll degree of free-
dom was suggested. Example CG height estimation results from this thesispmrding

to a step steer input is given in Figure 2.5. As can be observed from tbasiés, the CG

— Model
—— Kalman Filter

Height of Centre of Gravity (m)

Height of Centre of Grawit

() (b)

Figure 2.5: CG height estimation results with Extended Kalman Filt¢m{ithout sensor noise, (b)
with gaussian white noise added on to the sensor signalCidijriesy of Technische Universitét

Kaiserslautern).

height estimations based on this EKF implementation have large transients srslover
convergence rates. In the case of simulated sensor noise, whestagawhite noise is
added on to the sensor signals, the estimation results have undesirabl¢oogdiidavior.
These poor estimation results can be attributed, at large, to the modelling iatroduced
by the single track model with roll degree of freedom. It is known that Kalfiieers are
sensitive to modelling errors [18]; the single track model utilized in [7] haadfimmodel

parameters and thus it is only valid for a particular speed and steering igute the
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2.4 Vehicle parameter identification through multiple modds & switching

measurement data used in the simulations pertain to real vehicles with a raredeaities

and steering inputs, the model is not valid in all these operating conditionsh wésults in
poor parameter estimations. While we utilize similar models in our multiple model vehicle
parameter estimation technique, as shall be clear in the following sectiondlowefar

a finite range of vehicle parameters to be used at any given instant sa $skeabf single
track (and roll plane) models track the real vehicle states accuratelyaovéte range of

operating conditions.

2.4.1 Online identification of longitudinal CG location and tire

stiffness parameters

The multiple model switching identification algorithm to estimate longitudinal CG location
Iy and tire stiffness parametets, C,, makes use of the lateral dynamics model givenin (2.4).
The method assumes that each unknown parameter belongs to a closal mitehvthat

Cy € 6, Ch € %, andly € %4,. These intervals are divided into certain number of grid points
and they can be represented{&,,C,,,Cy,,...,Cy,} C Gv, {Cr;,Ch,y,Chsy---,Chy} C G,

and{ly,, v, lvs, ..., Iy} C A with dimensions, g andr respectively.

Comment: There is a trade-off between the choice of the number of grid points in the
parameter space and the numerical complexity, which is a design consideategiending
on the accuracy demand from the estimation and the available computatianaice=sfor

the specific problem under consideration.

With these in mind we forrm = p x q x r different models corresponding to the cross
combinations of the grid points in the parameter space. Utilizing (2.4), the egsaifo

motion corresponding to each model can be represented as

2 g p . Ci
. : | . il
Lpi J%z - Jzivx wl J2z
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2.4 Vehicle parameter identification through multiple modds & switching

wherei = 1,2, ..., ndenotes the model number. We assume that all models have zero initial
conditions such thg(0) = 0, andy;(0) =0, fori = 1,2,...,n. Furthermore, each model
is driven by the same inputsandvy as depicted in Figure 2.6, measurements of which are

assumed to be provided by a suitable set of sensors.

3,1
— » - () o
Model-1 & >e
— Model-2 =) e
——{ Model-3 — D>,

Figure 2.6: Multiple model system identification algorithm with singtack models.

In order to select the model with the correct parametrization we look at tferatite be-
tween the model and the plant outputs. The identification efroorresponding to thg"

model is defined as

€ = Yplant — (Ymodel)i (2.17)

wherey denotes the model or the plant output. In this implementation of the algorithm the
output to be utilized iy = [ay, ], and it is further assumed that the measurement of these
variables are available for the vehicle. Thus we can represent the idatntifi error for the

it model as follows

et) = ’ , i=212,....n (2.18)
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2.4 Vehicle parameter identification through multiple modds & switching

Note here thaty(t) and((t) are the respective plant lateral acceleration and yaw rate output
measurements obtained from the sensors, whife) is obtained from the second state of
theit" single track model given in (2.16), and correspondipgt) is calculated using the
following function of the states at every instant

Q)i

m

ayi = Vx(llli+Bi) :—%Bi-i—mﬂ\'&dli—l- 0. (2.19)
By utilizing the identification errors it is possible to switch and choose a modehtms
the minimum distance to the plant outputs. Although control design is outside dipe sc
of the current chapter, using a model that has the closest outputs toahtise plant is
likely to yield the best feedback control performance. In other wordsallsdentification
error leads to a small tracking error [14], which, in the sense of adaptmtrol, is based
on the principle of certainty equivalence from tuning to switching [79]. Viéaensider

the control design implementation of the multiple model switched parameter estimation

algorithm later in Chapter 4.

Based on empirical observations, the choice of the switching index shoelltterboth
instantaneous and steady-state measures in order to reliably determinentifecédion
models representing the plant at all instants. While there exist many sucksndie uti-
lize the cost functiord; corresponding to thé" identification error as given below, which
is inspired by the quadratic cost optimization techniques and was originaljjestegl by

Narendra et al. in [84, 78, 14] as a switching scheme

J(t)=allat)] +B/Ot e =g (1)||dT. (2.20)

Comment: We emphasize that it is possible to choose alternative cost functions assike b
for model selection. The particular choice of (2.20) as the switching criténithis thesis

is motivated by the fact that this cost function is well established in the MMSRtites.

In the expression for cost function (2.2@),> 0 and > 0 are the free design parame-
ters controlling the relative weights given to transient and steady state rasasspec-

tively, whereasA > 0 is the forgetting factor, which controls the rate of discarding the
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2.4 Vehicle parameter identification through multiple modds & switching

past measurements in favor of the new information. As will be demonstratee iseth
quel, switching based on (2.20) with nonzero combinationst @8 gives better results
then using just the transient measures, elgt) = g(t)?, or the steady-state measures,
e.g.Ji(t) = [y ||e(1)||dT alone. This is illustrated in Figure 2.7, where a comparison of the
switching rule based on transiewt &€ 1, 3 = 0), steady-stateo(= 0,8 = 1) and combined

(a =0.2,3 =0.8) output error dynamics is presented for the estimation of the longitudinal
position of CG, where the true value of the reference vehiclezas.1lt is obvious from the
figure that the switching based on just the transient measures causedesirable chat-
tering, while switching based only on the steady state measures has slep@nse in the

estimations. For the details of the simulation see the following subsection on nameric

analysis.
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Figure 2.7: Comparison of switching based on transient, steady-statecambined output error

dynamics.

Note that it is possible to use other type of cost functions depending orpéugis esti-

mation requirements from the problem at hand. Here we selected the modéhevidast

48



2.4 Vehicle parameter identification through multiple modds & switching

cumulative identification error according to (2.20) using
i*=arg rPin Ji(t). (2.21)
i=1,...,n

Within the parameter space described by a finite number of grid poir4$, i}, and %,
selected model and the corresponding model parame@JrsCi andl; have the minimum

cumulative distanckto the parameters of the plant.

Comment: As a rule of thumb based on our numerical experimentation, choosthg 0

B <1and0O< a <0.1 for this problem gave the best estimation results in conjunction with
the multiple model switched estimation algorithm. Also, the forgetting fattbecomes
important if the plant undergoes rapid switches; as this is not the case @@&eaosition

variation is considered, we s&t= 0 in the following discussion.

Numerical analysis:

In the following figures we present the estimation results for the algorithmdoais simu-
lated sensor signals generated by the vehicle model (2.12). The modeigiars used are

given in Table 2.2.

The maneuver was conducted at k08h, and as seen in Figure 2.8 the maneuver tested
was an obstacle avoidance maneuver commonly known as the elk-test, witk anpg-
nitude of 30 at the steering wheel (the steering ratio is 1/18 between the tires and the
steering wheel). The model space consisted of 140 models in total. Theroiyifdis-
tributed parameter spaces were selecte@#as [500008000Q with intervals of 10000,

%h = (60000100000 with intervals of 10000 corresponding to the range of tire stiffness
parameters, and4, = [1,1.6] with intervals of 01 corresponding to the space of possible

longitudinal CG positions. For this numerical example the free design pananietehe

3Cumulative distance here refers to the time variation of asaee of the parameter estimation

error that is defined later in equation (2.22).

49
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Table 2.2: Reference model parameters

parameter value unit

m 1300 [kg

g 9.81 [m/¢

Vy 30 [m/g
Speak  30-45 [deg

Jux 400  [kg- P

L, 12 [m
Ih 13 [m]
L 25  [m
h 07  [m

c 5000 [kg-n?/9
Kk 36000 [kg-m?/s?]
C, 60000 [N/rad]

Ch 90000 [N/rad]

cost function were set as = 0.05 andf = 1, while the forgetting factod was chosen to

be 0.

In Figure 2.9 the corresponding simulated sensor data and selected rgmgsare com-
pared. The discontinuous jumps in the model outputs are the result of thédiswitme-
tween the models. In Figure 2.10 the longitudinal CG position estimation is prdsente
where switching is more obvious. It is observed that based on the simulateirement

data, the multiple model switching algorithm successfully estimated the longitudial C
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Figure 2.8: Steering input.

location to be 12m, precisely matching the reference model. Similarly in Figure 2.11 the
estimations for the front and rear tire stiffnesses with exact model matghiesented. The
algorithm successfully estimated the front tire stiffn€ssas 60000 and rear tire stiffness
Ci, as 90000, which are the exact parameters of the reference model. Hirfaidure 2.12
reference model sideslip angleis compared with respect to that of the selected model
which shows good agreement. For all practical means, the estimation neséhfed here

is within sufficient tolerances for use in automotive control applicationgjcodarly for

adaptive lateral dynamics control problem.

Remark 2.4.2 Based on the numerical analysis above and as a motivation for further ana
ysis, we wish to point a theoretical issue related to switching between the idaindifi
models based on the cost function (2.20). It is difficult to guarantedm@e correspon-
dence between the distance (or error) in the output space and the distdahe parameter
space at every instant based on the cost function (2.20) of identificatiors. This can be
demonstrated by defining a normalized parameter error correspondingittittentifica-

tion model as follows

& = \/<1 (I'Vfi‘)2+ (1 g?j): <1 (CC:Z')Z i=12..n, (2.22)

wherely,Cyp, andC;, p, denote the real parameters of the vehicle that we are trying to

estimate. Note that for a given identification model, the normalized parametedefined
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Figure 2.9: Sensor and the selected model output comparison for thetlolimal CG position

estimation.
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Figure 2.10: Longitudinal CG position estimation with exact match.
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Comparison of the sideslip anglggfor the vehicle and the selected models during the
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above is constant. At a given time instanthe relationship betweeg andJi(t) can be
shown by comparing their variations across the model space (i.e., modedsmmnding
to all combinations of the parameters). This is given in Figure 2.13 at an irstartly
after the initiation of the maneuvét = 5.25seq for the 140 models used in the numeri-
cal simulation, and the result clearly demonstrates the problem with the lacleetbeone
correspondence between the output and the parameter spaces atdhisivtsere transient
dynamics are dominant. In Figure 2.14 however, the time history of the normg@éame-
ter error corresponding to the selected model at each instant duringtimaon is shown,
where it is observed that the parameter error goes to zero. This caimibetad to the fact
that as the steady-state dynamics start to dominate, the cost fung(ionsorresponding
to models with large parameter errors grow much faster than those with smetheizr
errors, yielding the desired estimation result. To the best of our know|edgermination
of a cost function of the output errors that has a one-to-one camelgmce in the parameter

space at every instant, is still an open question in this framework.

Remark 2.4.3 It is relevant here to note also that when the model space does not contain
the exact parameters of the plant, that is when there is no exact model méitelparameter
space, a small offset is expected due to the unique shape of the selesttédhction (2.20)
in the parameter space, which for this simulation is shown in Figure 2.13 (nmethet
the cost function is plotted against increasing model indices) shortly aétenitiation of
the maneuver. It is obvious from the figure that cost function is non-sytriorabout its
minimum point at any given instant and in any given parameter space; thisemitoven
in detail later in Section 2.7.1 for a simpler problem. When the parameter spdhbe of
candidate models is too coarse (i.e., when there is insufficient number gfaints) about
the minimum of the cost function, the estimation error can be significant. Inoludio
sufficient number of grid points and/or redistribution (adaptation) of mspate however,

can alleviate this problem to yield the closest parameter match.
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Figure 2.13: Variation of the cost functiong across the model space at an instant 5.25seg

shortly after the initiation of the maneuver and comparethéonormalized parameter errgrfor

the numerical example.
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Figure 2.14: Time history of the normalized parameter eredr) of the selected model during the

simulation.

55



2.4 Vehicle parameter identification through multiple modds & switching

2.4.2 Online identification of CG height and suspension system

parameters

In this subsection we present the multiple model switching algorithm to estimate iG& he
h along with the linear suspension parameters based on the roll-plane model (2.10).
Similarly, we assume that each unknown parameter belongs to a closedlistesivahat
he s, ke ¢, andc € ¥. These intervals are divided into a finite number of grid
points and they can be representedlashy, hs, ..., hp} C 2, {ky, ko, ks, ... kq} C %, and
{c1,Cp,C3,...,C } C € with dimensiong,q andr respectively. We then form= pxqgxr
different models corresponding to the cross combinations of the grid poitie param-
eter space. Utilizing (2.10) the equations of motion corresponding to eachl roaa be

represented as

@ 0 1 @ 0

= : + ay, (2.23)
- ki—mgh ] )
é e Tl | O] [a

wherei = 1,2,...,ndenotes the model number. We assume that all models have zero initial
conditions such thap(0) =0, and{q(O) =0, fori =1,2,...,n. Similar to what is shown

in Figure 2.15, every model is driven by the same irgyitvhich is measured.

According to (2.17) we again calculate identification ergrdiowever this time the plant

and model outputs to compare are the roll angles, as follows

aet)=0t)—q(t), i=212,...,n (2.24)

Note that one can also include the roll rgteneasurement, if available, in the output vector.
However, for the specific maneuver chosen for the numerical tests, ftherioe ofrb on

the estimation results for the CG height was relatively insignificant as cochpatbe roll
anglep measurements. Thus, the roll rate estimation error was omitted in the identification
error definition (2.24). This is also in accordance with our assumption cfdalitional

sensors to the available ones.
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Figure 2.15: Multiple model system identification algorithm with rollgsie models.

Now one can compute cost functions (2.20) corresponding to each idatitifi error.
Switching among the models based on (2.21) yields the one with the minimum cumula-
tive identification error and the select&tl c- andh* represent the plant in the parameter

space described by a finite number of grid points in the inter#als&s and.7Z respectively.

Numerical analysis:

Here we present the CG height estimation results for the simulated measudatede-
scribed in the previous subsection. The model space consisted of 240snotbtal. The
uniformly distributed parameter space were selectedas [3000040000Q with intervals

of 2000,% = [400Q 6000 with intervals of 500 corresponding to the parameter space for
suspension parameters, agd = [0.5,0.85 with intervals of 005 corresponding to the
range of possible CG heights. For this numerical example the free desigmei@rs for

the cost function were set as= 0.01 andf3 = 1, while the forgetting factok was chosen

to be 0.

In Figure 2.16 sensor and the switched model outputs are comparedawlirefégure 2.17
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the CG height estimation results are shown. Based on the results, we agamedthat
the multiple model switching algorithm successfully estimated the CG height to be, 0.7
precisely matching the reference vehicle data. Finally in Figure 2.18 thespmmnding
estimations of the suspension parameters are presented. The linearal@giorg stiffness
k was estimated as 36000 exactly matching that of the reference vehicle mbileltve

roll damping coefficient was estimated to be 6000 with a 20% estimation error.

Comment: The 20% estimation error in the damping coefficient can be attributed to the
specific expression chosen for the model identification emdt$ given in (2.24), which

is based on the roll angle measurements alone. As apparent from thessrprfor roll
dynamics as described by (2.8), the damping coefficterglates to the roll rate of the
vehicle. Since we do not consider the roll rate estimation error in (2.24)rdhigdts in

some expected estimation offsetdn
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Figure 2.16: Sensor and the selected model output comparison for the @Bthestimation.

58



2.4 Vehicle parameter identification through multiple modds & switching

o
©
1

o
o]

e
~

o
)

o
o

Estimated CG height, h [m]

I I ]

10 15 20
t [sec]

°
~
o
o -

Figure 2.17: CG height estimation with exact match.

Despite the estimation offset in the roll damping coefficient, the suggestedtlaigavas
successful in providing a fast and accurate estimation of the CG heigiuth vghthe main
concern in this discussion. Therefore, for all practical means, the ohetbscribed here
is suitable for use in active automotive handling control systems, particutariyilover

mitigation control applications.

Remark 2.4.4 For the CG height estimation algorithm, the road bank angle (road superel-
evation) was not considered. When a measurement or an estimation of tduisgber is
provided, (where there is vast number of literature on this topic), the sisglyesented in

this section can be extended and applied without much modification.

Remark 2.4.5 In the numerical simulations presented in Sections 2.4.1 and 2.4.2, the
parameter set®, %h,.-Z, % , €, .7 representing the uncertainty in the system were con-
structed such that the grid points include the unknown vehicle paramettrs mdference
model. When the parameter sets do not contain the exact model parametyitegiothe
method can only guarantee that the selected model outputs match the sermaemeats,

yet the selected model may not necessarily have the closest distance anaheeper space

to the plant. It is however possible to include a vast amount of grid pointsstivesthis
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Figure 2.18: Estimation of the suspension parameterandc.

issue, which may be computationally difficult to implement in automotive applications.
Alternatively, parameter adaptation rules or redistribution of the paranpee£an be im-
plemented to provide the exact model match with a limited number of models. Wéb@escr
such an adaptive variation of the multiple model estimation method in Section 2.7.2 and

implement it to the parameter estimation problem described in the current section.

2.4.3 Estimation of CG position using recursive least squares

In order to compare the quality of estimations described in the precedingdidrs thus
far, we now introduce a conventional method for estimating the CG positi@ulmasrecur-

sive linear least squares method. Although there exist other, perhapsuitable methods,
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2.4 Vehicle parameter identification through multiple modds & switching

we chose this one as it is a convenient benchmark for our applicatiotit, iarehsier to im-
plement than the alternatives. We first define the estimation method for ageoalar

system given by
y(t) = ET(1)0 +e(t), (2.25)

wherey(t) is the measurement corrupted by noisé,) is the measurement errof, =
[61,6,,...,6n]" is the unknown parameter vector, aéid= [&1,&o,...,én]" is the known
regression vector. Using this system and denoﬁ(tg as the estimation of the unknown

parameter vecto# at timet, we can give the recursive least squares method as follows

K(t) =Pt—1)EM)[1+EM)TPt—1)EM)] !
Pt) =l —k(t)E)TIP(t — 1) (2.26)

0(t) = B(t—1) +k(B)lyt) —&(1)TO(t-1)],

whereP(t) is error the covariance matrix, andt) is the gain vector. Initial value for

the covariance matrix is selected B®) = al, wherel is the identity matrix andr is a

large scalar constant. Notice that the estimafigt) is calculated based on the previous
estimation8(t — 1) and the current measurements only. For a detailed derivation of these

equations see [11].

We give the implementation of CG height estimation based on this method and ma&ing us
of (2.8). In this implementation we assumed availability of the measuremengsdap as
well asay, where the simulated sensor signals are generated by the single trackwitbdel

roll degree of freedom given in (2.12). We first denote the measurevaetor as follows

meas

ay = aycosp+ gsing. (2.27)

As our reference model (2.12) is linear in the states as a result of the sigekassump-
tion, for consistency, we can also express the measurement \&t¥using the same

assumption as follows

"= ay + . (2.28)
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2.4 Vehicle parameter identification through multiple modds & switching

Making use of (2.28) therefore, one can express the equation fatyiwdimics (2.8) as

Y1) = &= (3, it kol (2.29)

Notice here that there is a nonlinear coupling between the measuremeble/gfia and
the state variableg and ¢, which is likely to induce errors in estimations as the linearity
assumption of the least squares method does not hold. For this type déd@gtimation
problems more complicated instrumental-variable type methods can be empl@@d [1
For demonstration purposes however, we proceed with the recurastesiguares method
to present the shortcomings of this method as compared to ours. Keepiagrtineisd, we

further denote the regression and the unknown parameter vectoestiesly as follows

T

E = [(pqoq)], (2.30)
T

0 = [91 6 93} , (2.31)

where6; = Jmi;j 6, = %] and 63 = %] One can now use the recursive formulas (2.26)
to computeé that minimizes the square of the cumulative measurement error. Based on
the estimated paramete@s the CG height can then be calculated from the roots of the

polynomial below
mh — mBh+ Jy = 0. (2.32)

As there are two roots of this polynomial, it is uncertain which one is closer toeile
unknown parameter. In order to be conservative we always seleaddrger root in the
computations; this choice is motivated by the fact that an underestimation oég@t lsan
cause an underestimation of the rollover threat. As the vehicle’s safety &impbortant
than its performance, a conservative estimation of the CG height can amg ¢ass of
vehicle’s performance in the context of rollover mitigation systems. We shall/ghese

concepts in detail later in Chapters 3 and 4.

The CG height estimation results using the recursive least squares atgaxitd employ-

ing the reference vehicle data introduced in the preceding section, is igieigure 2.19
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2.4 Vehicle parameter identification through multiple modds & switching

as compared to the multiple model based estimation. As it is apparent from tine, figu
even though least squares method utilized a vast amount of sensoryéatifam (some of
which are unmeasurable using the standard vehicle sensor equipmerdyrbsponding
estimation has an undesirable bias and its convergence rate is slower timanltirmodel
based estimation. This clearly demonstrates the efficacy of our estimationqieetover
the traditional least squares approach for this specific problem. Finalypote that there
are more sophisticated, and perhaps more suitable, recursive estimationsmibh as the
instrumental-variable predictors or the least squares algorithm with multigltingsas de-
scribed in [131], both of which can be considered for the CG estimatidrigmmodescribed

in the current Chapter. Investigation and comparison of these methdtibeslcansidered

as a future direction.

Comment: One of the advantages of the multiple model based estimation over the recursiv
least squares method is due to the fact that the former limits the possible sdutairss

of the estimation problem by using a finite number of models and performs abgsigy/-
pothesis testing. This inherently eliminates infeasible solutions. Also, wheg regiarsive
least squares method, it is possible to get numerical problems due to dyrhatiase not
stimulated persistently, which result in degraded estimations with large tramsieifia-
tions. For examples of this see [118] Appendix A, where an analysisbofstoess of the
standard least squares algorithm with respect to persistency of excigtieported also.

In the context of automotive parameter estimation, Section 7.2 of [50] corgaiagample

representing the effects of non-persistent excitations.

Comment: The number of grid points required in the model space of the multiple model
estimator is a function of the type of excitation to the system; in this case the vehicle ma
neuver. In general, if the sensor signals are persistently exciting anexgeect better

performance in terms of speed and accuracy and may not need a langemof models.
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2.5 Preliminary evaluation of the realtime CG position estination algorithm
with off-line sensor measurements
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Figure 2.19: CG height estimation based on recursive least squares thatheompared to the

multiple model switching approach.

2.5 Preliminary evaluation of the realtime CG posi-
tion estimation algorithm with off-line sensor mea-

surements

In this section we present the results of preliminary tests conducted witbrsmesisure-
ment data obtained from an industrial partner without disclosing the typenaikéd of the
test vehicle. The mass and inertia properties of the vehicle were spedfied-806Xg,
J,, = 489Kg/m?, andJ,x = 1174&g/mP. The velocity and steering angle corresponding to
the measurement are shown in Figure 2.20. It is important to note here tietdizack

control systems were active during the measurements.

For the estimation of the longitudinal CG position, the parameter space corid§tedod-
els with the grid points selected §%.3,1.4,1.4251.451.4751.5,1.5251.55 1.6} C .4,
{8000010000012000014000¢ C %y, and{12000014000016000018000020000G¢ C

%h. For this numerical example the free design parameters for the cost fumatie set as
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2.5 Preliminary evaluation of the realtime CG position estination algorithm
with off-line sensor measurements

a = 0.01 andB = 0.99, while the forgetting factok was chosen to be 0 (we emphasize that
the choice ofA = 0 is motivated due to the fact that the estimated parameters do not change
during the course of the estimation). Comparison of the measured lateetd@tion and

yaw rate of the vehicle to that of the multiple model algorithm is shown in Figure Xate

here that there is a noticeable bias in the yaw rate measurement. Coriiegpamchown

parameter estimates kf C, andCy, are shown in Figure 2.22.
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Figure 2.20: Velocity and steering angle inputs.

The results of the estimation of CG height using multiple roll plane models using the me
surement data are shown in Figure 2.23 and Figure 2.24. In this estimationotiet space
consisted of 275 models in total with parameter grid points s€1868000195000200000
20500021000@¢ c .7, {300Q400Q0500Q 600Q 7000} € ¥, and{0.55,0.6,0.65,0.675,
0.7,0.725/0.75, 0.7750.8,0.825,0.85} C »#. For this numerical example the free design
parameters for the cost function were setras 0.01 andB = 0.99, while the forgetting fac-
tor A was chosen to be 0. In this measurement data, the roll angle was obtaimesjiing
displacement sensors, which measure the vertical travel of the simmen®espite the
significant offset in roll angle measurement as noticeable from FiguBe the estimation

results were successful.
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2.6 Application example: load condition estimator
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Figure 2.21: Comparison of the estimated and measured lateral acdeteeatd yaw rate.

Comment: Itis important to note here that the specific problem at hand is about the estima
tion of unknown vehicle parameters in real-time rather than the control cffgpeehicle
states. Therefore, the abrupt switching between models and the adésp “chattering”

behavior in the estimations during the transient phase of the maneuverg|idaie.

2.6 Application example: load condition estimator

In this section we introduce a problem related to rollover prevention for impiéngeour
estimation technique. The problem originates from a particular robust esltmntroller
design in an SUV class vehicle such that when the vehicle is empty excludingetght

of driver, there is no risk of un-tripped rollover. In this case, a pdesitiervention of the
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Figure 2.22: Estimations of longitudinal CG position and the linear stiénesses.
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Figure 2.23: Roll angle measurement compared to the correspondingpieuttiodel output.
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Figure 2.24: Estimations of CG height and the suspension parameters.

controller results in a loss of performance and must be avoided. In whhaw§, we give a
version of the multiple model & switching algorithm to estimate whether the load conditio
of the vehicle is above the threshold weight. The threshold weight herdiiedey the

total weight of the empty vehicle and the driver. For this problem we empltyedoll

plane model (2.10) and further assumed the availability of the set of thengit &), and

the lateral acceleratioraf) sensors. We also assumed that we know the parameters of the

vehicle corresponding to the threshold loading condition.

For the multiple model switching algorithm we set the known nmas€G heighth, damp-
ing coefficientc, and roll moment of inertiay corresponding to the threshold loading
condition to be the same in every model, where the models are parameterizedfetitnt

spring stiffnesses. We assumed that spring stiffness belongs to a oltmeal such that
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2.6 Application example: load condition estimator

ke 2, where the interval is divided intogrid points such thafks, ko, ks, ..., kn} C 2. In
other words we hava different models corresponding to the differéntalues. The equa-
tions of motion for the models with zero initial conditions can be expressed wig3).2
While each model is driven by the same inpytthe corresponding identification errags
are calculated according to (2.24). Given this setup, one can computeiectons (2.20)
corresponding to each identification error and switching among the modsdd ba (2.21)
yields the one with the minimum cumulative identification error. The seldcteepresents
the plant in the parameter space described by a finite number of grid poisdts and if it
is different than that of the vehicle with threshold load condition then we oaolade that

there is more load on the vehicle than the threshold value.

Numerical analysis:

In our simulations we chose the parameters given in Table 2.2 to represethiréishold
loading of the vehicle. We also used the same obstacle avoidance manetogudad in
the preceding section, at the speed ofkiigh and with a steering profile as shown in Figure
2.8. We tested 9 different loading scenarios as described in Table 2e8e wie first case
corresponds to the threshold loading condition. The model space congfist# models in
total, where the uniformly distributed parameter space was chosgh 53000040000
with intervals of 1000. Based on the described algorithm, only the firstwaseecognized
as the threshold loading condition, and the recognition took less then 1.5dseicmo the

maneuver in all the cases.

Based on the results, we conclude that this version of the multiple model & swgtalyo-
rithm can be used to rapidly recognize a specific loading condition of aleeliased on

the dynamics of the car alone, and utilizing only a small number of models.
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2.7 Analysis of the switching criteria & adaptation

Table 2.3: Loading scenarios

Case| Weight [kg] | CG height [m]| Threshold Loading?
1 1300 0.70 yes
2 1350 0.70 no
3 1400 0.70 no
4 1450 0.70 no
5 1500 0.70 no
6 1300 0.75 no
7 1300 0.80 no
8 1300 0.85 no
9 1300 0.90 no

2.7 Analysis of the switching criteria & adaptation

In this section we give a brief analysis of the cost function (2.20) of the nhelltippdel
switching algorithm described in the preceding section by utilizing a simple estimation
problem. The addition of a multiple estimator structure, in compliance with the MMST
framework, into a feedback control loop introduces the problem of simgcktability. It

is therefore important that the criteria used for switching between the idatibiicmodels

do not introduce unwanted instabilities to the controlled system. As we deddénilibe
previous section, the switching is performed based on the minimization of durmsion

of the identification errors. The output (i.e., identification) error is defassit) = ypjant —
(Ymodel)i» Whereypjan: denotes the plant output whilgmodel)i is the corresponding output

of theit" identification model. In [78], motivated by quadratic optimal control techrsque

Narendra and Balakrishnan rather intuitively suggested the followingfgostion as the
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2.7 Analysis of the switching criteria & adaptation

switching criterion between the models;

J(t) = aqz(t)+[3/ote|2(r)dr, i=12...n (2.33)

wherea > 0 andf > 0 are scalar design parameters controlling the weights on the transient
and steady state error dynamics, respectively. Note here that thisinosoh is in essence
the same as (2.20) without the forgetting factor; as we are interested intimatésn of
slowly varying and/or constant parameters we assumed the forgetting fadie 0O, thus
resulting in the cost function (2.33). In MMST framework this cost funcismnomputed
for each model and the one minimizing it is selected at every instant. In wiav$owe
present an analysis of this cost function candidate using a simple discretpléime We
show analytically and numerically that this selection of the cost function mayt pwia
wrong model when the exact plant parameter is not in the set of candidakelsnd his
problem is related to the lack of one-to-one correspondence betwegardmmeter space
of the models and the output identification errors, which implies that the modelthgth
smallest parameter error may not necessarily have the smallest cost. Thislisdoa to
the fact that the cost function (2.33) in any given parameter space-isymometric about its
minimum point, and in some cases it is even non-convex. As a remedy to thismoroke
suggest a simple adaptation algorithm, which modifies the distribution of modeissg®
equation (2.33) to minimize the cost. The suggested adaptation method helpsei@ach

better estimation accuracy while still using a small number of identification models.

2.7.1 An analysis of the MMST cost function

Here we introduce a simple estimation problem in conjunction with the multiple model
estimation algorithm and obtain an analytic expression for the cost functi@m gvith
(2.33). In order to simplify the analysis, we chose the following simple fidéodiscrete

time system for the estimation problem
X(k+ 1) = bx(k), (2.34)
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2.7 Analysis of the switching criteria & adaptation

wherek is the discrete time instant, afrepresents an unknown positive scalar constant
in the unit circle such that the plant is stable. We want to finging the multiple model
estimation approach and utilizing a finite number of models. Also we are interiestesl
behavior of the estimation algorithm when the parameter set of the identificatidalsno
does not contain the exact plant parameter. Ideally, we expect thetlafgdao choose the
closest parameter from the set to that of the plant. We assume that we firgite mumber

of identification models of the form below
%i(k+1) =aR(k), a € {as,...,an}. (2.35)

Note here that we assumed no modelling error for the sake of simplicity. Alsloout
loss of generality, we further assume that@®; < ap < ... < ay. We can express the

identification error corresponding to each model as follows
a(k) =x(k)—xi(k), for ie{l,...,N}. (2.36)

Also, since we assumed a discrete time system, we can express the discretealivgeoh

the cost function (2.33), which is given below

J(k) = ae?(k)+ B % e ()At, for iec{l,...,N}, (2.37)
=0

where At is the discrete time step (which can be fixed or variable) @ngl > 0 are non-
negative scalars. Now we have the following theorem that gives the msutt & this

subsection.

Theorem 2.7.1 Suppose that the discrete time system (2.34) and N identification models
described in (2.35) are given such that they all have identical initial conutig. Also
assume that b% g for all i € {1,...,N}, and that0 < a1 < a» < ... < an. Further, we

denote as the index for which (2.37) is minimum at the time instantk, i.e.,
§ =arg, rlninNJi(k). (2.38)
i=1,...,
Then the cost function (2.37) has the following properties:
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2.7 Analysis of the switching criteria & adaptation

(a) For each k, (2.37) is a monotonically decreasing functiofaina; |, and a monotonically

increasing function inag, ay].

(b) For each k, (2.37) is non-symmetric about its minimum pqitk)J and thus there is no

one-to-one correspondence between the parameter error and thigfickgtion error.

(c) For some fixed k, (2.37) is non-convex on the intefaalay |.
Proof of Theorem 2.7.1For identical initial conditiong for the plant andN identification
models, we can express the corresponding plant and model trajecof@bas
x(k)=bf%, and  Ki(k)=a% forie{1,...,N}. (2.39)
Utilizing these relations the cost function (2.37) can be expressed as below
k
J(ka) = a (b —af)¢+ B XC af ) A, (2.40)
=
for eachi € {1,...,N}. Arranging and factoring the like-terms in the equation yields
o
I(ka) =xgAtB(b—a)>+ B7 &)+ ...+ Bt —al 24 (B4 )b a7
We can further arrange this expression by noting that
(b-a)? = (b—a)?

(0*—af)* = (b—a)*(b+a)

(b*—a’)* = (b—a)*(b*+ba +b%)?,

(b —a9% = (b—a)’(b '+ & +...+bd > 4a ">
and substituting these relations back in the last expression results in theifigitfwaction

Jka) = x5At(b—a)?[B+B(b+a)’+B(b*+ba+a’)*+...
+ BO 24 3a 4. +bad 3+ a2)? (2.41)

+ B+ A%)(b"‘1 +b 2 4. +bad 2+ a1,
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2.7 Analysis of the switching criteria & adaptation

wherei € {1,...,N}. Based on equation (2.41) we can draw some conclusions about this
cost function. But before we do so, we give the following definition of ptonic functions

that is useful in proving the propertg).

Definition 2.7.1 [101] Let f(-) be a real valued function on the intervigy,y |. Then f(-)
is said to be monotonically increasing o,y | if y <y1 <y» <y implies fly1) < f(y2). If

instead it implies fy1) > f(y2), then f(-) is said to be a monotonically decreasing function.

Now for a givenk discrete time instant, there existe {1,...,N} satisfying (2.38) such
thatJ(k,as) < J(k,&) for all i # &, that isJ(k,as) = min{J(k,a1),...,J(k,an)}. Recall
the assumption that; < ... < ay are an ordered set of scalars all of which have the same
(positive) sign as the plant parameberThen based on equation (2.41) and the definition
of monotonicity given above, it is straightforward to show thgt &) is a monotonically
increasing function for varying; within the interval[a; , an]; this follows from the fact that
for a given paimy, < ay, with ay,, ay, € [ag,an] results in(k,ay, ) < J(k, ay,) in this interval.
However, based on the expression (2.41) for the cost function, ittistraightforward to
show thatl(k,a) is monotonically decreasing for eaghe [ag,a51,...,an]. In order to

do so we will express the cost function as a continuous function in thengdea space. We
denoten as the independent variable of the function such that[a;,an], and based on

(2.40) the cost function can be expressed as

k
Jk,n) = a(b*—n*)2E+p Zo(br —N7)BGAL. (2.42)

Note that at a given discrete time stethe global minimum of this non-negative function is
atn = b, with J(k,b) = 0. It is sufficient to show that(k, ) decreases for alj € [ar,a;].

To do so, we look at the first derivative afk, ) with respect tay, which is

dJ(k,n)
dn

k
= —200¢k(b — )Nt — 2B At 2 (0"~ non“. (2.43)
=

Obviously, for eacty < b, the above expression is negative, which implies that for a given

pair ay, < ay, with ay,,ay, € [a1,a;] results inJ(k,ay,) > J(k,ay,) in this interval, which
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2.7 Analysis of the switching criteria & adaptation

concludes the proof of the propertg). We note that (2.43) can also be used to show
increasing monotonicity af(k,n) for all n € [ag, an], which is in agreement with the result

based on (2.41).

Another obvious conclusion based on (2.41) is that this function is not symenie the
parameter space for changiag In order to understand this, we consider three adjacent and
equidistant nodes with a separation distadde the parameter space, which is depicted

schematically in Figure 2.25. We denote these adjacent nod&s ass,as 1 such that

d d

F

-
L

| |
| !
Az a: ey

L

Figure 2.25: Three equidistant nodes in the parameter space.

ag_1,8z, 85,1 € {ay,...,an}. We assume without loss of generality that these parameters
all have the same sign asFurther suppose that the cost function is minimum for the center

nodea; at a particular discrete time instaoti.e.,
Jkag) <Jka), i=1,2..,N, i#¢ (2.44)

At this instant one would expect to find the two neighboring, equidistants@ad , and
ag 1 to have the same cost values. However if we look at the equation (2.41)ciosedy,
we observe that while the first term is the same for both neighboring nodeghi-e
az_1)> = (b—ag,1)? = d?, the term in the square brackets is smaller for the rmdg
(remember the assumption thakOa; _; < a;.1). We conclude that the cost functions
Je_1(k) andJg 1 (k) for the two respective equidistant neighboring nodgs; andag

have the property that

J(k,az_1) < J(k,ag,q). (2.45)
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2.7 Analysis of the switching criteria & adaptation

Having proved the propertyp), this result clearly indicates that even for the simple discrete
system (2.34), there is no one-to-one correspondence betweerrdmegper error and the

identification error based on the cost function (2.37).

A final observation based on (2.41) is is related to convexity. In ordea fieal valued
function f (-) to be convex, which is defined over a convex suliset a linear vector space,

it needs satisfy

flyyr+(1—y)y2) < yf(yr) +(1—-y)f(y2) (2.46)

for all y1,y» € C and ally, where 0< y < 1. However, it is not straightforward to do
this check on the cost function given with (2.41). Instead, one can atteefy check a
necessary condition for convexity, which requires that there shouttbbeflection points
to have strict convexity, that @?% > 0 for ally € C. To test this we observe from (2.41)

that for k=2 the cost function is
a
I(2.3) =xgAt[B(b—a)? + (B+ 1) (b° — &), (2.47)

Taking the second derivative d{2, ) with respect tay then yields

‘]2(27a5) _ a o
Toa = R8NP 2B+ 1) (6 &) —4(B+ £, (2.48)

It is possible choose a set of numbeayd anda, 3, /At to make the last equation negative,
which would make the cost function a non-convex function for the time inktari2. Thus

for somek, J(k,a;) can be non-convex, which proves the propédy
Q.E.D.

The result of the Theorem 2.7.1 can be verified numerically as well. Variafitime cost
function in the parameter space is not symmetric as shown in Figure 2.26 tonerical
example. This curve shows the variation of the cost function given intequg.37) with
respect to models distributed evenly @®intervals within [-1,1]. The plant dynamics are

governed by the equatio(k+ 1) = 0.5251x,(k). As claimed the shape of the function is
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Figure 2.26: Cost function variation in parameter space.

not symmetric, and due to this reason if one is not careful about chotbsngcation of the

models, the algorithm may end up choosing a model that is not the closest iartdmgier

space. This problem is depicted in Figure 2.26 by the two vertical dashes] iidch

represent two hypothetical models with the same cost function values. MAbecaasily

seen from the figure, if there are no models in between these two, the atgonidly end

up choosing the wrong model. In order to prevent this one needs to hdeesa number

of models, which may come with a computational overhead for complex estimattbn an

control problems.

Comment: A final observation based on the equation (2.37) is that ih¢H{ay, ..., an},

the interval containing the unknown paramedt@r the parameter space is ambiguous. Theo-

rem 2.7.1 verifies that the minimum cost function may not always point to thestlasodel

in the parameter space, which necessitates the analysis of the variatiorcottienction

in the neighborhood of the selected minimum pai(k, £). This problem is illustrated in

Figure 2.27, wherb can be contained in either of the intervéds_;,a;] and|ag,a;4]. In

Section 2.7.2 we will address this problem with an adaptive estimation algoritirddasa

not require a dense multiple model structure.
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2.7 Analysis of the switching criteria & adaptation

Figure 2.27: Ambiguity in the interval containing the minimum point.

Remark 2.7.1 (Comments on extension to finite dimensional systemJhe results we
obtained so far are based on a scalar discrete time system, and the implicatibeseo
results for higher dimensional dynamical systems is unclear. While it iseagépt, difficult
to directly generalize these analytical results to generic finite dimensiortehsysunder
certain conditions this can be achieved. In analogy to Theorem 2.7.1, gsipmto extend

the conclusions for the MMST cost function
k -
J(k)=alle )]+ ;IIQ(T)IIAL for ie{1,...,N}, (2.49)
=

to certain classes of finite dimensional discrete time systems. The following cdrgives
a trivial extension to a class of finite dimensional systems, which follows ttiréom

Theorem 2.7.1.

Comment: Suppose that a discrete-time linear systef'Thwith a diagonal system matrix
is given as below

x(k+1) =Bx(k) with B=diag(by,by,...,bm), (2.50)

wherediag(by, by, ...,by) denotes the matrix iR™™ with scalarsbs, by, ... by as the

diagonal elements. Suppose further that we Wddentification models that are given as

R(k+1) = ARK) with A =diag(a,b,,...,bm), (2.51)
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2.7 Analysis of the switching criteria & adaptation

wherei € {1,2,...,N}. We assume that the plant (2.50) and the identification models (2.51)

have identical initial conditiongg € R™.

We are interested in estimatiiog with the N candidate models. We assume that g for
alli € {1,...,N}, and also that & a; < a < ... < ay. Further, we denoté as the index

for which the cost function (2.49) is minimum at the time instarite.,
¢ =arg_min J(K).

Then the cost function (2.49) with the identification ersptk) = [x(k) — X(k)] for i €

{1,...,N}, has the following properties:

(a) For eaclk, (2.49) is a monotonically decreasing functionan, a; |, and a monotonically

increasing function ifas , an].

(b) For eactk, (2.49) is non-symmetric about its minimum podiatk), and thus there is no

one-to-one correspondence between the parameter error and ttikciakgon error.

(c) For somek, (2.49) is non-convex in the parameter spggeay . . ., an].

The proof of propertiega), (b), and(c) directly follow from Theorem 2.7.1. The last
comment achieves a trivial extension for the conclusions about the MMSITfunction to
finite dimensional systems with a diagonal system matrix and with uncertainty irrghe fi
element. Itis trivial to show that the results also extend to the case wherndhereertainty

in multiple elements of the diagonal system maigiven in (2.50). In this case, it can
be shown based on the last comment that the cost function (2.49) becomi#éts-eariable
function of, at mostm uncertain parameters, i.d(k,a;,b;,...,m), and that this function

can be written as a summationmfdecoupled functions
Jk,a,bi,....m) =d(ka)+hka)+...+Inkm) (2.52)

where each of the decoupled functidha&k, & ),Ji(k, &), ..., In(k,m) are of the form (2.40),

and each are non-convex and non-symmetric in their respective tipada@meter spaces

{al,...,aN},{bl,...,bN},...,{ml,...,mN}.
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Comment: While it is difficult to analyze the properties of the cost function (2.49) for
generic finite dimensional systems analytically, a similar conclusion obtainedeior&im
2.7.1 can be conjectured numerically for such systems. Here we give a Ergntele of
this, where we estimate 2 unknown parametetsof a second order plant with a com-
panion system matrix, in conjunction with the multiple model switching framework. We
emphasize that the choice of second order companion systems in this nlexample is
motivated by the ease of exposition. Suppose that the plant and the idéotificeodels

with companion systems matrices are specified as follows

01 0 1
x(k+ 1) = x(k),  Rk+1)= R(K),

a b a b
The parameter space of the identification models are chosen sueh¢hgt 1, —0.95,...,
0.95,1} andb; € {—1,-0.95,...,0.95,1}. We want to estimate the scalad using the
measurements of the statgk) alone, and based on the MMST approach. For this example
we assume the initial conditions for the plant and the identification models¢pb6é5 20.
The variation of the cost function (2.49) in the parameter space is showigumeF2.28
as a 3D surface at a randomly selected time instant-oflL second, where the reference
plant parameters were selected toabe 0.9 andb = —0.2. In the figure, the vertical axis
represents the value of the cost function corresponding to all possitiibications of the
grid points of the parameter space in the horizontal plane (the plot on thdgitite top
view). As observed from the figure, the cost function is monotonic alisuninimum
pointJ(1,0.9,—-0.2). Furthermore, a further observation is that for any given fixed values
of by € [-1,1] the cost function is not symmetric in the parameter sgaee[—1,1], and
for any given fixed values & € [—1,1] the cost function is not symmetric in the parameter

spaceb; € [—-1,1].

In Figure 2.29, the result of the numerical simulation for a different ezfee plant with
parameterss = —0.5, b = 0.1 is shown. Again, based on the plots we can draw the same

conclusion as above regarding the MMST cost function.
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7

¥

Jilab)

Figure 2.28: Cost function variation in parameter space for a second @stenation problem with

plant parametera= 0.9, b= —0.2.

The above numerical examples support the claim that the shape of themosbn is not
symmetric for higher dimensional systems also, which necessitates a caglefttion and
structuring of the model space for any given multiple model switched estimatityiem
based on fixed models. We emphasize that a rigorous theoretical andlysisproperties
of the MMST cost function for finite dimensional systems will be part of therie work

based on this section.

The analysis given in this subsection using a simple discrete time system (2cajumc-
tion with the cost function (2.37) reveals the two undesirable characteiétics function,
which are the lack of one-to-one correspondence between the ontbpaeameter spaces,
and the non-convexity. Also, we have showed hypothetically that wherdémgification
models do not contain the exact plant parametrization, there is an ambiguityniirtimeum
point of the cost function, as it can be contained in the either side of thherdwselected
minimum point. Finally, we gave an extension of these conclusions for a difisét® di-

mensional discrete-time dynamical systems with a diagonal structure. Infelloats, we
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Figure 2.29: Cost function variation in parameter space for a second @steénation problem with

plant parametera= —0.5,b=0.1.

describe a model space adaptation method that can alleviate the problenizedibeis far

without using a dense number of models, and still utilizing (2.33) as the aostidn.

2.7.2 An adaptive model distribution algorithm

In this subsection we introduce a model distribution scheme to improve theaagaifres-
timation in conjunction with the multiple model estimation algorithm, with a sparse number
of models and making use of the cost function (2.33). As mentioned béfaejfficult to

find a general form of a cost function that would provide a one-toammeespondence be-
tween parameter error and identification error spaces. However, thécatidn suggested
here makes use of (2.33) and refines the distribution of the models within tingainteat

is likely to contain the minimum point of the function.

In order to explain how the modified algorithm works, we refer to the Figus@.2The

multiple model estimation algorithm is initiated with a small number of grid points, and
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Figure 2.30: Model re-distribution algorithm.

based on (2.33) the minimum is selected, which as explained in the precedtianses

not guaranteed to give the smallest parameter estimation error. As a remgesiyggest a
re-distribution of the models in the parameter space over the immediate neightiatthe
selected minimum model after a finite time horizon. After the new parameterizatiohs a
the corresponding models are defined, we run the estimation algorithm agtie same
data. Assuming thag; is selected as the model minimizing the cost function after a finite
time horizon, bottg;_; anda;; 1 needs to be included in the redistributed model space due to
the ambiguity in the interval containing the minimum, explained earlier. In the hypodhe
example depicted in Figure 2.30!"4nodel minimizes the cost function although the real
parameter is closer to th&'5nodel. Therefore, it is possible to capture the minimum point
in this example by redistributing the models between parameter grid pirgad as of

the original parameter space, by the suggested algorithm. It is noteddagnetlaat it is a
design choice between accuracy and numerical complexity to decide hoymmatels to

have in the initial models space and how many to include in the redistribution.

Next we give numerical example of how the algorithm works. It is the same rwuttipdel
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estimation problem we described earlier, i.e., where the plant dynamics\amgd with

Estimation models are of the same form of (2.53) with the models locate@%triervals
within [—1, 1] with a total of 41 models. Estimation results based on the standard multiple
model estimation scheme is shown in Figure 2.31, where it can be observedthioagh

the closest model is at®6 in the parameter space, the algorithm convergedsio 0

0.7 T T T T 10 T T
x- -y selected model
0.6 y plant
2 8
< os g
z S
o 04 c
= a
o
L 03 '8 4
ks s
© 02 %
s 2
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0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 25

Figure 2.31: Standard multiple model estimation results with fixed magieice.

When we implemented the described adaptive estimation algorithm with a singleestep r
finement (i.e., models redistributed once), we obtained the result shown uneFg32.
Initial parameter space consisted of a very coarse grid wizh Mtervals betweep-1, 1],
resulting in a total 9 identification models. In the redistribution step we used 28imand
repeated the standard multiple model estimation algorithm on the same data. Indotal w
employed 29 models after a single iteration of the model space, and aseb$emw the
Figure 2.32 we obtained the parameter estimation reswt=60.525. In the same figure

we also show the variation of the cost functitf@ ) in the parameter space before and after
the model redistribution step , where the effect of iteration is clearly seemeNcal sim-

ulation results show the efficacy of the suggested adapted algorithm, witidves better
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accuracy using a smaller number of models as compared to the multiple model estimatio
with fixed models. Even better accuracy can be obtained with more redistribuiie.,

more iterations) and/or including more number of models in the iteration steps.
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Figure 2.32: Multiple model estimation results with an adaptive modstritution.

In this subsection we introduced an adaptation scheme in order to improvstitnatéen
accuracy of the standard multiple model estimation algorithm with fixed models, witho
increasing its numerical complexity. The suggested adaptive model distritalorithm
employs the same cost function as the original scheme, yet it iterates onttiteutien of
the models in the parameter space. Our numerical results with the adaptikithatgghow
that one can obtain more accurate estimations using less number of modete e anh

to the standard multiple model estimation with only fixed models, achieving the goal se
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forth at the start of the subsection. The only drawback of this simple agaggtimation
scheme is the fact that the iterative distribution of models can not be donal itmne, and
the algorithm has to run on stored data. Therefore this adaptive schemeeisuitable for
applications, where the need for accuracy in estimation is more important thegetttime
performance. Next we look into the extension of the adaptive model ditnbalgorithm

for the estimation of switching system parameters.

2.7.3 Adaptive multiple model estimation of switching unknown

parameters

In Section 2.7.1 we made an analysis of the cost function of the multiple modehswitc
ing algorithm and showed that the identification models need to distributedithaiafthe
parameter space as the cost function (2.33) can lead to a wrong modgiosel&Ve em-
phasize that this problem is related to the lack of one-to-one correspondetween the
parameter space of the models and the output identification errors, whickeig anpor-
tant observation. Consequently the closest model in the parameter spanetralways be
chosen due to the non-convex or non-symmetric properties of the cadidn. As a rem-
edy we suggested an adaptive algorithm in the preceding subsectiom, addeesses this
problem by iterating on the distribution of models, while still choosing the besehtaded
on the minimization of the cost function (2.33). In this subsection we look aktemsion
of this adaptive algorithm for estimating switching and unknown parameteaigramical

systems.

In the literature, an analysis of the estimation of rapidly switching parametessjaration
with the multiple model switching framework was made in a recent paper by Ni@ehal.
[80] as well as in the PhD thesis by Feiler [32]. In this recent thesis theiilgowas named
as self-organization method. It was suggested in these publications teapfecandidate

models with arbitrary locations in the parameter space are adapted simuligremsesd

86



2.7 Analysis of the switching criteria & adaptation

on a time varying gain (that is a function of identification errors of each madwl)with

respect to the plant operating point in existence. The convergencetagiemployed for
parameter adaptation resembles to that of winner-takes-all methods. §heywed for the
effective operation of the self-organization algorithm that the set ofpatating points to
be in existence (and in some cases periodic) in a finite time interval such toanhdidate
models converge to the set of operating points. Furthermore, the numbeitohes in
the system parameters were assumed to be precisely known. In ordéaxsoene of
the restrictions of the self-organization method, we describe an alteragipreach in the
sequel for the estimation of rapidly switching system parameters, which ¢l masthe
adaptive model distribution method developed in the preceding subsectieriirsivstart

with the formal statement of the problem.

Problem Definition

Let the parameter vectdi(t) of a dynamical system to be switching randomly (not nec-
essarily slowly) between a set of operating points denote8 by{61,6,, ..., 6y}, where

6;, j € {1,2,...,N} are unknown. This is depicted hypothetically in Figure 2.33. Also, the
instants of switching is assumed to be unknown. Furthermore, the total nafbessible
operating point§ is assumed known, but this requirement can be relaxed. We would like to
have minimum number of candidate models in conjunction with the multiple model estima-
tion framework, to estimate the unknown operating pothtsj € {1,2,...,N} quickly and

with sufficient accuracy, where the dynamical system is subject to elsandhe operating

conditions.

In order to motivate the need to study this problem, we can give real-life deamere
such problems arise naturally. In general, any engineering systempiates in a multi-
tude of environments such as cars and airplanes have suitable appli¢gatibascope of
this problem. A good application example to such a problem is the adaptive carisrol

in cars, where sudden gear shifts of the car can be representeéwaopéerating condition
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Figure 2.33: Switching operating conditions (or parameters) of the fplan

6. The speed controller needs to incorporate the engaged gear inforrfatioigh per-
formance, i.e. for tracking the desired speed smoothly, quickly and with minieroon.
Another automotive related problem is the shifting of loads in large road feshicich as
trucks or vans, which can happen as result of inertial forces actittgeorehicle during high
speed cornering maneuvers. Naturally, active safety control systeukldake the change
in CG position into account, as this change may affect the vehicle respigmsicantly.

Next we describe our adaptive estimation method.

Adaptive Estimation Algorithm

The adaptive estimation method given here is an extension of the adaptietdistdbution
method given in Section 2.7.2. The algorithm uses the same model distributiemegch
however the adaptation is restarted every time a (detectable) change inntmmidy, or
the operating condition occurs. Information on the change of the opemaimdjtion can
be explicitly available, as in the case of the adaptive cruise control prohigm@re the
information of gear position is known at all times. However, in general, ifisnformation
is not explicitly available it needs to be inferred. For the sake of simplicity, sgeme that

the instant of change in the plant parameters is known.

In order to explain how the algorithm works, we refer to figure 2.34, wHighicts a hypo-
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Figure 2.34: Switching parameters and candidate models.

thetical plant operating on the parameter sgaaad switches between two operating points
represented with the two parameterizatiGhsand 8,. The parameterizations, pz, ..., Ps
correspond to the 6 different candidate models for use in conjunction wétladaptive
model distribution algorithm. Suppose that the plant operates at the pointedienith 6,
initially. In order to get an estimate of this parameter we can use the model distnilalr
gorithm described in Section 2.7.2. As shown in Figure 2.35 the algorithm vabsdthe
neighborhood ofp; as the place where the parameter is most likely to be present. Accord-
ingly new models will be placed around the close vicinitypafand the model minimizing

the cost function will be selected. This adaptation step can be repeated ntutigdeo get
avery good estimat@, of the unknown parameté. So far the problem was the estimation
of the unknown plant parametéi. Now suppose that there happens to be a switch in the
plant parameters t6, as depicted on the right-hand side of Figure 2.35. When the switch
is detected, the identification models are re-initialized with the parametepSeks ..., ps.
Consequently the same model distribution algorithm is employed to estimate thenmkno
parameteB,, which will distribute the new models arounpd until the desired accuracy is
achieved and a suitable mod#] is selected. We emphasize that the algorithm does not
explicitly make use the information on the number of switches (i.e., parametergadiod

it can easily be generalized to plants with high number of switches; this caccbenano-
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Figure 2.35: Schematic representation of the adaptive estimation mdetho

dated by changing the initial candidate model space. In what follows, we ingpiliethis

algorithm to a simple estimation problem and give the corresponding numesscals.

90



2.7 Analysis of the switching criteria & adaptation

Numerical Analysis

For the sake of exposition we consider the following simple discrete time sysdhea

plant model
X(k+1) = 0(k)x(k), 0(k) € {64,6-} (2.54)

where 81, and 6, represent distinct unknown scalar constants in the unit circle such that
the plant dynamics corresponding to either parameter is stable. Furtheimagrarameter
0(Kk) is assumed to switch at an unknown instant during the evolution of the dynafmics
the plant (2.54). We want to estimate the parameeend 8, with sufficient accuracy, and
using only a small number of models. We assume that the distinct identificatiorisvaode

of the following form

Xi(k+1) = pix(k), (2.55)

which are parameterized Mtgrid points in the parameter space whierel, 2, ...,N. Notice
here that we assumed neither modelling errors nor process noise. rragsioening identi-
cal initial conditionsxg for the plant and all the identification models, we can express the

corresponding trajectory of the plant and the identification models as follows
x(k) = 64K, (2.56)
%K = po, (2.57)

wherei = 1,2, ...,N are the model indices. Also, the discrete time version of the cost func-

tion (2.33) that is to be used for this problem and is given as
k
J(k) = a€’(k)+B Z)qz(r)m, (2.58)
=
where/At is the discrete time step (which can be fixed or variable).

For the numerical simulations we used the following plant parameters and ituhisgy

instant
0 €[0.9251,0.2615, tswitch= 2.2 Sec.
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Also, the initial candidate models were chosen to be symmetrically distributed dretwe

[—1,1] with 0.1 intervals. i.e.,
pi=—-1+01x(i—1), i=12,..,21 (2.59)

with a total of 21 models. Further, the initial conditions for the plant (2.549, ahof the
models (2.55) were chosen to ke= 10. The parameter switching sequence and corre-

sponding plant trajectory fdre [0, 5] is shown in figure 2.36.

0.4F : 1

0.2 i i i i i i i i i
0

[sec]

\ T T T T

Switching Instant -

10

Plant trajectory x(k)

0 0.5 1 15 2 2.5 3 35 4 45 5
t [sec]

Figure 2.36: Plant trajectory for the example.

For the redistribution of the models we chose to insert 40 equidistant modelsinngle
iteration step around the neighborhood of the selected initial candidate foo@eich de-
tected operating point. Notice that processing the same data and applyivey fidtaptation

steps, a better accuracy can be achieved. Also note that in the staterttenpadblem we
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assumed no explicit knowledge of the the switching instant, which necessitatgmarate
estimation of the switching in the dynamics. For this simple problem, an ad hoc solution
to detect the switching position was achieved by looking at the left-handightihand
derivatives of the trajectory at each instant; the point where there iasticdlgradient was
classified as a switching point. In other words, the check for the switcHitige@iecewise
continuous trajectory(t) was made using the following binary criterion

Yes, if|x.(k)—x_(k)| > kT,
switch= , (2.60)

No , if [xy (k) —x-(K)| < Kt
wherex, (k) andx_ (k) are the left hand and right hand derivatives8tinstant. Also kT
is a positive scalar, which defines the maximum difference allowed betweeleftrand
right hand derivatives of the plant trajectaxgk). Note that since this is a discrete time
plant k1 is nonzero, whereas for a continuous time version of this problem the s&wgtch
criterion would be the same as (2.60) but with= 0 imposing identical left and right hand
derivatives for no switching. For our simulations we setkhe= 5 as the threshold slope

difference. Next we present our estimation results for this problem.

The suggested algorithm used 21 initial candidate models, both beforétantha switch-
ing instant. Once the algorithm is started, 40 models were used at each obtadaptation
steps. Therefore, a total 122 models were employed for the overalitalgoiand its ac-
curacy is equivalent to 401 fixed models distributed evenly betweénl]. The algorithm

successfully estimatel to be switching between the following two parameters
6* € [0.9250.26].

Estimated plant parameters are shown in Figure 2.37 before (left handelafter (right
hand side) the switching, where the dashed lines correspond to the estigiates by the
initial candidate models, while the solid lines were obtained by adaptation bastg: o

model distribution technique.
In Figure 2.38 the plant and the selected model trajectories obtained dueiegtimation
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Figure 2.37: Estimated plant parameters.

are presented, both before (left hand side) and after (right haej thid switching. The
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Figure 2.38: Comparison of the plant trajectory with respect to the setbcandidate models.

corresponding variation of the cost functions in the parameter spaiteel@nd after the
switch is shown in Figure 2.39, where the dashed line corresponds to theédaitdidate
models and the solid line represents variation after the distribution of modeladatbe

selected minimum candidate model. Insets are provided to show the effestivand detail
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Figure 2.39: Variation of the cost function in the parameter space bedorkafter the switching.

obtained as a result of the adaptation algorithm for this specific problem.

2.7.4 Adaptive multiple model estimation of CG position

In this subsection we present the implementation of the adaptive multiple modeltestima
method described in Section 2.7.2 to the problem of CG height estimation. In gojng
the main goal of this exercise is to reduce the model space used for the estimithtiohe
multiple model framework, and obtain comparable estimation accuracy to th&ctbs
2.4.2, where we used a dense number of grid points to get a good estimatiosn GG
height. Note here that we are concerned with the estimation of the unknaameizrs
related to the roll dynamics of a vehicle, which are assumed to stay constarghart
time horizon (as opposed to the preceding subsection where the paraoteterswitch

instantaneously).
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The multiple model switching algorithm described here is the same as in Section 2.4.2
for the most part, except for a single adaptation step of the model spdweealdorithm
estimates the CG heightalong with the linear suspension parameterandc based on

the roll-plane model (2.10). We assume that each unknown parameteggétoa closed
interval such thah € 77, k € ¢, andc € ¥, which are divided into a small number of
initial candidate grid points such thitty, hy, hs, ... hp} C 2, {ky, ko, ks, ... kq} C %, and
{c1,Cp,C3,...,C } C € with dimensiong, q andr respectively. We then form= pxqgxr
different models corresponding to the cross combinations of the grid poitits parameter
space. The equations of motion corresponding to each ofi thedels (with zero initial
conditions) can be represented with (2.23). Also as shown in Figure /&8y model is
driven by the same inpat;,, which is measured. According to (2.24) identification ergprs

are calculated for each model and then corresponding cost funcl@®) @re computed.
Switching among the models based on (2.21) yields the one with the minimum cumulative
identification error, and the selectied c;- andh;- represent the plant in the parameter space
described by a finite number of grid pointsif, ¥ and.7Z respectively. Note here that the

indicesi*, j*,1* satisfyi* € {1,2,...,p}, j* € {1,2,...,q} andl* € {1,2,...,r}.

Adaptation is achieved by re-distributing models in the immediate neighborhotik of
selected initial grid points;-,cj- andhy- as a result of the initial iteration. That is, for
the adaptation step, the grid points are chosen such{thaty,...,h-,...,h«1} C 2%,
{ki-—1,.... K+, ...,k y1} € 2, and{cj-_1,...,Cj+,...,Cj»+1} C €* with dimensionsp*,qg*
andr* respectively. Then the same multiple model estimation procedure describeel ab
is repeated fon* = p* x g* x r* number of models, and switching among these based on
(2.21) yields a new estimate that minimizes the cost function (2.20). The pongéimng
parameters of the selected model, thatic* andh* represent the plant in the parameter
space described by, ¥* and s* respectively. Note that, the total number of models
utilized after a single adaptation stepnis- n*. Next we present the results of a numerical

implementation of this adaptive estimation method.
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Numerical Analysis

Here we present the CG height estimation results for the simulated measudatede-
scribed in Subsection 2.4.1. The initial candidate model space consistetl mb@els,
where grid points belong to the s€t320003650038000 C %", {4500 5500} C ¢, and
{0.56,0.64, 0.72,0.8} C 2. Note that the exact plant paramet®gan = 0.7, Cpjant =

5000, andkpiant = 36000 are not part of the initial grid points. For this numerical example
the free design parameters for the cost function were sata.1 andf = 0.9, while

the forgetting facto was chosen to be 0. For the adaptation step we chose to indert 6
and 3 models in the immediate neighborhood the selected minimum of the initial parameter

space, which yielded adapted model grid points given below

{0.8, 0.768 0.736, 0.704 0672, ,0.64} C "
{ 32000 34000 3600Q 38000 C % *

{ 450Q 500Q 5500} C %*

As a result of the single adaptation step, 72 new models have been utilizet,evbntually

caused the total number of models utilized to be 96 during the course of thetesmtima

In Figure 2.40 the resulting sensor and the switched model outputs of theipiaal mod-

els, and the adapted models are compared whereas in Figure 2.41 the GGektigation
results are shown for the initial grid and the adapted models. Based ontithatées re-
sults, we observe that the multiple model switching algorithm successfully edlithat€G
height to be 0.704n. Also in Figure 2.42 the corresponding estimations of the suspension
parameters are presented. Linear torsional spring stifioess estimated as 36000 exactly
matching that of reference vehicle model, while roll damping coefficievds estimated to

be 5500 slightly different then that of the reference vehicle model whah%000.

We observe from the numerical results that the adaptive estimation ackieviéat estima-
tions to that of Section 2.4.2 while utilizing only 96 models (as opposed to 240 maskads

there). Thus this adaptation scheme can be employed when large numbeted$ icen not
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Sensor and the selected model output comparison for thdieel&s height estima-

be utilized due to computational constraints.

2.8 Conclusions and possible future directions

In this chapter we have presented a realtime parameter estimation algorithna unsirity-

ple model switching approach incorporating simple linear models. Based simib&ation

results, we demonstrated the accuracy of the suggested technique asednopthe tra-

ditional least squares identification approach, which shows significamfibs. We also

presented preliminary tests of the algorithm with off-line measurement data fiae an

undisclosed test vehicle, and results were promising. The results sliostete algorithm

can also work in cases where the signals are corrupted by noise anibiapver, the load
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Figure 2.41: Adaptive CG height estimation.

condition estimator example demonstrated that a simple version of the sugdgetétia

can easily be integrated into current rollover or lateral dynamics consdtieanhance their
performance. In the last part of the chapter we conducted an anafyhis cost function,

and also introduced a simple adaptation scheme to improve estimations based ole multip
model estimation method. With simple numerical examples we showed that the agges
adaptation method can provide good estimation results while utilizing a smaller nomber
identification models as compared to estimations with fixed models alone. One importan
observation in our analysis was that the multiple model algorithm employing ordyg fix
models required too many models to produce the desired estimation accudapgréor-
mance (as apparent from numerical simulations, where we had 240 mod€&fheight
estimation based on roll dynamics). Our adaptation scheme can be useditovent this
problem, which employs only a small number of models initially and are updatedeand
parameterized in fixed time intervals. In our numerical simulations we managest t g
good CG height estimation using only 96 models in conjunction with the adaptiveses

tion method, which shows efficacy of the suggested algorithm.
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Figure 2.42: Adaptive estimation of the suspension parameteemndc.
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Chapter 3

A Methodology for the Design of
Robust Rollover Prevention

Controllers for Automotive Vehicles

In this chapter we present a robust controller design methodology fucke
rollover prevention utilizing active steering and differential braking actustor
Control design is based on keeping the magnitude of the vehicle perfoeman
outputs, including load transfer ratio (LTR), below a certain level in the pres
ence of driver steering inputs; we also develop an exact expressiarafor
culating LTR. The proposed controllers have a proportional-integralcttrre
whose gain matrices are obtained by solving a set of LMIs, which provide
controllers to robustly guarantee that the peak magnitudes of the perfarena
outputs do not exceed certain values. We show that using the desigrdmetho
the controllers can be designed to be robust with respect to unknovitiereh
parameters such as speed and center of gravity height. We also pavide

switching rule for controller activation based on the potential for rollover.
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3.1 Chapter contributions

3.1 Chapter contributions

The scientific contribution of this chapter over the literature is mainly in the dreshicle
dynamics control; particularly in the area of automotive rollover prevent®@ur control
design was formulated as a bounded input bounded output (BIBO) laistce rejection
problem. We viewed the automotive vehicle as an uncertain dynamical systandis¢
turbance inputs, and our controllers guarantee that the performatmetoof the system
relevant to rollover are bounded. In doing so, we suggested usingaardy version of the
load transfer ratio (LTR) as a criterion for rollover occurrence. Qugigested robust control
design method is unique in the sense that it gives way to a quantificationustnass of the
controllers. We also considered vehicle parameter uncertainty in ouotdesigns given

that the uncertainty satisfies certain conditions.

The work contained in this chapter has resulted in the following publications:

() Solmaz S., Corless M., Shorten RA fethodology for the design of robust rollover
prevention controllers for automotive vehicles: Part 1-Differential Brgkim5th

IEEE Conference on Decision and Control, San Diego, Dec 13-1%.200

(i) Solmaz S., Corless M., Shorten RA ‘methodology for the design of robust rollover
prevention controllers for automotive vehicles: Part 2-Active steérifty CON-

CEMaCS Joint Workshop on Automotive Systems & Control, Lund, Jung2D@6.

(iii) Solmaz S., Corless M., Shorten RA‘methodology for the design of robust rollover
prevention controllers for automotive vehicles: Part 2-Active steériAgnerican

Control Conference, New York, July 11-13, 2007.

(iv) Solmaz S., Corless M., Shorten RA fethodology for the design of robust rollover
prevention controllers for automotive vehicles with active steérihgternational
Journal of Control, Special Issue on Automotive Systems and Contrbl380p No.

11, pages 1763-1779, November 2007.

102



3.2 Introduction

3.2 Introduction

It should be clear from the preceding chapter that the vehicle centetawityg position
directly affects vehicle accident behavior. Particularly, it is well knowat trehicles with
a high center of gravity such as vans, trucks and the highly popular 5wt Utility
Vehicles) are more prone to rollover accidents, which are, by far, thé daogerous type
of accidents. As evident from to the 2004 accident data [1] compiled in &, Uight
trucks (pickups, vans and SUVs) were involved in nearly 70% of alleHever accidents,
with SUVs alone responsible for almost 35% of this total. The fact that the asitiqgm
of the current automotive fleet in the U.S. consists of nearly 36% pickaps, and SUVs
[22], along with the recent increase in the popularity of SUVs worldwidekewaollover

an important vehicle safety problem.

There are two distinct types of vehicle rollover: tripped and un-trippeipp&d rollover
is usually caused by impact of the vehicle with something else (e.g. obstaatbsetc.)
resulting in the rollover incident. For example, a tripped rollover commonly rsoshen a
vehicle slides sideways and digs its tires into soft soil or strikes an objelstasia curb or
guardrail. Driver induced un-tripped rollover can occur during tyjgic&ing situations and
poses a real threat for top-heavy vehicles. Examples are excepsigd during cornering,
obstacle avoidance and severe lane change maneuvers, whererrotioues as a direct
result of the wheel forces induced during these maneuvers. Intrgears, rollover has
been the subject of intensive research, especially by the major automolildatiarers;
see, for example, [28, 27]. That research is geared towards tlebogevent of rollover
prediction schemes and occupant protection devices. It is howessibpmto prevent such
a rollover incident by monitoring the car dynamics and applying appropraatea effort
ahead of time. Therefore there is a need to develop driver assistahc®l@gies which
would be transparent to the driver during normal driving conditions which act when

needed to recover handling of the vehicle during extreme maneuvers [22]
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3.2 Introduction

In this chapter we present a robust rollover prevention controller deseghodology, which
represents the first of the two available approaches (i.e., robust aptive) towards the
feedback design for systems with parameter uncertainties. Although mibst obntroller
designs for automotive applications are in this category, our robustrdesthod is unique
in the sense that, unlike the traditional approaches, it quantifies the rebgsihthe atten-
uation from the actuator inputs to the performance outputs, which can desstructured
way of tuning the controllers. The robust controller design describeckisdluel is based
on two separate type of actuators: active steering and differentiahigraklso, as an ac-
curate indicator of performance related to rollover, we consider the leehiad Transfer
Ratio (LTR) in the feedback design. This measure of performance isddtatee lift-off
and it can be considered as an early indicator of impending vehicle rallggbicle wheel
lift off occurs when the magnitude of this variable reaches one. We deagiaexact ex-
pression for this variable taking the vehicle roll dynamics fully into accoumdigtinguish
our expression from previous (static) approximations of LTR in the liteeatue denote it
by LTRy. We emphasize that although vehicle rollover is a dynamical process, tite sta
approximations of LTR ignore the roll dynamics; thus, they are not fullyabépof deter-

mining the onset of rollover.

Our proposed controllers based on differential braking have a Bpdpional) structure
with a fixed gain matriXp, while active steering based controllers have a PI (proportional-
integral) structure with two fixed gain matricks andK;. By utilizing the integral action in
the latter, we ensure that the steady state steering response of the veadckxpected by
the driver. The gain matrices are chosen to reduce the magnitudeRyfduring transient

behavior.

The design of the controller gain matrices is based on recent results iwfg2e they
consider uncertain systems with performance outputs and subject to ddabdisturbance
input. For each performance outpjtthey introduce a performance measyyewhich

guarantees that the magnitude of the output is less than or eqyairtees the peak value of
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3.2 Introduction

the magnitude of the disturbance. They present a controller desigrdpirecehich can be
used to minimize the performance level for one main output while keeping tferpance
levels for the other outputs below some prespecified levels. In additionptiteotiers in
[92] are robust in the sense that they ensure performance in thenpeeskany allowable
uncertainty which was taken into account in the control design. In appthiese results
to rollover problem, we consider the driver steering input as a distuebiapat. Since we
wish to keep the magnitude &ff Ry less than one, we view this as the main performance
output. To limit the amount of control effort and to accommodate actuatotreamss, we
choose the control input as an additional performance output in thedekdlesign. We
note that many robust control designs in the literature are based on gebpinoot mean
square (or Euclidian norhh of a performance output (i.€lzj(t)||2) small. However, for
this problem we consider it to be more important to utilize a controller which is deditp
keep the peak magnitude (infinity norm or maximum néyof outputs (i.e.|z;(t)]|«) to
be small rather than their rms value; this choice is motivated by the facttid®y|| > 1

implies rollover, whereT Ry is the main performance output for this problem.

We initially consider control design for fixed vehicle parameters and illusthatefficacy
of our approach with some numerical simulations using typical data for a ainopa
We then design a fixed robust controller which is effective for a rarigeebicle speeds
and vehicle CG (center of gravity) heights. The efficacy of this contradleiustrated
by simulating the vehicle with different CG heights and with varying speedsallffinmwe
propose a modification to our controllers so that they only activate whenotieatpal for
rollover is significant. This modification prevents the controllers from afitigain non-

critical situations and possibly annoying the driver.

Yor a vectory € R"with y= (y1,...,yn)", the Euclidian norm is given biyy|> = \/y2 + ... +Y2.
2for a vectory € R", the infinity (or maximum) norm is given by||. = max|ya|,...,|yn|}.
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3.3 Related work

Rollover prevention is a topical area of research in the automotive indasttyseveral
studies have recently been published. Relevant publications includeftRatkovics et
al. [107], where they proposed the ROP (Roll-Over Prevention) syftemse in com-
mercial trucks making use of lateral acceleration measurement as well aséet slip
difference on the two sides of the axles to predict tire lift-off prior to roltovéney utilized
full braking action through EBS (Electronic Brake System) in the eventtitealift-off is
detected, which in turn reduces vehicle speed to eliminate the rollover threatsiinilar
implementation, Wielenga [137] suggested the ARB (Anti Roll Braking) sysigiming
braking of the individual front wheel outside the turn or the full frorteainstead of the
full braking action. The suggested control system is based on lateelkaation thresholds
and/or tire lift-off sensors in the form of simple contact switches. Again ntpkise of
differential braking actuators, Chen et al. in [25] suggested utilizatianafstimated TTR
(Time To Rollover) metric as an early indicator for the rollover threat. WheR TsTless
than a certain preset threshold value for the particular vehicle undeesiténey utilized
differential breaking to prevent rollover. Ackermann et al. and Oddrgbal. [4], and [88]
proposed a robust active steering controller, as well as a combinatamtieé steering and
emergency braking controllers. They utilized an active steering contlksrd on roll rate
measurement. They also suggested the use of a static Load TransferlHaip \(hich
is based on lateral acceleration measurement; this was utilized as a criterativateathe
emergency steering and braking controllers. In [22] Carlson et al. msel®f sideslip,
yaw rate, roll angle and roll rate measurements based on GPS aidedni®éifiaflNaviga-
tion System) along with steer by wire and differential braking actuators to linsgssive
roll angle during dangerous maneuvers. They based their controfiggden MPC (Model

Predictive Control).
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3.4 Vehicle modelling andLT Ry

In this section we introduce the models that we use for controller designlsé/define the
rollover detection criterioh T Ry and present the assumptions on the sensors and actuators

used in the design.

3.4.1 Vehicle model

In order to capture the salient features of vehicle rollover and for cl@tidesign purposes,
we utilize the well known linearized vehicle model commonly referred as thdestrack
model (or bicycle model) with roll degree of freedom, which was introduoeithe pre-
ceding chapter; this is illustrated in Figure 3.1 for convenience. This specifdel or its
variations are widely used in vehicle dynamics control applications (sesx&mple [22],
[128], [4], [88], [25], [38], [50]). In this linear model the steeriaggled, the roll anglegp,

and the vehicle sideslip angfare all assumed to be small. We further assume that all the

vehicle mass is sprung, which implies insignificant wheel and suspensightaeAlso the

At
\/'\

cat X
|

&
|

Figure 3.1: Single track model with roll degree of freedom.
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3.4 Vehicle modelling andLT Ry

lateral forces on the front and rear tires, denote@®pgndS;,, respectively, are represented
as linear functions of the tire slip angles anday, that is,S, = C,a, andS, = C,an, where
C, andC; are the front and rear tire stiffness parameters respectively. Thenpisns of
small angles and linear tire forces provide a good balance betweeningphe salient fea-
tures of vehicle behavior while keeping the complexity at a manageable lewefutitier
define the following auxiliary variables

o £ C+GC,

p = Cilh—Cily, (3.1)

K 2 CIZ+Gl2,
where the lengthk andly, are defined in Figure 3.1. It is assumed that the sprung mass rolls
about a horizontal roll axis which is along the centerline of the track amgoaind level.
Using the parallel axis theorem , the moment of inertia of the vehicle aboussiuened roll

axis, denotedy,,, is given by
Jieq = Joc+MIT, (3.2)

whereh is the distance between the center of gravity (CG) and the assumed rolhdxig a

is the moment of inertia of the vehicle about the roll axis through the CG.

Single track model with active steering input

For use with the control design based on the active steering actuator nduogrthe state
vectoré = [v, ¢ @ @], where

vy : lateral velocity of the vehicle,

g : yaw rate of the undercarriage,

@ : roll rate of the sprung mass about the roll axis,

@ : roll angle of the sprung mass about the roll axis.
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3.4 Vehicle modelling andLT Ry

Then the linearized equations of motion corresponding to this model ard@agsso

& = Af+Bo+Bu with (3.3)
[ _ Teq Pheg _\, _hc  h(mgh-k) | [ Cudieq |
MVdx mvdx Jx Jux mJex
. £ —£ 0 0 Gl
A — v N 7 B— Jzz 7 (34)
_ho o _c mgh-k hG,
Vdx Vdx Jxx Jux Jx
0 0 1 0 0

whered is the driver steering command, which we will view as the disturbance input fo
the control design, andlis the steering command from the actuator; these are illustrated in
Figure 3.2 below. Further definitions of the parameters appearing in (&.4)\ween in Table

3.1.

Figure 3.2: Active steering as control input.

Single track model with differential braking input

For use with the control design based on the active differential brakitueor we intro-

duce the state = [B 1) cp]T, wheref is the sideslip angle of the vehicle. Then the
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3.4 Vehicle modelling andLT Ry

linearized equations of motion corresponding to this model are as follows

X = AXx+Bsd+Byu with (3.5)
[ 0Jeq Pl _ 1 _hc  himgh-k |
MV M2 Juxv JxxVv
£ —K 0 0
A — Jzz v , (36)
_ha hp _c mgh-k
Jyx JuxV Jxx Jxx
0 0 1 0 |
T T
= GJ cly  hg = T )
Bs e G IS g ] ., Bu [ 0 —5- 0 0] - (3.7)

whereu represents the differential braking force on the wheels; it is positiveaitibg is
on the right wheels and negative if braking is on the left wheels. Difteakloraking force
as the control input is depicted in Figure 3.3 below. Note that we can brtier &ont,
rear or both of the wheels on each side of the vehicle depending on thevearedu is

the total effective braking force acting on either side as illustrated in the¢®)3. Further
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Figure 3.3: Differential braking force as control input.

definitions for all the parameters in (3.6) and (3.7) are given in Table 3sh gee [50] for

a detailed derivation of these vehicle models.

In order to model the change in the vehicle spead a simple function of the braking force,
we assume in this version of the model that the longitudinal wheel forcesaed by the

engine counteract the rolling resistance and the aerodynamic drag at all timeer this
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Table 3.1: Model Parameters and their definitions

Parameter Description Unit

m vehicle mass (kg

v vehicle speed [m/s]

o steering angle [rad]
Jux roll moment of inertia of the sprung mass measured at the (kg- v
J,, yaw moment of inertia of the chassis measured at the CG [kg- rr12]
ly longitudinal CG position measured w.r.t. the front axle [m]

In longitudinal CG position measured w.r.t. the rear axle [m|

h CG height measured over the ground [m]

c suspension damping coefficient [kg-n?/s)
k suspension spring stiffness [kg-n?/s?]
Cy linear tire stiffness coefficient for the front tire [N/rad]
Ch linear tire stiffness coefficient for the rear tire [N/rad]

assumption, the vehicle speed is approximately governed by

V=——. (3.8)
In the following subsection we give the description of the dynamic LTR thatitilize in
the robust control design.
3.4.2 The dynamic load transfer ratio,LT Ry

Traditionally, as discussed in the related work section, some estimate of tiotevielad

transfer ratio has been used as a basis for the design of rollovemficeveystems. The
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3.4 Vehicle modelling andLT Ry

load transfer ratio [88, 48] can be simply defined as the load (i.e., verticad ) difference
between the right and left wheels of the vehicle, normalized by the totall@adlje weight

of the car). In other words,

Load on right tires — Load on left tires

Load transfer ratie= .
Total weight

(3.9)

Clearly, this quantity varies betweerl and 1, and for a perfectly symmetric vehicle that is
driving in a straight line, it is zero. The extrema are reached in the caswbéel lift-off on
one side of the vehicle, in which case the load transfer ratio is-Alatepending on the side
that lifts off. If roll dynamics are ignored, it is easily shown in [88] that toeresponding

load transfer ratio (which we denote by R;) is approximated by

~ 2ayh
LTR = giT’ (3.10)

whereay is the lateral acceleration of the CG ahds the vehicle track width.

Note that rollover estimation based upon (3.10) is not sufficient to detetatingient phase

of rollover (due to the fact that it is derived ignoring roll dynamics). éee obtain an exact
expression for the vehicle load transfer ratio which does not ignordynfimics; we denote
this by LT Ry. This was initially suggested by us in [124], and to aid exposition we repeat
the derivation here. Recall that we assumed the unsprung mass weighirtsignificant

and the main body of the vehicle rolls about an axis along the centerline ofitiedt the
ground level. We can write a torque balance for the unsprung mass thiecagsumed roll

axis in terms of the suspension torques and the vertical wheel forceBavest

T _T -
—FRE'FFLE‘i‘k(p"‘C(p:O' (3.11)

Now substituting the definition of load transfer from (3.9) and rearrangielgls the fol-

lowing expression foL.T Ry:

2 .
LTRy = iyt (co+ko). (3.12)
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In terms of the statd, T Ry can be represented by the following relationship

LTRy = C& where C=|g o 2o A (3.13)

We now provide a brief description of the actuators to be used in implementingrou
posed controllers based on active steering and differential brakirnvghat follows, we also
give the assumptions regarding the known and unknown vehicle paraeterell as the

sensory information that we utilize in our controller design.

3.4.3 Actuators, sensors and parameters

We are interested in control design based on two type of actuators: diffarential brak-
ing and active steering actuators. Active braking actuators are alfeadg in many stock
production cars that are equipped with active safety systems such agdBSock Brak-
ing System) and EBS (Electronic Brake System) or similar such systems, whichable
of selectively braking each of the wheels. These systems are becomiegooular and
have been accepted as an industry standard in most of the vehicle seglisnts these
actuators, a yaw moment can be induced during a turn by braking combioétioa four
wheels, which can impose increased oversteer or understeer degpendime application.
In the context of rollover prevention, the active braking can be used)ample, to reduce
the lateral acceleration or any other suitable measure of rollover potartfabs the T Ry.
Braking actuators also have the side effect of reducing the forwaoditse which has pos-
itive influence on the rollover threat. The fact that control designs uiage actuators
can be commissioned without much financial overhead makes them thergdedetuator
candidates in the literature. Therefore, in one of the implementations of thsetrdésign
methodology explained in this chapter, we assume active differential lgrakinators with

access to full state information.

As an alternative to the active differential braking, we are also intera@stetbust control

design based on active steering actuators. There are two types & sigering meth-
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ods: full steer-by-wire and mechatronic-angle-superposition typéser-By-wire actua-
tors do not contain a physical steering column between the steering witttleawheels;
the steering torque is generated by a servo motor based on the drivemgstsmmmand.
This enables steer-by-wire actuators to be flexible and suitable for gar@hicle dynam-
ics control applications. However, stringent safety requirements dm sggtems prevent
them from entering today’s series-production vehicles. Mechatramgteasuperposition
type active steering actuators however have been recently introdutieel noarket. They
contain a physical steering column and act cooperatively with the dvidele they permit
various functions such as speed dependent steering ratio modificattbactive response
to mild environmental disturbances. It is plausible that active steering artuaiib be-
come an industry standard in the near future, due to their capability of diratlynost
efficiently (in the sense that they do not cause any speed loss) affeéntitateral dynamics
of the car. Active steering based lateral control methods can be petiensparent to the
driver and they are likely to cause the least interference with the dritentiunlike the
control approaches based on differential braking and active ssigpe Moreover, the use
of active steering actuators do not result in a significant velocity losseftre they are
likely to enter the market initially for the high performance vehicle segment. efber as
an alternative implementation of the design methodology we describe in this chapte
utilize mechatronic-angle-superposition type steering actuators with acckabkstate in-
formation. Although such active steering actuators require torque inputsthe driver,
initially we assume no internal actuator dynamics or delays that might arisediiiger in-
teractions. It is however possible to account for the effects of these icathtroller design.
Also, our results can easily be extended to the case of steer-by-wisg@stwhere driver

interactions are of less importance.

In the discussion that follows, we assume that all the model paranetéss J,2 |y, Ih,
Cv,Ch,k,h, andc are known to demonstrate the method. However, our control design is

easily extended to account for uncertainty in these parameters, whickemendtrate by
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designing our controllers to be robust with respect to uncertainties inlgetpeeds and
center of gravity heighlh. As a side note, although we assumed all the vehicle model pa-
rameters to be known, it is possible to estimate some of these that are fixeohKioatvn)
using the sensor information available for the control design suggestepve have an-
alyzed this in detail in the preceding chapter and examples of it can alsaibd fio the

literature [122], [131].

3.5 State feedback controllers for robust disturbance

attenuation

We are interested in designing a controller to prevent rollover that is retitls respect
to parameter uncertainty, and in doing so we consider the vehicle modelsflibthform
(3.5), and (3.3). Our starting point is in results obtained by Pancakéssand Brockman

in [92, 91] for uncertain systems of the form

X = A(8)x+B(8)w+By(8)u (3.14)

zi = Cj(0)x+Dj(0)w+Dju(6)u, j=1,....r, (3.15)

wheref is some parameter vector that captures the plant nonlinearity/uncertaiiti, @em
depend ont, x, w andu. The vectorx(t) € R" is the state at timee [0,0) andw(t) € R™

is a bounded disturbance input. Als() € RY is the control input and;(t) € RPi are the
performance outputs. We wish to synthesize a stabilizing controller whigkmiethe peak
values of the performance outputs exceeding certain values. In daojrigrssach output

z; we introduce a measure of performangeavhich guarantees that the magnitude of that
output is less than or equal {9 times the peak value of the magnitude of the disturbance.
We describe here a controller design strategy which can be used to minimipertbe
mance level for one main output while keeping the performance levels fottiee outputs

below some prespecified levels. In addition the controllers are robust setise that they
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ensure performance in the presence of any allowable uncertainty whishaken into ac-
count in the control design. In other words, our feedback contrajjeasantee a bounded

performance output given a bounded uncertain disturbance, thab(s)|| < wmax

We consider linear state feedback controllers of the form
u=Kx, (3.16)
whereK is a constant state feedback gain matrix. This results in a closed loop system
described by
X = [A(0)+By(6)K]x+B(8)w (3.17)
zZp = [Cj(6)+Dju(6)K]x+Dj(6)w, i=1...r. (3.18)

The uncertainty in the plant is required to satisfy the following condition.

Assumption 3.5.1 For eachf and j=1,...,r, the matrix
[ A(B) B(8) By(8) Cj(B) Dj(6) Dju(6) ] (3.19)

can be written as a convex combination of a finite number of matrices (cadigelx matri-

ces)
[Al Bi By Cj, Dj Di“l]’m’[AN By Bu Civ D DjuN}

Remark 3.5.1 Suppose that each of the matrié€®), B(0), By(0), Cj(8), Dj(8), Dju(8)
depend in a multi-affine fashion on the components oMheectorf and each element of

0 is bounded, that is,
0, < 6« < 6x for k=1,...,M.

Then, for all@, the matrix in (3.19) can be expressed as a convex combination otthe 2

matrices corresponding to the extreme values of the componeéisladse vertex matrices
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are given by
[A(6) B(6) By(8) Cj(6) Dj(6) Dju(6)] where 6= 6, or 6 (3.20)
fork=1,...,M.

Remark 3.5.2 One can easily show that when the uncertain system (3.14)-(3.15) satisfie

Assumption 3.5.1 then, for eaéh andj = 1,...,r, the matrix quadruple
(Aci(6),B(6),Cei(6),D(6))
can be written as a convex combination of the matrix quadruples
(Aci;; By, Cely, D1), -, (Aciys B, Caiy» D),
where

A, =A+ByK and Cy =Cj+DjyK, for i=1,...,N. (3.21)

The following result from [92, 91] is useful in designing our rolloveeyention controllers.

Theorem 3.5.1 Consider a nonlinear/uncertain system described by (3.14)-(3.15%aid
isfying Assumption 3.5.1. Suppose that there exist a mat&#xSS > 0, a matrix L and
scalarsfy,...Bn > 0 and Lo, paj, H2j > 0, j = 1,...,r, such that the following matrix in-

equalities hold

Bi(SAT+ASHLT BIi +B,L)+S BB

<0, (3.22)
BBl — Hol
—1jS 0 sg+L'Dj,
0 — D} <0, (3.23)
CjS+DjuL  Dj =l
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foralli=1,...,Nand j=1,...,r. Then the controller
u=Kx with K=LS? (3.24)
results in a closed loop nonlinear/uncertain system which has the followirgepies.

(a) The undisturbed system & 0) is globally exponentially stable, that is, all state trajec-

tories decay exponentially.

(b) If the disturbance input is bounded, that jisy(t)|| < p,, for all t then, for zero initial

state, the performance outputs z ., z of the closed loop system are bounded and satisfy

1z < ViPw (3.25)

for all t where

Yj =/ Hol1j + Ha;j. (3.26)

The scalarss, .. ..y are calledlevels of performanceand can be regarded as measures
of the ability of the closed loop system to attenuate the effect of the distugbapat on
the performance outputs; a smallgrmeans better performance in the sense of increased

attenuation. For a proof of the theorem, see Appendix A.

Comment: In Appendix B we give an iterative LMI solution algorithm to find control
gains that satisfy the hypotheses of Theorem 3.5.1 for the rollover ¢aesmn problem.
This numerical algorithm attempts to minimigefor the specified values gb (where we
consider only two performance outputs) in every iterative solution stefortumately, our
solution method does not permit external specification of both performewnelsy, y», but
rather we specify one of them and then try to minimize the other. In future Ertewe
shall investigate convergence and feasibility conditions to determine therexasiécontrol

gains guaranteeing pre-specified performance lgyels
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Remark 3.5.3 It is straightforward to show that the inequality (3.22) can be expressed a

follows

AS+SA +B,L+LTBl+aiS B
, (3.27)

B;r —ajl

fori=1,...,N, wheredas,...,ayn > 0 are scalars.

Remark 3.5.4 Consider the situation in which the matricBs,,...,D;j, are all zero for
some performance outprt Then, for each, inequality (3.23) is satisfied for somg; > 0
if and only if it is satisfied withup; = 0. Hence, iDj,,...,Dj, are all zero, inequality (3.23)
can be replaced with

S SGHLDL | (3.28)

C;S+DjyL —I
In this case,
Vi = /Hollyj - (3.29)

Also, using Schur complements, one can show that the above inequalitynalequto the
following inequality which is linear in the variablé&sand ;.

TnT
-S SG +LTD], (330

CiStDjul  —Hyjl

Remark 3.5.5 Consider the closed loop system subject to a fixed bounded disturbance
which satisfieg|w(t)|| < pe. Let
V(x) = x"Px (3.31)

and consider the bounded ellipsoid in state space defined by
&(Pw) = {x€R":V(X) < Hopg, } - (3.32)

The inequalities in (3.22) guarantee that whenever a state trajectory iseoafsitk ellip-

soid the time rate change of the Lyapunov functbis negative. From this one can show
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that the ellipsoid is both invariant and attractive. Attractive means that alltségeetories
converge to the ellipsoid with increasing time. Invariance means that if a stptetory
starts in the ellipsoid, it remains there forever; in particular, if a trajectorysst the ori-

gin, it will always be contained in the ellipsoid.

The inequalities in (3.23) guarantee that each performance aytpatisfies
12 (®)]1% < BV (X(1)) + pojwa(t)?. (3.33)

Hence, if a trajectory starts within the ellipsoid, it must satigfy(t)|| < y; p., for all t.

Otherwise||z;(t)|| is “eventually bounded” by; pe.

3.5.1 Rollover prevention controllers with differential braking

Here we use the above results to obtain rollover prevention controllerg dsferential
braking as the sole control input. The vehicle model utilized is the single tradeigoven
in (3.5) along with systems matrices (3.6), and (3.7). We consider the 'draterering

wheel angle in degrees as the disturbance inpuhis is related to the steering angldy

m

5= 1555 @ (3.34)

whereA is the steering ratio between the steering wheel and the wheels and is talen to b

18.

For reasons discussed earlier, we chanse LT Ry given by (3.12) as one performance
output; we want to keefyz;|| < 1 for the largest possible steering inputs. We consider the
magnitude of the braking foraeto be limited by the weighingof the vehicle; so we choose
Z, = uas a second performance output. The resulting system with two perfogroatputs
can be described by

X = Ax+Bw+Byu

71 = Cix (3.35)

Z, = U,
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where
m
1801

Bs. (3.36)

The parameters of the above model were tuned against the dynamicsopaatgpassenger
vehicle such that there is a close match between the model and the measctrstates.
The tuning was performed a&t= 40m/s and with a step steering input of magnitude’.30

The corresponding tuned vehicle parameters are given in Table 3.2.

First we obtain a control design which is based on the model (3.5) with a $ppeed; we
call this the fixed model controller. We then consider the effect of vargpeed in our
control design and we obtain a control design assuming that the speed @aer some

prespecified range; we call this the robust controller.

(a) Controller Based on Fixed Speed

Here we base controller design on model (3.35) in which all matrices arstardnand
correspond to a fixed vehicle speedwf 40m/s. To obtain a state feedback controller,
we applied Theorem 3.5.1. Since we desire ffmf| < 1 and||z|| < mgfor the largest
possible steering inputs, we considened= mgy;. We used a simplified version of the
iterative solution algorithm described in Appendix B wkh= 1, and utilized with it the
alternative form of the inequalities given in (3.27) and (3.30). By perfog a linear line
search with respect to the scatar we obtained a minimum value of@89 fory;. The

corresponding control gain matrix is

K=mg-[ _71287 09842 03271 —0.0944 ]

Remark 3.5.6 Consider the constant speed model subject to the above control gain ma
trix. According to (3.25), the constraints on the outputs will not be violatethisrconstant
speed closed loop system if the maximum magntmugeof the driver steering disturbance

input satisfieumax < 1/y1 ~ 11297°. However application of the braking controller re-
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Table 3.2: Fixed model parameters

parameter value unit

m 1224.1  [kg]
Jx 362 [kg- ]

Jzz 1279  [kg- ¥

ly 1.102  [m
Iy 1.254  [m
T 151 [m
h 0.375 [m|

c 4000  [kg-m?/g
k 36075 [kg-nm?/<]
Cy 90240 [N/rad|

o 180000 [N/rad|

duces vehicle speed. As the vehicle speed reduces, its tendency terrd#oreases and
the vehicle can actually tolerate disturbances inputs with magnitude conbigideager
than1/y;. In simulations where the speed varies according to (3.8), the aboueotten
gain matrix was able to maintaif. T Ry| < 1 and||u|| < mg for steering input magnitudes

up to Wmnax= 130

For numerical simulations we chose a driver steering input corresppmaian obstacle
avoidance maneuver that is known as the elk-test; we chose an initial speed40m/s
and a peak steering magnitudecwfax = 130°. The steering profile corresponding to this
maneuver and a comparison of speed histories for the controlled andtwoitea vehicles
are shown in Figure 3.4. Notice that, the dramatic speed drop of the contvelhéxle is a

direct consequence of the braking action. In Figure 3.5 we furtherebshailL T Ry| > 1
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Figure 3.4: Steering and speed histories.

for the uncontrolled vehicle throughout the manoeuver indicating possilideer, whereas
the vehicle with the proposed controller satisfieERy| < 1 achieving the intended design
goal and demonstrating the effectiveness of the proposed contrdierf@k this maneuver,
the peak value of the control force generated was about 80% of thewteight of the

vehicle (i.e.,|u] < mg), thus achieving the other design goal.

In the next subsection we demonstrate how our control design methodeatdnded to

account for varying parameter uncertainties.

(b) Controller Based on Variable Speed Model

Here we present a rollover controller design which takes into accouwyitgavehicle speed;

it assumes constant model parameters given in Table 3.2. We assume thpedieis
bounded above and below Byandy, respectively, that isy < v < V. In order to represent
typical freeway driving conditions for a compact passenger vehiclehwsey = 25m/s, and

v =40m/s as the extremum design speeds. Again, we used the model (3.35) faslleontr
design, where the matricés B,B, andC; are given in equations (3.6), (3.7) and (3.12).

System matriceB, andC; are independent of speed. The matriéesdB can be expressed

123



3.5 State feedback controllers for robust disturbance atteuation
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Figure 3.5: Comparison oL TRy for the uncontrolled vehicle and the controlled vehicletwihe

fixed model.

as affine linear functions of the time-varying parametrs= 1/v and 6, := 1/\2. These

parameters are bounded as follows:

where

8,<6,<04, 0,<6
I 1 1
%7 el_ga Q2_$

(3.37)

Hence our system description satisfies Assumption 3.5.1 with the followingveggices

Bs

01Y1+ 022+ Y3,
0,1+ 02Y2+Ys,
T
B = —_— CV‘JXe n Cly
2= 180 [ e 01 3
T
B = — CV‘]Xe C\/lv
= 180A { e 21 3,
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hc,
Jix

hc,
Jux

Ap=01Y1+0,Y2+Ys,

Ar=01Y1+0,Y2+Y3,
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where
[ o3 he  h(mgh-k) | [ Pl |
"l 9 Tl T 0 . 00
0o —-X£ 0 0 0 0 00O
Yl - “ ) YZ_ 3
0 'JLP 0 0 0 0 00O
0 0 o0 0 (0 0 0 0]
0 -1 0 0
£ 0 0 0
Y3 — ZZ
h h-k
% 0 -3 7§
0 0 1 0 |

We used Theorem 3.5.1 to design a controller which guarantees perfmerexelsy; and
Y2 = mgy, in presence of the any variations in speed satisfyidgs < v. We again used the
iterative solution algorithm described in Appendix B wiNh= 4, and in conjunction with the
inequalities (3.27) and (3.30). As a results, we achigved 0.009, and the corresponding

control gain matrix

K=mg-[ _75858 11995 03508 —0.1478!-

Note that, according to (3.25) the maximum theoretical driver steering dastaebinput
permitted iswmax= 1/y1 ~ 11136°. In our simulations however, for the reasons explained
in Remark 3.5.6, the robust controller was able to kédpRy| < 1 for driver steering inputs

with magnitudes up tomax = 136.5°.

For numerical simulations, we used the same obstacle avoidance (elk testicas be-
fore, however with a peak driver steering input of magnitagigx = 136.5° and an initial
speed ol = 40m/s. The steering profile corresponding to this maneuver and a comparison
of speed histories for the uncontrolled vehicle as well as the controlleidlesiwith the
two suggested control designs are shown in Figure 3.6. Notice herethghithe dramatic

speed drop in the controlled vehicles is a direct consequence of thiadpradtion. Also
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we observe that the speed loss due to the robust controller is slightly morthttadue to

the fixed-model controller. Further results are presented in Figures8.3.8, where we
compare the performances of both the robust and the fixed-model benttesigns. We
observe in Figure 3.7 that, the Ry due to the fixed-model controller slightly exceeds the
lower boundary—1 at the initiation of the steering maneuver, while the robust controller
results in|LT Ry| < 1 throughout the maneuver. In Figure 3.8 we compare the normalized
control force histories for both of the controllers and observe that dineylose and both

result inju] < mgas desired.

It is of particular interest for us to see how the suggested controllaerstdlfe vehicle path.

To do this, we note that the coordinatesy) of the vehicle CG relative to the road satisfy

X = vecogB+yY), (3.38)

y = vsin(B+y), (3.39)

where we choose the initial coordinateg0), y(0)) to be zero. In Figure 3.9 the CG tra-
jectories of the controlled and the uncontrolled vehicles are compared.eNhetie that the
shorter paths of the controlled vehicles are due to slowing down as a oésuitking. We
observe in Figure 3.9 that both controllers cause a small divergenoettimintended ve-
hicle path during the first half of the maneuver; in a real driving situatiangdtiver would
time the second half of the maneuver based on the speed and location dfittie.\dence

the second part of the maneuver would occur later for the controlledlgshic

Comment : From the simulation results for the fixed model and the robust controllers, we
observe that both controllers are effective in reducing the vehicle laadfer ratioLT Ry,

and thus preventing rollover.

Comment : Our design is easily extended to incorporate other sources of paramegsf u

tainty such as the vehicle parameters, mass and center of gravity height.

In this subsection we have presented a methodology for the design ofevadiiover pre-

vention systems using differential braking. Next we consider the desigimhé conjunc-
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Figure 3.6: Steering profile and a comparison of speed histories.

tion with the active steering actuators.

3.5.2 Rollover prevention controllers with active steering

As an alternative to the rollover control design described in the precediogection, here
we apply the control design methodology discussed earlier for the dekigtiaver pre-
vention controllers utilizing active steering actuators. We first preseesaya under the
assumption that the plant parameters are known and fixed (Part a). Wexttend our
design to cope with plant parameter uncertainties (Part b). Finally, weefurdfine our
design to incorporate a mode switch to deactivate the controller in situationstiviie is

no rollover danger (Part c).

(a) Active steering PI controller with known plant parameters

Our objective here is to superimpose an active steering control inpud. on the driver

steering inpudy to prevent rollover. Thus, the total steering induo the vehicle consists
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ing.

of two parts and is given by

5=38+u. (3.40)

The driver inputdyq will be regarded as a disturbance input Recalling model (3.3), our

system is now described by
§ = Af +Bw+Bu, (3.41)

whereé (t) € R*is the state at time< R, u(t) is a scalar control input an@(t) is a scalar

disturbance input. The matricdsandB are fixed and are as described as in (3.4).

We propose a proportional-integral (PI) type state feedback contaofltbe form

u=Kpé +K¢, (3.42)

where the integrator stafg is the integral of the yaw rate tracking error:

E=y—gs, &(0)=0. (3.43)
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Figure 3.8: Normalized control history comparisons for vehicles witffiedential braking.

The reference yaw ratgy is given by

Yo = ady, (3.44)

for a constant gair. Although this is a major simplification of the reference driver intent,
we chose this linear expression for the sake of simplicity. The resultinga@ttucture is

depicted in Figure 3.10 below.

Comment : The purpose of utilizing the integral action in the controller is to guarantee
that when driver inpudy is constant, the corresponding steady state yaw rate is given by
¥ = iy = ady. This yaw rate will be large for larg& and will result in a large steady state
value of LTRy. To avoid this one could saturatiy at a certain value such that, in steady

state,||LT R| stays below 1, regardless of the driver input.

We want the controller to keep the magnitudd-®fRy small during transients with reason-

able control effort. In view of this, we introduce the following two perfonmoea outputs:
7 = LTRy=C¢ (3.45)
L = U, (3.46)
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ential braking.

whereC is given in (3.12). Augmenting the vehicle dynamics with the integrator dynamics

and introducing the augmented state [ET & results in the following system descrip-

tion:
X = Ax+Bw-+Byu
7217 = Cix (3.47)
22 = Dy,
where
A0 B B
A= ,B= , By= ,Clz[é o},DzlJ:l (3.48)
cy O -a 0

andcy=[0 1 0 0l

Also, a proposed controller (3.42) can be described byKx where
K — [ o K } | (3.49)
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C.i,|

Figure 3.10: Flow diagram of the Pl active steering controller.

In view of our original control objectives, we will use the results of Tie#o 3.5.1 to obtain
a gain matrix which minimizes the level of performanggfor z; while keeping the level

of performancep for z, below some prespecified levg).

Simulations

The model parameters used here are given in Table 3.2. They are tigieacompact
car. The steering ratio was assumed to be 1:18. In using Theorem 3.5.faio algain
matrix K which minimizes the level of performange for z; subject to a specified level
of performancey for z,, we used a simplified version of the iterative solution algorithm

described in Appendix B withl = 1.

In the numerical simulations presented here, we again simulated an obstAdenae ma-
neuver that is commonly known as the elk-test. The maneuver takes placpeata of
v =140 km/h and with a peak steering magnitude of°10Dhe results of the simulations
are presented in Figure 3.11, which demonstrates the effectivenessaurttroller in pre-
venting rollover in this dangerous maneuver by keeping the magnitutl& [&f less than
one. Notice that driver intervention of the controller as measured by tferatitce in roll
angles of the controlled and uncontrolled vehicles show a slight diffefamplying that

the control action would probably be undiscernible by the driver, whidhverable and
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was one of our aims.
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Figure 3.11: Comparison of the uncontrolled and controlled vehicleshwittive steering (fixed

model).

It is interesting to see how the suggested controllers affect the vehicle Tt this, we
note that the coordinatds, y) of the vehicle CG relative to the road satisfy the equations
(3.38) and (3.39), where the initial coordinateg0), y(0)) are assumed to be zero. In
Figure 3.12 the CG trajectories of the controlled and the uncontrolled vehide®mpared
along with the remaining states. We observe from trajectory plots that cactioh causes

a small divergence from the uncontrolled vehicle path during the firsofithife maneuver
while preventing rollover; in a real driving situation, the driver would timegbeond half

of the maneuver based on the speed and location of the vehicle. Also simila tollth

angle variation, the remaining state plots of the controlled vehicle are closesw® dithe
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uncontrolled vehicle during the maneuver.
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Figure 3.12: Comparison of the states and trajectories of the uncoattalhd the controlled vehicles

with active steering (fixed model).

(b) Robust control design

We now extend the suggested design based on active steering to copenaitiieper un-

certainty. Specifically, we now redesign the controller to take into accoenpanameter

uncertainties resulting from bounded vehicle speed variations as welbdse({ght uncer-

tainties by utilizing Assumption 3.5.1 and using Theorem 3.5.1.

In what follows we shall assume that the vehicle speéslbounded, that isy <v <V,

wherev andv denote the lower and upper bounds on the speed, respectively. dntord
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represent typical freeway driving conditions we chose the speeeeatas v= 20m/s and
vV =40m/sin the numerical simulations below. We further assume that uncertain CG height
h belongs to the intervah, h], whereh = 0.2]m], andh = 0.5[m] denote the lower and upper

bounds of the uncertain CG height, respectively.

We proceed as in the previous subsection, where we used (3.41) ashibkewmodel for
our control design and the matricdandB are described in (3.4). Note that these matrices

depend in a multi-affine fashion on the parameters

O:=1/v, 6:=v, 05 :=h, 04 :=h. (3.50)

Hence, as our model for robust control design, we consider

£ =A6)E +B(0)w+B(6)u (3.51)
where
—26,—-£616, L6,+1616,-6, —£6 —L£6:+7%,
- ﬂel —Lel 0 0
A8) = Yz Yz (3.52)
—3.6165 16165 -1 —£+ 7%
I 0 0 1 0 |
) T
- Iy
B(6) %+%94 CJVTZ %63 0 (3.53)
and
1 1 _ — 2 —2
\:léelé\? v<6, <V, h<6;<h, h*<6,<h. (3.54)

As before, we consider Pl controllers of the form

u = Kpé&+Ké, (3.55)
§ = ¢—ad  &(0)=0.
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Recall the performance outputs and z» described in (3.45) and (3.46). Again, we are
interested in synthesizing a stabilizing controller which minimizes the level obpeence

v for z; while keeping the level of performange for z, below some prespecified level
¥,. With the augmented state= [T &]7, the proposed controller structure can be simply

described bys = Kx where
K= [ Kp K, :| , (3.56)

and the behavior of and the performance outputs can be described by

X = A(0)x+B(8)w+By(0)u

Z = C]_X (357)
z = Dau,
with matrices
AB) 0 B(6) B(6)
A(B) = , B(B) = , Bu(8) = ,C1= [ ¢ o } (3.58)
cg O —-a 0

wherecy, =[0 1 0 0], andDy, = 1. Since the matrice&(8), B(6), By(6) depend in a
multi-affine fashion or@ and each component éfis bounded, it follows that the matrix
[A(B) B(8) By(0)] can always be expressed as a convex combination of the following 16

matrices

A6) B(B) By(6) | where 6 =6, or b (3.59)

that is6¢ equals its minimum or maximum value foe=1,...,4. Note here thafl denotes

thek!" element of the 4-vectdd. Hence the augmented plant satisfies Assumption 3.5.1.

Now one can use Theorem 3.5.1 to design a controller which guarantsiesbiie output
performance which is robust with respect to variations of speed ande@Btiwhich satisfy
v<v<vandh<h<h. Inusing Theorem 3.5.1 to obtain a controller which minimizes the
level of performancey for z; subject to a specified level of performanedor z,, we used

an iterative solution algorithm similar to the one described in Appendix B.
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3.5 State feedback controllers for robust disturbance atteuation

Simulations

Here we present three sets of numerical simulations. The first one is thitecal@bstacle

avoidance (elk test) scenario as in the fixed parameter case. Thus,athegbee of the

driver steering input wad, = 100° and constant speed was set tovbe 14km/h. The

results are presented in Figures 3.13 and 3.14, which demonstrate tttevesffess of the

controller.
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Figure 3.13: Comparison of the robustly controlled (with active stegyiand the uncontrolled

vehicles ¢ = 14km/h, dpeak= 100°, andh = 0.375m).

Comment ;: From the simulation results of the fixed and the robust controllers for the same

maneuver, we observe that both methods are effective in reducing ttheréoesfer ratio

LT Ry, and thus preventing rollover. However the robust controller perfoomés far less
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Figure 3.14: Comparison of the trajectories and states of robustly otiatt (with active steering)

and the uncontrolled vehicles £ 14km/h, dyeax= 1007, andh = 0.375m).

conservative. Also notice that driver intervention of the controller by @osen measure

is practically undiscernible by the driver, which is favorable and wasoder aims.

In the second set of numerical simulations, we again tested a similar obstatearsme
maneuver (elk test) however, this time we set the peak value of the drivmstenput

asdp = 150" and constant speed was fixedvas 70km/h. Moreover the CG height was
selected ab = 0.45m. The corresponding simulation results are presented in Figures 3.15

and 3.16, which demonstrate the effectiveness of the controller foinggGG height.

In the third set of numerical simulations, we performed an obstacle avadaaoeuver

with a peak driver steering input @, = 120°. Also this time we implemented a rapid
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Figure 3.15: Comparison of the robustly controlled (with active stegyiand the uncontrolled

vehicles ¥ = 70km/h, dpeak= 150°, andh = 0.45m).

change in velocity from the initial value of= 140km/h, which simulates braking action

during the maneuver. In this simulation CG height was fixed th 5€0.375m. The corre-

sponding simulation results are presented in Figure 3.17 and Figure 3.18steatiog the

effectiveness of the controller design for varying CG height anddspee

Comment : In all the simulation examples we observe that the robust controller is quite

effective in reducing the load transfer ratid Ry below the safety limits while keeping the

controlled states to be sufficiently close to the reference vehicle states.néiiee that

driver intervention of the controller is insignificant, which was one of thenidéel design

goals.
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Figure 3.16: Comparison of trajectories and states for robustly colettigwith active steering) and

uncontrolled vehiclesu= 70km/h, dpeak= 150°, h = 0.45m).

3.5.3 Controller mode switch

A basic problem with the aforementioned controllers is that they are alvadiys aThat is,
they are always attempting to limit the LTR, even in non-critical situations, thtenpally
interfering with, and annoying the vehicle driver. It therefore makesas®nly to activate
the controller in situations where the potential for rollover is significant. Meretroduce

one such criterion for controller activation.

The switching method introduced here is based on the Lyapunov funétion= x" Px,
where the positive definite symmetric matRxs given byP = S~ andSis obtained when

solving the LMIs in the controller design. ldeally, the controller is only attigavhen
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Figure 3.17: Comparison of the robustly controlled (with active stegyiand the uncontrolled

vehicles (o = 14knvh, dpeax= 120°, andh = 0.375m).

V(x) reaches some critical valdgit. The critical value is chosen so thHail Ry| < 1 when

V(X) < Vit In particular, we regulate the controller input according to
with Vit chosen to guarantee that th€R; is close to one when the controller is activated.

The reasoning behind the above strategy is as follows. Recall from Re&ab that our
original controller design guarantees tiiathe time rate of change dfalong a solution, is
negative outside the ellipsoifl(py,) defined in (3.32) wherpg,, is a bound on the magnitude

of the disturbance input. Suppose now that the controller is not activatéd/gx) > Vit -
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Figure 3.18: Comparison of trajectories and states for robustly colettigjwith active steering) and

uncontrolled vehicles = 14km/h, dpeak= 120°,h = 0.375m).

Then for driver inputsw which satisfyuoHoo(t)H2 < Vrit, the switching controller will

guarantee tha! is negative outside the ellipsoid

Eerit = {XE€R" 1V (X) < Verit } - (3.60)
This in turn guarantees that the ellipsoid is invariant and attractive. In pkntjcf a state
trajectory starts at zero ang||w(t)||? < Verit then, the state trajectory remains within this

ellipsoid. Recall also thalz; || < 11V (X) andz; = LT Ry; hence, whenever a state trajectory

starts at zero ando||w(t)]|? < Verit, We have thatL T Ry| < p11Verit. By choosing
Verit < 1/p11, (3.61)
we guarantee that the controller turns on befaieRy| reaches one, but, the controller does
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3.5 State feedback controllers for robust disturbance atteuation

not switch on for small driver steering inputs. In accordance with standeactice we

propose the following continuous switching-type controller to avoid chagexation:

u=J(V(x))Kx  where V(x)=x"Sx (3.62)
and
(V)= %+%Sat [E(V—ch)ﬂ} ; (3.63)

heresatdenotes the saturation function aaigs a small positive number. The graphgfs

depicted in Figure 3.19.
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Figure 3.19: Graph of the functior.

We demonstrate the performance of the above switching controller with fsithalations
whose results are illustrated in Figure 3.20. These correspond to arclebastaidance
maneuver where the peak value of the driver steering ingt4+s50° and the vehicle speed
was fixed av = 140km/h. Notice that although there is no rollover threat in this maneuver,
the original linear robust controller was trying to compensate by a very smallint as seen
from the actuator input plot. Whereas the robust controller with the stemyesvitching
produces no input and tHeT Ry corresponding to the switching controller is identical to

that of the uncontrolled vehicle, demonstrating the efficacy of the sughesthod.
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Figure 3.20: Comparison of continuous and switched robust controlléfs active steering at a non

critical maneuvery= 14km/h, dpeak= 50°, andh = 0.375m).

3.6 Conclusions and possible future directions

In this chapter, we have presented a methodology for the design oft nadhisle rollover
prevention systems using differential braking and active steering acsu&yp introducing
the load transfer ratib T Ry, we obtained a system performance output whose value pro-
vides an accurate measure for determining the onset of rollover. Ouveplwevention
controllers are robust in the sense that they guarantee the peak vathesperformance
outputs of an uncertain system do not exceed certain values. Simulatidts résmon-
strate the benefits of the proposed approach in a real-life problem. Irasigeof control
design based on differential braking actuators, the results can eadigted and imple-
mented without much financial overhead, since these actuators alreatinarost stock

passenger vehicles.

Future work will proceed in several directions. We shall extend the metbgy to include
active suspension and combinations thereof to refine our rollover gremestrategy, and
analyze the resulting control allocation problem. We shall also examine thaasffof our

controllers in the presence of conditions which can result in a tripped asllélso, we are
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3.6 Conclusions and possible future directions

looking into extending these ideas to railroad vehicles. Applications of dostriategies
with several actuators is not only limited to road and railroad vehicle roll statigiz, but
can also be used to make the dynamics of a vehicle emulate those of anofickr (&h.

having an SUV behave like a sports car), which shall be future direatiothis research.

Another strand of work will investigate refinement of the synthesis pnaeedn particular,
we shall also investigate a gain scheduled control approach basedadly hadid fixed

models and LMI based controllers as described in this chapter. We slalhabstigate
whether convergence and feasibility conditions can be developed tomietehe existence

of control gains to achieve certain pre-specified performance parswpgte

On the practical side of this work, we have scheduled with our industrigigra an evalu-

ation of our control design in real production vehicles.

Comment : A straightforward refinement of the rollover controller synthesis prooed
introduced in this chapter can be obtained by utilizing more complex vehicle madshs
as the 2-track (i.e., 4 wheel) vehicle model [50] and/or nonlinear tire modajs, HSRI
[22]) in conjunction with the LMI algorithm. We shall consider this extension milear

future.
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Chapter 4

A Methodology for Adaptive
Rollover Prevention Control Design

for Automotive Vehicles

In an attempt to refine the rollover prevention systems introduced in the last
chapter, we suggest here an adaptive controller synthesis procedsezl on
multiple models and switching. We utilize the estimation techniques developed
in Chapter 2 to infer the unknown CG height and suspension parametie of
vehicle, which is then used to switch among a paired set of robust congrolle
Controller adaptation is a byproduct of the switching action, and it results
in higher performance as compared to fixed controllers. Our controbees
based on differential braking, and each one is designed to be robustewith

spect to varying velocity.
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4.1 Chapter contributions

4.1 Chapter contributions

The contribution of this chapter is in implementing the rollover mitigation methodology
givenin the preceding chapter in conjunction with the MMST framework. Wasachieved
by combining the vehicle parameter estimation technique introduced Chapiet thearo-
bust rollover mitigation methodology introduced in the preceding chapter wittitarsed
estimator-corrector structure. To do this, we formulated the rollover mitigatioblgm
as a bounded input bounded output (BIBO) disturbance rejectiorigmnolwith switched
matrices. In doing so, we viewed the automotive vehicle as an uncertaimibaiaystem
with disturbance inputs, and our controllers guarantee that the perfoenmartputs of the
system relevant to rollover are bounded regardless of the parameitiébisng. As was the
case in the preceding chapter, our suggested robust control desilyadradows vehicle
parameter uncertainty to be taken into account in our designs, given thahtertainty

belongs to convex hull.

The work contained in this chapter has resulted in the following publication:

(i) Solmaz S., Akar M., Shorten R.Atlaptive Rollover Prevention for Automotive Vehi-
cles with Differential Braking Under review for 17th IFAC World Congress, Seoul
Korea, 2008.

4.2 Introduction

It has been emphasized several times in the preceding chapters thatithe @& position
plays an important role for the vehicle dynamics and the vehicle road harzbimavior.
Therefore, the effects of changes in the CG position, or the uncertaititye iknowledge
of it, have to be considered for analyzing vehicle dynamics, and mustdosiated for in

designing active control systems for accident mitigation. However, theuliffiis that this
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4.2 Introduction

unknown parameter is not directly measurable and it can vary significaittlychvanging
passenger and loading configurations; such changes are the nerst ipelarge passenger
vehicles such as SUVs, which statistically have the highest rate of rolloeetemts. With
these in mind, we suggested in Chapter 2 a method inspired by the MMST parddig
estimating the unknown and unmeasurable parameters of the vehicle inclueliD thosi-
tion, and then in Chapter 3, we proposed a robust controller synthesisdrttt accounts
for the parametric uncertainties for the specific problem of automotive ealljprevention.
In order to further refine the control design methodology developed iprigweding chap-
ter, we fuse in the current chapter the parameter estimation technique e€Baand the
locally robust rollover prevention design method of the last chapter in aedrsfivitched

feedback control implementation for the rollover prevention problem.

As explained in detail in Section 2.3.4, the height of CG along with the lateraleree
tion are the most important parameters affecting the rollover propensity afilmmotive
vehicle; while the vehicle lateral acceleration can be measured directlynbgrse the CG
height can not be measured and it needs to be estimated indirectly. Onmetradd for
inferring CG height was suggested in Chapter 2. Therefore, we utilizedhigt for the
control strategy advocated in the current chapter with the aim to improveetifiermance
of our active rollover mitigation systems. Specifically, we use multiple identificatiod-
els for inferring the unknown vehicle CG height developed in ChapterHictwis then
used to switch among a paired set of locally robust rollover preventiommaitans that are
designed based on the results of Chapter 3. Due to this structure of multiplecineks-
timation models and the paired controllers, the suggested feedback implemergation
adaptive control approach for the problem of mitigation of rollover, wimeblves inherent

parametric uncertainties due to the unknown or time varying vehicle parameters

Our motivation for considering an adaptive controller implementation for thevey mit-
igation problem is twofold. Firstly, adaptive controllers are the alternatpt@n to the

robust ones and they can potentially provide higher performance. Asveeseen in the ro-
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4.2 Introduction

bust rollover controller implementation example in the preceding chaptesstrobntrollers
have fixed gains that are chosen considering the worst-case thatthemdrgoes; for the
rollover problem the worst operating condition translates to operating thielgavith the
highest possible CG position. While choosing the controller gains for thetvwease guar-
antees the performance (i.e., safety) under the designed extreme apematdition, the
feedback performance of the robustly controlled systems under lessesmveven normal
operating conditions are suboptimal. This is evident from our robust@dmplementa-
tions of the last chapter in that, the suggested controllers were still tryingmpemasate
even when the rollover potential as measured by the “dynamic load traasifer (LT Ry)
was insignificant; this is why we considered the switching rule given in Se@ti®:3 to
switch the controllers on and off depending on the Lyapunov functiotthoAgh such an
on-off switch solution was effective in retaining the expected performarfiche vehicle
under normal operating conditions (i.e., when the rollover risk is small), thepgimal
performance of the controllers for varying rollover accident sceranias still an issue,
which can potentially be addressed by adaptation. The second motivatioarfsidering
the adaptive feedback design for the rollover prevention problem i®ceta the time con-
stant of rollover accidents, which is on the order of seconds (sometinessaefraction
of a second) and is usually accepted to be quite small (see for exampl®f2bfliscus-
sion of this). While conventional adaptive controllers are known to hkowe sonvergence
rates and large transient control errors when the initial parametes em@targe [77], [78]
(a factor that renders these control approaches unsuited for uskawver mitigation ap-
plications), utilization of MMST type algorithms [14] may overcome these probianas
provide high performance adaptive controllers. Therefore, whenowimgy the controller
performance and speed for the rollover problem is considered, MIvt8iieivork becomes
an ideal choice as it can provide a rapid identification of the unknowmpeteas as part

of the closed loop implementation. In this respect, we consider the vehiclmetmaes-

timation methods developed in Chapter 2 in conjunction with a multiple model switched

controller implementation. This way we can rapidly switch to a controller that is optima
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for the maneuver and the vehicle operating conditions, thus improving thmallos&fety of

the vehicle without sacrificing its performance.

The robust controller design described in the sequel is based orediffarbraking actua-
tors only, where each of theproposed switched controllers based on differential braking
actuator has a linear feedback structure with a fixed gain migrixvheren € {1,2,...,n}.

The choice of the control actuator is motivated by the desire to aid the exposftide
multiple model switched control implementation, as the resulting controllers armples
proportional type. However, the extension of the results of this chapteetproportional-
integral type active steering actuator based rollover prevention comsaljgested in Chap-

ter 3 as well as other alternative control approaches is a straighttbwactice.

Similar to the analysis in Chapter 3, we view the automotive vehicle as an uncarsim
with a number of performance outputs and subject to a bounded disterlrgmat. For
each performance outpgt, a performance measuyg; guarantees that the magnitude of
the output is less than or equal to the maximumpptimes the peak value of the magnitude
of the disturbance, for alf € {1,2,...,n}. For each of the switched controllers we utilize
a controller design procedure, similar to the one introduced in the precetager, to
minimize the performance level for one main output while keeping the perfaeianels
for the other outputs below some prespecified levels. Each of the switcimibkers is
robust in the sense that it ensures performance in the presencealfawgble uncertainty
which was taken into account in the control design. In applying theséséasuhe rollover
problem, we consider the driver steering input as a disturbance inpee ®mwish to keep
the magnitude of. TRy less than one, we view this as the main performance output. To
limit the amount of control effort and to accommodate actuator constraintsha@se the
control input as an additional performance output in the feedbackriesigo, we design
each of the switched controller gains to be robust with respect to chawngjimgjty, which is
motivated by the fact that the differential braking actuators reduce thielgerelocity. This

change should be taken into account in the control design as the vehobtiyelirectly
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affects the vehicle dynamics; this is why we consider incorporating a trodssscriteria with
respect to changing velocity, which was possible with the aid of the desigrodwtyy
developed in Chapter 3. Eventually, our controllers are designed tdlke@eak magnitude
of LTRy less than one, which is the criterion for preventing rollover occurresci: ia
equivalent to preventing one-side wheel lift off. Also, as compareddatmtrol designs
of the preceding chapter we can do this in a less conservative fashiotheitielp of the
switching among a set of locally robust controllers, which we demonstratertiymerical

example.

4.3 Vehicle modelling

For the multiple model switched controller design that shall be described imlbaving
sections, we utilize two separate vehicle models that we have already dewetophe
preceding chapters; these are the second order roll plane model easidgte track model
with roll degree of freedom and with differential brake input. While we trgeroll plane
models for estimating the unknown CG height of the vehicle in real time, we utilize the
single track model with roll degree of freedom for designing switchedlacally robust
control gain matrices for use with the state feedback controllers basec atiffitrential
braking actuator. As both of these models have been described in detadl imabeding
chapters, we just give the resulting models in the following discussion aldhgeferences

to earlier sections.

Roll plane model

We use the roll plane model given here and derived in Section 2.3.2 foedltene estima-
tion of CG height based on the multiple model switching framework, details ofhwhére

described in Chapter 2. The 2-state roll plane model is the simplest modetiogghe roll
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dynamics of an automotive vehicle and it is free from the effects of unngesoriginating
from unknown tire stiffness parameters; we emphasize that this a facton#kas the roll

plane model suitable for the real time estimation of unknown CG position.

Under the small angles assumption, and with reference to Figure 2.2, tagogguof mo-

tion describing the roll plane dynamics can be expressed in the followfhgrler state

space form
@ 0 1 @ 0
= . + ay, (4.2)
. T : h

whereay is the lateral acceleration agds the gravitational acceleration. As a simplifying
assumption for the derivation of the model, it was assumed that relative todbedy the
sprung mass rolls about a fixed horizontal roll axis along the centerlitreeofehicle body

at the ground level. For further description of the parameters appeating equation refer

to Table 3.1. Also/y,, above denotes the equivalent roll moment of inertia as described in

(2.9).

Single track model with roll degree of freedom and differental brake input

We use this model with the active differential braking input to design localbysbstate
feedback controllers. Denotingas the sideslip angle of the vehicle, and with reference to

Figure 3.1, the equations of motion corresponding to this model are giieli@ags

X = AXx+Bsd+Byu with 4.2)
[0l Pleq 4 _ he himgh-k) |
MV M2 Juxv Jxxv
L — K 0 0
A = Yz 2 : (4.3)
_ho hp _ ¢ mghk
Jyx JuxV Jxx Jxx
i 0 0 1 0 |
T T
— GJ cly  hG — T .
Bs e 0] , Bu [ 0 —5- 0 0] - (4.4)
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on differential braking actuators

wherex = [B 1] (p (p]T is the state, and represents the total effective differential brak-
ing force acting on the wheels; it is positive if braking is on the right whemdisreegative if
braking is on the left wheels. Differential braking force as the contnaliris depicted in
Figure 3.3. Further notations and parameters appearing in (4.3) anafd.dgscribed in

Table 3.1. Also, for further details of the derivation of this model refergoti®n 3.4.1.

In order to model the change in the vehicle longitudinal speed as a reshié diraking
force, we assume that the longitudinal wheel forces generated by giveearounteract the
rolling resistance and the aerodynamic drag at all times. Under this assunptiaehicle

speed is approximately governed by

.Ul
V__ﬁ' (4.5)

Comment: A detailed discussion of the rationale for using differential braking actsato
for the rollover mitigation problem was given in Section 3.4.3. In the same sedtigher
assumptions on the known and unknown vehicle parameters appearingrndiets above
have been discussed. Also it has been mentioned earlier that the poténbilidwer oc-
currence is measured by Ry, which was derived and explained in detail in Section 3.4.2.
As it will be utilized in the following discussion, we give here the resultantesgion for

LT Ry in terms of the states of the single track model with roll degree of freedomhvignic

LTRy = Cx where C=|g g 2 2 |. (4.6)

mgT  mgT

4.4 Adaptive rollover control design with multiple mod-
els & switching based on differential braking ac-

tuators

In this section we describe an approach for combining the CG estimation metieodig

Chapter 2 with the robust state feedback rollover prevention contrigrdesethodology
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on differential braking actuators

developed in Chapter 3. We note that the adaptive control implementatiom lgére is
inspired, at large, by the MMST control framework developed by Ndn@et al. in a series
of publications [77, 84, 78, 85, 79, 14]. Inthe MMST control framekyaach identification
model is paired-up with a controller as shown in Figure 1.4, and based erfamance
index of the identification errors a model/controller pair is chosen to conteopléint at
every instant. In this chapter we consider a version of this control syrétegbtaining

high performance rollover prevention controllers.

Our LMI based multiple switched controller design methodology is unique in tieesbat
it enables us to synthesize locally robust controllers to account for thegatg vehicle
speed as described in detail in Section 3.5.1. In doing so, we utilize a varidtibe itera-
tive numerical procedure given in Appendix B to guarantee the robssfethe switched
controllers. Also, in order to improve the overall controller performamaeswitch among
multiple fixed controllers (where each is locally robust with respect to dhgngelocity)

based on the real time estimation of the CG height and the suspension pasamétem-
phasize that in this controller implementation, adaptation is a byproduct of titchswy

itself.

4.4.1 Switched state feedback control

We utilize a variation on the LMI based design methodology developed in Ghate
obtain a set of robust rollover prevention controllers using the diftezkebraking as the
sole control input. In order to explain this in detail, we shall first expressontrol design
procedure in terms of a generic switching state space system given, iwlparameterized

in terms of a parameter vectér

X = Ap(0)x+By(0)w+Bys(6)u 4.7)
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on differential braking actuators

where the vectok(t) € R™ is the state at timé € [0,») and w(t) € R™ is a bounded
disturbance input. Alsa(t) € R™ is the control input and;(t) € RPi are the performance
outputs. Theindexy € {1,2,...,n} represents discrete switches in the system matrices. We
assume that parameter vecfocaptures the plant parametric uncertainty, which can depend
ont,x, w andu. Moreover, we have the following assumption that is required by the plant

uncertaintyd to be satisfied.

Assumption 4.4.1 For eachn € {1,2,...,n},and je {1,2,...,r} the matrix sextuple

A(6) By(6) Bun(6) Cpo(6) D1s(6) Dyug(6) |

belongs to the convex hull of a finite number of N matrix sextuples below

[Al-n Bin Bun Ciin Djwn Djun |7
o Annp B Buwn Cjwn Diun DjuN,n]'

This implies that for eacly € {1,2,...,n}, and je {1,2,...,r}, there exists non-negative

scalarséy, ..., & such thatyN ; & = 1and

Ap(8) =3 &AL, B(8)=3N1&Bin,  Bun(6) =3 1&Byn,

Cjn(8) =31&Cin, Djn(0) =31&Djn, Djun(6) =31 &iBjun-

Note that for eaclm € {1,2,...,n} this assumption is the analogue of Assumption 3.5.1.

Now, we wish to synthesize stabilizing switching state feedback controll&ishyprevent
the peak values of the performance outputs exceeding certain valudaintnso, for each
outputz; we introduce a measure of performarngg which guarantees that the magnitude
of that output is less than or equal 1g, times the peak value of the magnitude of the
disturbance. In order to achieve this, we base our controller on the foljciiveorem that

is analogous to Theorem 3.5.1 and is the main result of this chapter.
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Theorem 4.4.1 Consider the system described by (4.7)-(4.8) and satisfying Assumption
4.4.1. Suppose that there exist an invertible matrixS > 0 (with P= S1), matrices Ly,
scalarsfy, ..., By > 0and tny, Uny;, Uy, > 0, forall j=1,...;r andn € {1,2,...,n},

such that the following matrix inequalities hold

B (SA, +A R STLIBL n+Bunln)+S BnBig

<0, (4.9)
Br]i Bi-l:r] _uf]ol
—Hny; S 0 SCJTm‘H-E DJ'TUi,n
< .
0 _“nzjl D}ﬂ <0, (4.10)
CjinSt+Dju.nln  Dijin -

foralli=1,...,N, j=1,....,randn € {1,2,...,n}. Then the switched state feedback
controllers
up =Kpx  with K, =L,S* (4.11)

result in a switched nonlinear/uncertain closed loop system, which hasltbeifty prop-

erties.

(@) For eachn € {1,2,...,n}, the undisturbed system (4.7) widh= 0, is globally expo-

nentially stable. That is, all state trajectories decay exponentially.

(b) The undisturbed closed loop switching systemA, (8)x+ By 5 (6)u is quadratically

stabilizable with switched controllergt) € {us,uy,...,uUn}.

(c) If the disturbance input is bounded, that jgp(t)|| < p, for all t > 0 then, for zero
initial state, the performance outputs, z .,z of the closed loop system are bounded and

satisfy
llzj(t)| < [argnggxnvnj] Pw (4.12)

for allt > O where

Yn; = \/HnoHny +Hny,  for ne{l2,....n} (4.13)
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which implies the L stability of the closed loop switched system (4.7)-(4.8).

Proof of Theorem 4.4.1:As a first observation, we note that for eaghe {1,2,...,n}

this theorem analogous to Theorem 3.5.1. Thus for the constituent systemestlit is
given by Theorem 3.5.1. Accordingly, propertigg and(c) above, directly follow from
Appendix A. Specifically inequality (4.12) results from the fact that the mariniement
of {y;,¥2,-- -, ¥n; } determines the upper bound on the performance oufayts || for each

j=1,...,r. Next we show that propertip) holds.
The undisturbed system associated with (4.7) can be expressed by

for eachn € {1,2,...,n}. This undisturbed feedback system is said to be quadratically
stabilizable via linear state feedback [91] if a Lyapunov solution (or Lyapumatrix)P =
PT > 0 and controlleu, = K,x exist along with a positive definite and symmetric matrix

Q= Q" > 0 such that
2X"P(A;(8) + By (8)Ky)x < —x" Qx (4.15)

forallt e R, xe R™*andn € {1,2,...,n}. From Assumption 4.4.1, for ea¢he R and
8 we can express each of the matriéeg6), andBy,(8) as a convex combination &f

matrices as follows

N N
Ar)(e) = _ZlfiAi,m Bu,n(e) = Zlfl Bui,n, (4-16)

whereéy, &, ..., &y are scalars such thif\‘zlfi = 1. Based on this observation, quadratic

stabilizability condition (4.15) can be expressed as
A P+PA , +KiB) . P+PB, 1Ky <0 for i=12...N (4.17)

wheren € {1,2,...,n}. Pre and post multiplying this inequality I8 P~ and substituting

L, = K;Sthen yields the following quadratic stabilizability condition in termsSaindL
SA, +AS+LB]  +Bygly <0 for i=12...N (4.18)
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wheren € {1,2,...,n}. We note that this last condition is a necessary condition for in-
equality (4.9) of the theorem. This establishes the quadratic stability of thetwinid
system (4.14) for each € {1,2,...,n}. We emphasize that the quadratic stability of the
undisturbed system (4.14) implies tBeunded-Input, Bounded-Outp@IBO) stability of

the system with bounded disturbance inputs [102].

Therefore the nonlinear/uncertain system given with equations (4.9)-(# compliance

with Assumption 4.4.1 i&. stablé by Theorem A.0.1 of Appendix A.
Q.E.D.

In the sequel we give the implementation of Theorem 4.4.1 to the switchedalagkbver

controller design based on differential braking actuators.

4.4.2 Adaptive rollover control design

In applying the Theorem 4.4.1 to the rollover prevention problem, we utilize thetlsim-
ple roll plane model and the single track model with roll degree of freeddamdifferential
brake input, as described in Section 4.3. We consider the driver stéepngas a distur-
bance input. Also, since we wish to prevent rollover of the vehicle, oitcked controllers
are designed to keep the peak magnitude of the load transfer ratio lessthamhich im-
plies preventing one-side wheel lift-off, and thus avoiding rollover.r&fare, we view the
dynamic load transfer ratibT Ry given in (4.6) as the main performance output. Also, in
order to limit the amount of control effort as well as to accommodate actuatmtraints,
we choose the control input as a secondary performance output iredédck design.
Moreover, as an integral part of our design, we consider the switobmoller gains to be

robust with respect to changing velocity, which is motivated by the facttieadifferential

1this is similar to the definition of input/output stabilityQS) in [126], with the exception that it

takes into account the initial state. See Appendix A for theeige definition oL, stability.
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braking actuators reduce the vehicle velocity. This change should be itaiceaccount
in the control design as the vehicle velocity directly affects the vehicle dymsarnhits is
why we consider incorporating a robustness criterion in the controllégmiésr changing

velocity, which is possible with the aid of the Theorem 4.4.1.

The switched multiple model control structure is schematically shown in Figurevhere
there aren identification models driven by the same plant output, which are paired up with
n locally robust state feedback controllers. In what follows, we firstidee the switched
identification algorithm as a control switching criterion, and then give the impiéatien

of the stable switched adaptive rollover controller design utilizing differébteking actu-

ators and making use of Theorem 4.4.1.

(a) Controller switching criteria

As explained in detail in the preceding chapters, the height of CG along véthatéral
acceleration are the most important parameters affecting the rollovemzigpef an auto-
motive vehicle; while the vehicle lateral acceleration can be measured dibgctignsors,
the CG height can not be measured and it needs to be estimated indirecttywkleise
multiple identification models for inferring the unknown vehicle CG height aloith the
relevant suspension parameters in real time, as developed in Chaplecl2jsithen used as

a criterion to switch among a paired set of locally robust rollover prevectotrollers. We
emphasize that due to this structure of multiple indirect estimation models and thd pair
controllers, the suggested feedback implementation is an adaptive cqurobah for the
problem of mitigation of rollover, which involves inherent parametric undatitss due to

the unknown and/or time varying vehicle parameters.

The identification models are based on tHe @der roll plane model (4.1) and are mainly
used to determine the unknown CG height of the vehicle. The estimation modetb-ar

tained by varying the uncertain model parameters within bounded intenalatanfinite
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Figure 4.1: Multiple model switched adaptive control structure.

number of grid points, where the uncertain parameters are the CG heligietar roll spring
stiffnessk, and the roll damping coefficient Specifically, each of the unknown parameters
is assumed to belong to a closed uncertainty interval suchhtha¥”’, k € %", andc € €,
where each interval contains a finite number of grid points so that theyecaapbesented as
{hy,ha,hs,... . hp} C 2, {ki, ko, ks, ..., Kq} C ', and{cy,Cz,C3,...,Cq} C € with dimen-

sionsp, g andd respectively. Then = p x g x d different identification models are formed
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corresponding to the cross combinations of the grid points in the paramatar. $tilizing

(4.1) the equations of motion corresponding to each mipden be represented as below

@ 0 1 0

o . 1% a,  (4.19)
: Ckeman o || mry
% Y K eq

wherel = 1,2,...,ndenotes the identification model number and
szeq == Jxx‘l— mh%

is the equivalent roll moment of inertia. We assume that all models have Ztab ¢on-
ditions such thaty, (0) = 0, andqbz (0) =0, for { =1,2,...,n. Note that the zero initial
conditions physically correspond to starting the identification algorithm ategbtrdriving
state, where the roll angle, and the roll ratep of the vehicle are both zero. Also note
that every model is driven by the same inpyf(lateral acceleration), which is a measured

sensor quantity of the vehicle.

Since we are interested in designing state feedback controllers, thEst@Be ) (p] T
defined earlier, is assumed to be available at all times. Consequently thagtslg@of
the vehicle is a measurable quantity. We can then define the identificationferrie
Z'™ roll plane model as the difference between the vehicle’s measured gi¢ and the

corresponding model output; we denote thisspyand compute it from
eg=¢0—q@, for (=12..,n (4.20)

Next we compute the MMST cost function (a function of the identificationreiopneach

model) described in detail in Section 2.4.1, and repeated below

t
%) = alle; ()| +B [ & Ile()jar. (4.21)

where = 1,2,...,nanda, 8 > 0 are scalars controlling the relative weights on instanta-

neous and cumulative identification error measures. Alsdenotes the forgetting factor.
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Switching among the models and choosing the one with the minimum cost based on the

criterion below

nt) = argZ:TinnJZ (1), (4.22)

.....

yields the model with the minimum cumulative error; we denote the minimum cumulative
error byJ, (t), and the corresponding selected model parameteks loy andhj,, which
represent the vehicle in the parameter space described t and.>Z, respectively. Based

on the certainty equivalence principlehe selected model with the estimated CG height
hy, and linear suspension parameteysc, is then used to switch to a paired locally robust

linear state feedback controll€, € {C1,C,...,Cp}, where
Cy: up =Kpx, ne{l,2,....n} (4.23)

Having described the controller switching criteria, we next give the phaeefor designing
individual robust rollover prevention controlle@,, for the switched controller implemen-
tation shown in Figure 4.1. We utilize a control design methodology based eordim
4.4.1 to obtain a switched set of locally robust rollover prevention contsolismg the

differential braking as the sole control input.

(b) Adaptive rollover control implementation based on differential braking

The vehicle model utilized is the single track model with roll degree of freedondwith
differential brake input given in (4.2) along with systems matrices (4.3}, (44). We
consider the driver’s steering wheel angle in degrees as the disterlaout c; this is

related to the steering angdeby
m
0= s @

%in the sense of adaptive control, the principle of certaggyivalence from tuning to switching

(4.24)

is based on the hypothesis that a small identification eeadld to a small tracking error [14],[79].
Therefore using a model that has the closest outputs to tifabe plant is likely to yield the best

feedback control performance.
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whereA is the steering ratio between the steering wheel and the wheels. We wish-to syn
thesize a stabilizing controller corresponding to each CG height settingh wregents the
peak values of the performance outputs exceeding certain values Mdialsed controller
design strategy is used to minimize the performance level for one main oWfp&),
while keeping the performance level for another output (control ingutelow some pre-
specified levels. In addition, our controllers are locally robust in theestrad they ensure
performance in the presence of any allowable uncertainty in the vehiad sphich results
from the differential braking based controller intervention. Thus, wesitter the effect of
varying speed in our control design assuming that the speed variesawerprespecified
range; we call this the locally robust controller corresponding to eaotbowtion of CG
height and suspension parameter configurations within the parameter cgfazed by a

finite number of grid points inZ’, ¢, ., and is denoted by the indexe {1,2,...,n}.

As the load transfer ratio is a metric directly related to rollover occurreree $&ction
3.4.2 for the significance dfT Ry in terms of rollover), we set this parameter as the first
performance output, that B = LT Ry, whereLT Ry is defined as a function of the vehicle
states in (4.6). We want to keéjz; || < 1 for the largest possible steering inputs (i.e., the
disturbance inputs), which is equivalent to keeping all the 4 wheels in conith the road
and thus preventing rollover. Also, we consider the magnitude of the lyd&hee u to

be limited by the weighing of the vehicle; so we choose = u as a second performance
output. Note that this is a simple approach for imposing hard actuator cotstiraitne
control design based on differential braking. The resulting system widhpevformance

outputs can be described as follows

X = Ap(t)x+Bp(t)w+Byu
77 = Cpx (4.25)

Z = U,

where the switching uncertain system matriégst), B, (t), and switching matrixC, are
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given by
[ ol P hyoy  hy(mgh—k) | [ g ]
Tmlyw miZ T T T dv T Jwv mIav
i —1 0 0 Cly
Jzz Jz7 T I
Ap(t) = Y  Bi(t) = 751 (4.26)
_hyo hyp _ S mgh, —ky hG,
Jxx Jxv Jxx Jxx Jex
0 0 1 0 0
and
— 2c 2k
Cn 00 Zn 2ol (4.27)

for eachn € {1,2,...,n}. In order to consider uncertainty arising from changing vehicle
velocity in the control design, we assume that the speed is bounded aimbbelaw byv
andy, respectively, that isy < v < V. Note that the matriceB, andC,, are independent of
vehicle speed whereas the system matifiGg$) andBj, (t) can be expressed as affine linear

functions of the time-varying parametefis:= 1/v and 8, := 1/v2. These parameters are
bounded as follows:

0,<61<01, 6,<6:<86; (4.28)
where

1 1
L O=5, B= 5 (4.29)

le 9 élz

< |k
<k

We can also defin@ = [ 8;, 6, ]T as a 2-vector representing the parameter uncertainty

resulting from changing velocity.

Aip=01Y1y+ 022, +Ya,, Az =01Y1+ 0,2, +Ya,,

(4.30)
Asp=0.Y1, +§2Y2,n +Yan, Asn=0:Y1q,+0,Yo,+ Y3,
" T
M Jzz Jxx (431)

T
_ __n L h
Bsn =Ban = 1z, [ qrﬁqﬁl CJVZIZV 3:5“ 0 ] )
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where
_ : - _ ) .
0 —JL 0 0 0O 0O 0O
er'_ 7z , YZ,!]— ,
o Y 0 0 0O 0 00
0 0 0 0 O 0O 0O
- - - - - (4.32)
0 -1 O 0
Jﬂzz 0 O 0
Y37n:
_h,]o 0 G mgh, —kp
Jxx Jxx Jux
i 0 0 1 0 |

foreachn € {1,2,...,n}. Note that for eacly, it is possible to express both of the uncertain
matricesA, (t) andBy, (t) as a convex combination of the 4 distinct vertex matrices defined

above, i.e.,

4 4
A=Y EAn  Brl)= 3 &Bn,

whereéy, &, &3, &4 are positive scalars such thﬁ{tlfi = 1. Thus our system descrip-
tion satisfies Assumption 4.4.1, and therefore we can employ Theorem 4.48i¢m dhe

switched rollover prevention controllers.

Numerical implementation

Here we present the implementation of the adaptive switching rollover comtdelégn as
depicted in Figure 4.1, which takes into account robustness with respetyiag vehicle
speed as well as the switches in the CG height of the vehicle. We used thepaceeters
given in Table 4.1 for the model representing the simulated vehicle dynanses loa the
single track model with roll degree of freedom. For the ease of expositierconsidered
only the switching in the CG heighh) in our simulations, which can occur as a result of

rapid vertical motion of passengers and loads (e.g, loads falling verticadlythee inertial
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forces exerted during a cornering maneuver). Note that we condittedinear suspension
parameterg, andk to be fixed and known parameters in conjunction with the CG height
estimation algorithm (i.e., the controller switching logic). For the controller switchin
gorithm (CG height estimating algorithm) we considered CG height uncertaituy $oich
that{0.5,0.55,...,0.85} C s#, comprising of 8 possible CG height configurations in total.
Also we set the free design parameters for the cost function (4.24)-a6.2 andf3 = 0.8,
while the forgetting factoA; was chosen to be 0. We emphasize that the forgetting factor
becomes important if the plant undergoes rapid switches; this is not thdarabe CG
height uncertainty considered here (where we assume that CG heigiknsewn and not

changing in a finite time horizon), thus we get= 0 in the following discussion.

For the design of corresponding velocity-robustified controllers, waraed that the speed
is bounded above and below by- 20m/s, andv = 40m/s, which represents typical freeway
driving conditions for a compact passenger vehicle. Then we emplojiedrém 3.5.1
based on the system description (4.25) along with the vertex matrices (8% 22)
to design 8 switched controllers based on switching CG height configusatiemoted by
n € {1,2,...,8}, where each locally robust controller guarantees performance Igyels

andyy, = mgyy,, in the presence of any variations in speed satisfyirgv < V.

In order to choose the switched controller gains based on Theorem\8esutilized a vari-
ation of the iterative LMI solution algorithm described in Appendix B wiMh= 4. The
algorithm was modified such that it calculates controller gains for the 8 CGitheagfigu-
rations, all of which conform to Theorem 3.5.1 and also share a commauhgpa solution
(CLS)P =PT > 0. In order to obtain the commdPmatrix, the same LMI algorithm was
used for the worst case CG height (i.Bnmax = 0.85 [m]) as described in the appendix.
Then obtained Lyapunov solutidghwas fixed for the other CG configurations and the iter-

ative LMI algorithm was repeated. As a result we obtained the followingrBrotber gain
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Table 4.1: Simulation model parameters

parameter value unit
m 1300 [kg]
g 9.81 [m/s?
Jpeak 150  [deg
A 18 non-dimensional
Jex 400  [kg-n¥?
Xy 1200  [kg- n¥]
ly 1.2 [m]
Ih 1.3 [m]
L 2.5 [m]
T 1.5  [m
h 0.5 [m]
c 5000 [kg-n?/s
k 36000 [kg-nm?/<
o} 60000 [N/rad]
Ch 90000 [N/rad]
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matrices
Khooss = [ 59767 09345 02430 04289]-10'
Knoso = [ —6.0000 10179 02078 03171]-10°
Khoo7s = [ —7.4007 11068 01630 00803]-10"
Kheo7o = [ —7.6453 11675 01307 00003]-10'
Khooss = [ —7.8537 12186 01009 —0.0565] 10"
Khoso = [ 80653 12632 00727 —0.0988 10"
Kn-oss = [ —82826 13029 00452 —0.1308) 10"
Kheoso = [ 85039 13384 00182 —0.1554]-10"

In what follows, we present the simulation results corresponding to thersditcontrol
structure shown in Figure 4.1 which utilize the above control gains basedrging CG
configurations. In our plots we provide a comparisons of the switchqatisdaontrol with

a fixed robust controller, where the robust controller has the fixedKjaifigs assuming the
worst case CG height d¢f = 0.85m. We also compare the results with uncontrolled single

track model with roll degree of freedom.

For the numerical simulations, we used the obstacle avoidance maneuves(eicenario
described in Chapter 3 with a peak driver steering input of magnimde= 150° and with

an initial speed off = 12km/h. The steering profile corresponding to this maneuver and
the resulting CG height estimation are shown in Figure 4.2. In this figure wetlmait¢he

CG height estimation does not start until the maneuver is initiatee=diseg and till this
point (where no maneuver takes place), the worst case CG configufiagio the maximum

CG heighth = 0.85m) is assumed for safety considerations.

In Figure 4.3 we give the comparison of the vehicle speed and the cootod histories
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Figure 4.2: Driver steering input and the corresponding real-timenesstion of CG height.

corresponding to the switched adaptive controller and the robust dentrote that the
positive control effort indicates a clockwise effective braking torgod the negative one
indicates the anti-clockwise, as depicted in Figure 3.3. Also, both the adaptiy the
robust controllers result itu| < mgas desired as seen in in Figure 4.3. The dramatic speed
drop observed in the controlled vehicles is a direct consequence obittmiber braking
action. Also notice in the figure that the resulting control actuation profiléh®adaptive
controller is smaller, which causes a less speed drop of the vehicle cahipdhe robustly

controlled vehicle; this is an indication of the effectiveness of our adaptwtrol approach.

The corresponding T Ry plots for both of the robust and the adaptive switched controllers
are presented in Figure 4.4. We observe in the figure that, while both obtiteoliers
achieve|LT Ry| < 1 throughout the maneuver, thd Ry due to the switched adaptive con-
troller is less conservative than the robust one, which indicates highfermpance. Note
that this observation is in agreement with the conclusions derived fromed=#§8. Also
notice in this figure that theT Ry corresponding to the uncontrolled vehicle is close to 2,

which is well above the vehicle rollover limit.
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Figure 4.3: Vehicle speed variation and normalized control force histo

In Figure 4.5 we give a further comparison of all the vehicle states quneling to uncon-

trolled, robustly controlled and adaptively controlled vehicles.

As a final comparison we look at how the suggested controllers affevethiele path. To

do this, we note that the coordinatesy) of the vehicle CG relative to the road satisfy

X = vecogB+yY), (4.33)

y = vsinB+y), (4.34)
where we choose the initial coordinateg0), y(0)) to be zero. In Figure 4.6 the CG tra-
jectories over the horizontal plane (representing the road plane) faotiteolled and the

uncontrolled vehicles are compared. Notice here that the shorter paths obntrolled

vehicles are due to slowing down as a result of braking.
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Figure 4.4; Comparison of.T Ry for the controlled and uncontrolled vehicles.

4.5 Conclusions and possible future directions

In this chapter, we have presented a methodology for the design of savaclagtive vehi-
cle rollover prevention control systems using differential braking actsate suggested
using real time estimation of CG height as well as suspension parameteroasaler
switching criteria. We designed our rollover prevention controllers to ballipcobust in
the sense that they guarantee the peak values of the performance tatpeitsounded in
the presence of parametric uncertainties in the system. We demonstratediaraesigns
with numerical simulations and compared them with fixed robust controllers. r@s$ults
indicate performance gains with the proposed adaptive switched coppxach over the
robust controller alternative. We emphasize that due to the chosen Icactuator (i.e.,
differential braking), our suggested control designs can easily be ingpited and tested
without much financial overhead, since these actuators already exisstrstook passenger

vehicles.

Future work will proceed in several directions. We shall extend the metbg to include
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Figure 4.5: Comparison of the controlled and uncontrolled vehicleestat

active steering, active suspension, and combinations thereof to rafinrglover prevention
strategy, and analyze the resulting control allocation problem. Applicatieugh a control
strategy with several actuators are not limited to road vehicle stabilizatiorit, ¢tan also
be used to make the dynamics of a vehicle emulate those of another vehicleafgrg an

SUV behave like a sports car), which shall be future direction for thisares.

On the practical side of this work, we are planning to evaluate the suggesitthed

controller design in real production vehicles.
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Chapter 5

A Pole Placement Design
Methodology for Switched Discrete
Time Linear Systems with
Applications to Automotive Roll

Dynamics Control

In this chapter we consider the asymptotic stability of a class of discrete-time
switching linear systems, where each of the constituent subsystemiis@ehu
ble. We first present an example to motivate our study, which illustrates that
the bilinear transform does not preserve the stability of a class of discrege tim
switched linear systems. Consequently, continuous time stability results can-
not be transformed to discrete time analogs using this transformation. We then
present a subclass of discrete-time switching systems, that arise riitgine

practical applications, with globally asymptotic origin. We show that global
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attractivity can be established without requiring the existence of a common
quadratic Lyapunov function (CQLF). Utilizing this result we present sgmnth
sis procedures to construct switching stabilizing controllers for two sdpara
problems in automotive control; the first problem is related to the stabiliza-
tion of road vehicle roll dynamics subject to changes in the center ofitgrav
(CG) height. The second problem concerns the design of PID tracking c
trollers for emulating reference roll dynamics while guaranteeing transient
free switching as well as stability due to varying CG height. The efficacy of

our designs is demonstrated by numerical simulations.

5.1 Chapter contributions

The scientific contribution of this chapter over the state of the art is threeffatdtly, we
showed by means of a simple example that the bilinear transform does sety&¢he sta-
bility properties of linear time-varying systems. This implies that the asymptotic stability
of certain type of switching discrete time systems does not necessarily fotbonthe con-
tinuous time systems with this property, and that their stability must be investigatepaus
first principles approach’. Based on this conclusion, the seconttibation of the chapter
is the extension of a recent stability result for a class of continuous time sdig}ystems
to discrete time. We provided a rigorous proof of this using a non-Lyapapproach and
showed that the conditions for stability of this specific system class do notysfoifow
from the existing continuous time results in the literature. The final major cotitibof
this chapter is the application of these theoretical results for practicalota@sign laws
for switched systems. In particular, we formulated the motion of the automativdy-
namics as a switched dynamical system, where the switching was assumedatsbé by
changing CG height. Then we utilized active suspension actuators to aesityollers for

two separate problems for this dynamical system: driver experienc@esinant and the
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roll dynamics emulation (i.e., reference trajectory following). We showetftiidboth of
these problems, our synthesis procedures guarantee that the swittdestiloop system is

stable under arbitrary switching.

The work contained in this chapter has resulted in the following publications:

(i) Solmaz S., Shorten R., O’Cairbre FA global attractivity result for a class of switch-

ing discrete-time systerhAmerican Control Conference, July 11-13, 2007.

(i) Solmaz S., Shorten R., Wulf K., O'Cairbre FA‘design methodology for switched
discrete time linear systems with applications to automotive roll dynamics ¢gntro

Automatica, Accepted for Publication, November 2007.

(i) Solmaz S., Shorten R. A discrete time stable switched control design methodology
for automotive roll dynamics tracking based on pole placef&iider Review for

American Control Conference, Seattle, Washington, 2008.

5.2 Introduction

Many control problems that arise in automotive engineering lead naturalgjutans that
involve switching between a set of stabilizing controllers. Examples includg édatrol
[95], speed control systems [118], and robust rollover systemgq,[[22E]. In this chapter
we consider two such problems, where switching arises naturally due tgeban the
vehicle parameters. Both problems are related to the design of feedbatrkllens to
regulate the roll degree of freedom of an automotive vehicle making us#ieé suspension
actuators. In one implementation we look into design of robust switched dergrthat
prevent instabilities due to abrupt changes in the center of gravity positioa. second
implementation we consider tracking of a reference state related to roll dysiaanid in
doing so we again design our controllers to guarantee that possibleeshangenter of

gravity position do not cause any instabilities.
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Typically, switched linear controllers are designed using linear matrix irgigsa(LMIS);

for example see Chapter 3 as well as [124], and [125] for examplesobf designs for
automotive rollover prevention control applications. More often than ridt,dased control
system design is based on quadratic Lyapunov functions, and is itératigéure, requiring
multiple searches before a controller satisfying certain performancei@nsefound, as
should be clear from Chapter 3. It is known that the existence of a commadrafic

Lyapunov function (CQLF) is sufficient, but not necessary, to guaethe exponential

stability of the linear discrete-time switching system of the form
x(k+1) = Ax(k), A € o, (5.1)

wherea” 2 {Ay,....,Am} with Schur stable constituent matriogsc R™" fori € {1,...,m},

and x(k) € R". Design methods that are constructive, in the manner of pole placement, say
for linear systems, are generally not available for the design of switcysdmas. One
such method was however initially proposed in [112]. Here, for contiauimoe systems,

the authors prove that sets of system matrices that are Hurwitz stable hichn every
matrix pair is simultaneously triangularizable, and which have real eigersvalmengst
other conditions, result in linear switched systems that are globally unifoxxplyresntially

stable.

The basic problem addressed here is to study the discrete time analog gktbin £lass.

To show that this is not a trivial exercise we present the following example.

Example 5.2.1 Consider the following stable LTI systems,

Sa i X=Ax, A eR¥3 (5.2)
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with, matrices

-19 0 0 -19 0 0
Al=| 0 -9 o0 ;o A=| —10 -9 o0 ;
0 0 -025 ~1875 0 -0.25
~19 0 1875
AA=| 0 -9 875
0 0 -025

These three matrices all share the same eigenvalues, and they satisfpdh®s of the
Theorem given in [112]. Therefore, one can conclude that the agmimtime switched
system (5.2) is stable. Now consider the bilinear mapping [70] (or “Tustarisfiorm)

below
Agi=A-D"YA+D),  i€{1,23},

wherel € R3*3 is the identity matrix. The resulting discrete time matrices are

09 0 O 09 0 O

Aai=| 0 08 0 |- A2=|01 08 0 |-
0 0 -06 15 0 -06
09 0 -15

Aiz=| 0 08 —-14

0O 0 -06

Itis sufficient to show that there exists a switching sequence between ttieasAy 1,Aq 2,

A4 3} such that the resulting system
Zag; - X(k+1) =A(K)x(k) for A(k) € {Ag1,Ad2,Ad 3},

has eigenvalues outside the unit circle. We simply consider the incremeiritictisgy se-

quencedq 1 — Ag2 — Ag 3; then the dynamics of the system evolve according to the matrix
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product
Ag = Aq,1Ad2Ad 3.

Since the eigenvalues @§ are {0.512 —0.081 1.944}, then with one eigenvalue outside

the unit circle, this switching sequence is unstable.

Remark 5.2.1 This example shows that, unlike LTI systems, the Bilinear (i.e., Tustin)

transform does not, in general, preserve the stability of linear time-vasyistgms

This example and the resulting observation has profound implications forotegstem
design. Traditionally, the approach to relate continuous-time linear time invgti@h
Hurwitz stability results to discrete-time LTI Schur stability counterparts regtiive use of
the bilinear transform. However, the above example illustrates that thisagpi® flawed
for designing switched systems. Our example is consistent with the resubtseein a
recent paper [70]. Here, it is known that while quadratic Lyapunaoetions are preserved
under the Bilinear transform, other non-quadratic Lyapunov functioashat [70]. Un-
fortunately, the example demonstrates that matters are much worse thaedeapahis
paper; namely, thatot only are non-quadratic functions not preserved under Bilinear

mapping, but also that stability need not be either

Fortunately, it is possible to modify the proof in [111] to place additional éigctime
conditions on the system matrices to guarantee the global attractivity, ancd ten ex-
ponential stability [102] of the origin for this system class. This is one of tlircipal

contributions of this chapter. With this background in mind, and making useeaintin
results given in Section 5.4, we give two distinct examples of stabilizing désrtidesign
as applied to aforementioned automotive control problems; this is another coaijwibu-

tion of the current chapter, where we consider switching stability as wethasient free
switching (i.e., bumpless transfer) as a design criteria for problems relatelli dignamics
control. Specifically, the first problem that is the main motivation for the stuthyarturrent

chapter, is related to stabilization of the roll motion in automotive vehicles, widahbe
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modelled with discrete-time switching dynamical modes; this is introduced in Secton 5
The switching in roll dynamics occurs as a result of changes in the ceingeadty (CG)
height during fast cornering maneuvers, which can happen aslaotsgertical load shifts
(i.e. loads falling and/or moving vertically). The second problem introdirt&egction 5.6

is about reference tracking controller design for the switched roll aljoeproblem, which
can be used to emulate the roll behavior of a given reference vehicle gualanteeing
switching stability. We give a proportional-integral-derivative (PID) trolker synthesis
procedure for this problem. We also give numerical simulations for bothecdpiplications

that demonstrate the efficacy of our controller synthesis procedures.

5.3 Definitions

In this section we give simple concepts and definitions, which are usefukirethainder
of the chapter. Although some of these concepts have been utilized inys&fiapters, we

state them here for added convenience.

() The switching system Consider the discrete time linear time-varying system
X(k+1) = A(k)x(K), (5.3)

wherex(k) € R", and where the system mat#xk) is such that it switches between
the matriceshy € R™" belonging to the set7 = {Aq,...,An}. We shall refer to this
asthe switching systemThe time-invariant discrete time linear systeth+ 1) =

Aix(K), denoted, is referred to as thié" constituent system

Suppose the dynamics of the discrete-time switched system (5.3) is deshkyibed
the a'h constituent linear time invariant system starting at the discrete timekgtep
where 1< a < msuch thak(k+ 1) = Agx(k) over the discrete time interviily , Ky +

s. By definition, the next system that we switch to, say yesystem (1< y < m)

starts at the end of number of discrete time steps, that iskgt+ s, with initial
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conditions equal to the terminal conditions of tn@ system at the discrete time step

Ka +S.

(i) (Uniform) Stability of the origin: The origin of the discrete-time system (5.3) is
an equilibrium state. The equilibrium state (origin) is said to be stable if foryever
€ > 0 andkg > 0, there exists &(&,ko) > 0 such that| Xo ||< d(&,ko) implies that

I x(ki %0, ko) [|< &, Vk > ko.

(iif) Attractivity of the origin: The equilibrium state (origin) of (5.3) is said to be attrac-
tive if for somep > 0, and for evenyd > 0 andky, there exists a numbaér(0, xo, ko)

such that| xo ||< p implies that|| x(k;xo,ko) ||[< 0, VK> ko+T.

(iv) Global attractivity of the origin: The equilibrium state (origin) of (5.3) is said to
be globally attractive if lim_.. X(k; X0, ko) = 0, for all initial conditionsxg and for all
ko > 0. Global attractivity of the origin implies that all trajectories starting in any

given neighborhood of the origin will eventually approach the origin.

(v) (Uniform) Asymptotic stability. The equilibrium state of (5.3) is said to be asymp-

totically stable if it is both stable and attractive.

(vi) (Uniform) Exponential stability[102]: The equilibrium state of Equation (5.3) is
said to be exponentially stable if there exists a finite positive congtani and a

constant < A < 1, such that
I X(k X0, ko) [|< YA ™ || xo |, (5.4)

for all k > kg. Note that “uniformity” here means thgtandA are independent d&.

In the study of switching systems it is often of interest to establish stability under
arbitrary switching. For this case uniformity requires that the parametérs/, A

are independent of the switching signal.

A useful technique for establishing the exponential stability of the syste3h ibto

look for the existence of a Lyapunov function.
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(vii) Common quadratic Lyapunov function (CQLHL12]: Consider the switching sys-
tem defined in (5.3) where all the elementsagfare Schur stable. The quadratic

function
V(x)=x"Px, P=PT >0, Pe R™", (5.5)

is said to be a CQLF for each of the constituent subsystms < {1,...,m}, if the

symmetric positive matri® is a solution for the Stein inequality
ATPA —P < 0. (5.6)

The existence of a common quadratic Lyapunov function implies the expohentia

stability of the switching system (5.3).

(viii) Pairwise Triangularizability[112]: We will refer to pairwise triangularizable ma-
trices later in the chapter. Let a switching system described by (5.3) le@.giv
Suppose that a number of non-singular matrifgsexist, such that for each pair
of matrices{A,A;} in </, wherei,j € {1,...,m} andi # j, the pair of matrices
{TiinTij‘l, TijAjTij‘l} are upper triangular. Then every distinct pair of matriggsA,; }
in <7 are called pairwise triangularizable. In general, pairwise triangularizakslity

not sufficient for the existence of a CQLF for the switched system (5.3).

(ix) Linear Systemsiltis well known for continuous and discrete time linear systems that
global uniform attractivity (GUA) of the origin implies global uniform exporial
stability (GUES) [40]. Thus establishing GUA of the origin is enough to establis
GUES.
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5.4 Stability of a class of discrete-time linear switched

systems

While the ultimate objective of this chapter is to obtain the conditions for the glatrata
tivity and stability of the origin of a class of systems defined with (5.1) (whayeta&o A;
matrices can be simultaneously triangularized), for the purpose of exposigiconsider a
subclass of such systems, where amongst other condition4;, thatrices ine are diago-
nalizable, and where any two of thgmatrices share at least- 1 real linearly independent
eigenvectors. Note here that the assumption of diagonalizability is motivatu lexam-
ples that we wish to consider in sections 5.5 and 5.6. Under these conditiertgjgin of

the switching system is globally attractive as verified in the following theorem.

Theorem 5.4.1Let ¥ = {v1,...,Vn11} be a set of real vectors, where eachevR" for
i ={1,2,...,n+1}. Suppose any choice of n vectors¥#nare linearly independent. For

eachic {1,2,...,n+ 1}, we construct Me R"™" matrices as follows

[V]_,Vz, .. vanlaVn] for i=1
M= ) (5.7)

Vi, Vst Vi, os V] TOF 2<i<n+1

i.e., M is obtained by replacing thé — 1)!" column in M with the vector y,1. Suppose
we also have p different diagonal matrices,Dp, ..., Dp in R"*" with all diagonal entries

in the right half of the unit circle, i.e., for every diagonal enfty; of Dy, we can write
0<Ayj<l, for 1<h<p, 1<j<n (5.8)
We now define the matrices Ac R™" as follows
Ani = MiDpM L, (5.9)

and let.«7 be the set of all A for he {1,2,...,p} and i€ {1,2,...,n+1}. Then for the

switching system (5.1) with the set defined as above, the origin is globally attractive.
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Proof of Theorem 5.4.1:As a first observation, we note that the sétwith elements as
defined in (5.9) consists of different diagonalizable matrices,;, wherem= p(n+1).
Also note that the eigenvalues &f; € </ are the diagonal entries @f,, which were all
assumed to be in the right half of the unit circle, while the eigenvectors,pfare the
linearly independent columns of; € R™". A further observation is thad#l; matrices as
defined in (5.7) are formed hydistinct linearly independent elements of the 8etwhich
consists of a totah+ 1 realn-vectors, i.e.y; € R" fori € {1,2,...,n+ 1}. Then any choice
of two matrices inZ will share at leash — 1, and at mosh common linearly independent
real eigenvectors. For ease of exposition we divide the proof thatslioto three distinct

steps to arrive at the global attractivity result of the origin for (5.1).

Step-1: In this step we replace threx n matricesM; andAn; € <7 by (n+1) x (n+1) ma-
tricesl\ﬁ,- andA_\h,i, respectively. The matrice'gh,i col {A_\m : Anj € &/} are chosen such
that there is at least one common eigenvettér( 1 o .. o ) for all the matrices in

</, and also such that the properties of the solutions of the dynamic system
X(k+1) = A(K)x(k), A(K) € o, (5.10)

will ultimately imply the global attractivity of the origin of the system (5.1), wheflke) =
(X1(K), ..., Xn(k)) @andx(k) = (Xn+1(K),x1(K), ..., Xa(K)). In what follows, we first give a tech-
nical lemma which helps us construct the augmented math?t;es RMD>(HD) jn the

higher dimensional state space.

Lemma5.4.1[112]: Let ¥ = {vi,...,Vas1} be a set of real vectors with each&/R" for
i={1,2,...,n+1}. Suppose any choice of n vectorsinare linearly independent. Then
there exists a positive number “a" such that the set\(a, v1), (1,v2), (1,V3),..., (1, Vhi1)}
is linearly independent i1, Here(a, v;) is the vector with A- 1 coordinates, whose first

coordinate is “a" and remaining n coordinates are the n coordinates, of v

See [112] for a proof of this lemma. Making use of this lemma we now define rastric

M; € RML*(+1) with a special structure such that they embed hes R"™" matrices
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defined in (5.7) as follows

wherei € {1,2,...,n+ 1}, and ‘@’ is a scalar as defined in Lemma 5.4.1. This structure

1 b1 1
0
0
0 M;
0

, (5.11)

for M was used to ensure that its columns are linearly independent foi.gsote that the

change in the value difis necessary as the vectgrdoes not appear isl; wheni = 2. Also

notice that the columns cNT. apart from the first column, are the vector elements of the set

W defined in Lemma 5.4.1 and thus they are linearly independent.

We shall uselv_li‘1 in the following discussion, and given (5.11) it can be expressed as

for some real numbes 1,s »,...,S n that depend on

1

S1

S2

Sn

(5.12)

We further define matriceBy, € R x(+1) which embed the diagonal matricBs, €

R"™" satisfying (5.8), to be the following set of matrices

Dn
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Making use of these newly defined matricesitq 1 dimensional real vector space, we now

consider an analogue of the expression (5.9) to construct the ma@ﬂc@md the sets,

which are defined as follows

Ani € o 2{Ani:An €}, where (5.14)
0 chiz Chi2 --- Chin
0

Ani & MDM = g Ani : (5.15)
_0 =

for some real numbersy; 1,Chi2,...,Chin that depend orh andi. Note here thatr =
(1 o ... o)'isacommon eigenvector for all the= p(n+ 1) number of matrices
A_\m in 7. We can now express th@+ 1)!" order state space system with the augmented

matricesAn; € <7 as in the following form

Xn+1(K+1) Xn+1(K)
x1(k+1) x1(K)
xok+1) | =Ai|  xm | (5.16)
Xn(k+1) Xn(K)

which according to the special structure assumeeﬁ@tin (5.15), is valid if and only if the

following set of equations hold

x1(k+1) xa(K)

X2(k+ 1) A X2(K) and % 1(k+1)= i Chi,jxj(k)' (5.17)
: =1

Xn(k+1) Xn(K)
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Itis apparent from this last equation that the higher dimensional switchstgra withn+ 1
states explicitly contain the original switching system wittates. We will show in the’®
step of the proof below that for any solutiatk) = (Xn+1(K),x1(k),X2(K), ..., %n(k)) of the

augmented switching system (5.16),
lIMg oo (X1 (K), X2(K), ..., Xn(K)) = 0

will be guaranteed for any solutioffk) = (x1(K),x2(K), ..., X.(K)) of the original switched

system (5.1) with the special structure, thus proving global attractivityeobtlgin.

Step-2: Now for a giveni € {1,2,...,n+ 1} we consider the+ 1 linearly independent
columns ofM;. These form am+ 1 dimensional coordinate system which includeas

one of the axes. We consider the projection of the stdtgonto each coordinate systems
(columns ofM;) as the dynamics of the system (5.16) evolve. This projection is given by

the vectors
g(k)=M"xKk), i=12..,n+1, (5.18)

at each discrete time stdép We denote thg'™" component ofgi (k) as[gi]j(k) for each
i={1,2,...,n+1}. We further defin&5(k) as the set consisting of the first components of

n-+ 1 coordinate projections at the discrete time $&tag follows

G(k):<[gl]1(k> (g21(k) [gsla(k) . [gn+11l<k>)» (5.19)

where[gi]1(k) denotes the first component of tH projection vector; (k), and it is the

projection ofXonto, that is the first column dff; as seen in (5.11).

Now suppose that the system dynamics of the augmented system (5.1@saribed by

the following LTI discrete-time system
X(k+1) = An;X(K) (5.20)

during some arbitrary discrete time interJ&d, k], wherek, = k; + s for some positive

integers representing the number of discrete time steps. Note that by making use of the
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definitions OfA_hJ in (5.15) and the coordinate projectiog$k) from (5.18), we can express

the evolution of this LTI system by
0i(k+1) = Dhgi (k). (5.21)

Now we denoté\n , as them™ diagonal element of the x n diagonal matrice®y, for some
me {1,2,...,n} and for soméh € {1,2,..., p}, wherep is the total number of diagonal
matrices. Notice here that according to the definition (5.A8), is the(m+ 1)t diagonal
element ofD,. Suppose further that each eigenvalyg, is on the right half of the unit
circle satisfying (5.8). Under these assumptions, each component ofdjeetipn vector

(5.21) has the following dynamic characteristics

0 for m=1
[Gi]m(k+1) = : (5.22)
Anm-1[Gilm(k) for m=23,...,n

Given any fixed intervdk, ko] the solutions to above dynamical equations can be expressed

as

[Gi]m(K) = (Ahm-1)* " [gilm(k) for m#1 (5.23)

Note here thalgi]1 (k) is a constant function of the discrete time skepvhile eachgi|m(k)
for m# 1 varies according to dynamic relationship (5.23) above over the disctetgah
[k1,k2]. We will now look at how the first component of the projection vedigiy (k) varies

over the discrete intervals when the system matrggsswitch.

We denote the first component of the projection vector (which is constaat)tbhe dis-
crete intervalky, k3] as[gj]1(k). We further define the “distance; (k) between the first

components of the projection vector for the two switching systems as follows
di,j (k) = [gi](k) — [gj]2(K)|- (5.24)
Note that using the following identity
0i(k) = MM, gj (K), (5.25)
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one can conveniently calculate the distadcgk) as the first component of the vector
(MM = 1)gj (K,

wherel is the identity matrix inR("3*("+1) | ooking at the structure of the matri ; =
I\W(ll\ﬁj for i = j, we observe that the first-row first-column entry of this matrix is always
unity. Next, we give a lemma which establishes that there is only one otheerweatry

in the first row off j matrix.

Lemma 5.4.2 If we exclude the first column of the matrix; = M."M;, for i # j, then
there is only one non-zero entry denoted bycin the first row, whered is an integer
representing the column inde&.depends on the j indexes, and the relationship is given

as
j when i=1

S =
i when i=23....n

Note thatd is never 1.

See [112] for a proof of this lemma. Using this lemma and the identity (5.25) it igtra

forward to show that
[gil1(K) = [gj]a(K) +Cijslgi]s(k) for 1<i<n+1 i#]j, (5.26)

which is valid irrespective of the switched system that we are in at any giigerete inter-
val. Now using this last equation that is valid in any of the switched systemgy alibim the
dynamic relationships for each component of the projection vector (5.28ath valid for

a given discrete intervdks, ky|, we obtain
[Gi]1(K) — [9j]1(K) = ¢ j.s(Ans_1)< ™[gjls(ke) for i . (5.27)
Substituting this relationship id ; (k), which is the distance as defined in (5.24) yields
dij(K) =cj5l(Ans-1)  [gjls(ka) for ki<k<k, and i#]j. (5.28)
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We will show in the 3 and the last step below that the distandggk) either stay constant
or become smaller after each consequent switching of the correspahdiagical system

expressed by (5.10).

Step-3 :In this last step we show that lim., |[gi]1(k) — [gj]1(k)| =0, foralli, j € {1,...,n+
1}. From this fact we will deduce that lig.. (x1(K), . ..,X.(k)) = 0, which is sufficient to
demonstrate the global attractivity of the origin of the switching discrete-timersy.1)

with the seteZ as defined in the statement of the Theorem.

We first denote the maximum and minimum values of theGg) from (5.19), with
maxG(K)]m andmin[G(K)]m respectively, where the subscriptdenotes then" fixed dis-
crete interval spanninfkm, kmi1]. Now we consider the evolution of largest distadggy,
among the maximum and minimum values@(k) for the first intervallky, ko], which can

expressed as
Ydmax = [maXG(K)]1 — minG(k)]1| = (gl (k) — [gr]1(K)],

for somei,r € {1,2,...,n+1}. Hereldmaxdenotes the largest distance for the first interval.
Also note that for some random elemgndf the setG(k) such thatj € {1,2,...,n+1} the

following is true in the intervalky, ko]
tdmax= [[0i]2(K) — [9]2(K) + [9]2(K) — [gr](K) .
Using the equation (5.27) one can express this last relationship as follows
Yomax= [Ci.j.5[9i]5(K1) (An5-1) ™ +Cjrp[0r]p (Ka) (Anp—1) 7], (5.29)

where integer column indexés p vary as described in Lemma 5.4.2. Note thdgif1(k)
is @ maximum or minimum value @(k), then the last line above collapses to just one term

instead of two, and in this case the following arguments will also work.

Remembering that all the eigenvalues of the system are on the right half ahitharcle,

we denotedmax as the largest eigenvalue defined formally as follows
Amax = maX{)\h,j :1<h<p,1<j<n} (5.30)
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Now utilizing this last expression and the subadditivity property of absolaligevof real
numbers (i.e., triangle inequality) given gs+ b| < |a| + |b|, we can express the largest

distance (5.29) with the following inequality

A

fdmax < 161511[03]5(ke) [ (An5-1) ¢ + [Crpll[gr]o (Ka) | (Anp-1)< ¢

[1ci.j.511[91]5(Ke)| + 1€j.r.0l 0] o (Ka)[] A (5.31)

IN

We emphasize that in this last inequality the expresgipps||[9j]s(ki)| denotes the dis-
tance betweefgi]1 (ki) and|gj]1(k1). Similarly, |cjr||[0r]p(k1)| denotes the distance be-

tween[gj]1(ki) and[gr]1(k). Then,

IN

1
Omax

[lei.ll (@115 (ka) |+ 1511100 ]o (ko) ] Ames

ImaxG(ky)]1 — min[G(ky)]1|AK k. (5.32)

IN

The last inequality follows from the fact that, over the discrete time intékyalty], [gi]1(k)
remains on the same side of the constgqt (k), and[g]1(k) remains on the other side of
[9j]1(k). This is because the right hand side of (5.27) does not change sign ashtimges

in the intervallky, ko).

Note that at the terminal step of the interval, thdt is kp, we have

ImaxG(k)]1 — min[G(K)]1| < |[maxXG(ks)]1 — min[G(ky )]1| AKX (5.33)

Suppose now we switch to the second intefka)ks] such that the dynamics now evolve

according to another discrete-time LTI system described by
X(k+1) = Acux(k), forall kp<k<ka. (5.34)

We again denote the extremal elements of th&gk} for this interval withmaxG(k)], and

min[G(K)]2, while we define the largest distantnax as follows

Zdmax 2 [MaXG(k)]2 — min[G(K)2| £ [[gi](K) - [gr]a(K)],
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for somei,r € {1,2,...,n+1}. Then a similar analysis results in
2Omax = |MaXG(k)]2 — Min[G(K)J2| < |maXG(kz)]2 — minG(ke)l2| Al

Sincek; is both the terminal step of the inten#h, ko] and the initial step ofkz, k3] then

we can substitute (5.33) in the last expression, which yields

ImaxG(K)J2 — minG(k)Jo| < [maxG(kz)]2 — MiNG(kz)]2|Ama

< |maxG(ka)]a — MIinG(Kp) 1 Agax Amas’
This last inequality then implies that
20max= |maxG(k)]2 — min[G(K)]2| < |maxG(ki)]1 —min[G(ki)]1|AKoK.  (5.35)
After another switching of the system to tH& Biterval ks, kq], the procedure can be applied
to arrive at
*dmax= [MaxG (k)]s — min[G(K)]a| < [maxG(k)]1 — min[G(ky)]1[Ama.  (5.36)
For the general situation, when we have switched fomttietime, the system is described

by mth discrete-time LTI system(k+ 1) = A_\Zp?(k) over the time intervalkm, kmy1]. Then

as above we get

Mmax = |MaXG(K)]m— min[G(k)]m| < [maxG(ki)]1 —min[G(ky)]1|AKK.  (5.37)

Therefore, as & Amax< 1, then we conclude that
lim (max[G(k)] —min [G(K)]) =0, (5.38)

k—o0

wheremaxG(k)] andmin[G(k)] denote the maximum and minimum value<Gik) for any

time stepk > k1. Thus,

Ilm|[gi]1(k)—[gj]1(k)|zo, forall i,je{1,2,...,n+1}. (5.39)
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Also substituting (5.27) in the last expression we arrive at the expression

lim |c; j 5/[[93]5(k)[ =0, where ,  (5.40)
S=i if i#1 and i#]

which then implies

lim |[gj]5(k)| =0, (5.41)

k— o0

forje{1,2,...,n+1},andd € {2,3,...,n+1}. Note that this last expression follows from
the fact that the; ; 5 values form a finite collection of non-zero numbers whenj. Also
the equation (5.41) might not hold fdr= 1 because then= j = 1. Therefore, because

limy_.. X(K) = limy_.., M;g; (k), then we obtain

Xns1(K) _1 b 1 .. 1_
[9j]1(k)
x1(K) 0
il2(k
iM%k = amio M [g]]?() o (542)
[9j]n+1(K)
Xn(K) 0 |
which then implies that
xa(K) 0 [gj]1(K)
. T 912K (5.43)
k— 00 . k—00 . .
Xn (K) 0 1\ [gjln+1(K)
0
0
= . (5.44)
0
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Thus

tIim (X1,X2,...,%n) =0, (5.45)

—00

which proves the global attractivity of the origin for the switching system)(5.1
Q.E.D.

Remark 5.4.1 The following facts can be deduced for the sétlefined in Theorem 5.4.1:

(i) Every matrix in</ is Schur stable and diagonalizable.

(i) Any matrix pair in <7 share at leagin — 1) linearly independent common real eigen-

vectors.

(iii) Every matrix pair in</ can simultaneously be triangularized. (See [118] for the

proof of this.)

Remark 5.4.2 We can not simply replace Hurwitz stable matrices for the continuous-time
case in Theorem 3.1 of [112] with Schur stable matrices and arrive aathe sonclusions

of global attractivity of the origin. In the discrete-time case we need theittomgjiven in
equation (5.8) on the eigenvalued®f for 1 < h < p. Because otherwise, we do not get the

global asymptotic stability of the origin. This is demonstrated in the following example

Example 5.4.1 Let the set/ = {v1,Vv2,v3,Vv4} be given as

T T
V1:[100}7V2=[010}7
T T
V3={001]v V4=[111}-
Further assume thad; € R3*3 matrices are constructed as follows
M1_|:V1 Vo V3:|7 M2—[v4 Vo V3:|7
M3:|:V1 Vg V3:|7 M4:|:V1 Vo V4:|'
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Moreover select a 3 3 diagonal Schur stable matiixas follows

09 0 O
D=| 0 08 o
0O 0 -06

Now consider the following Schur stable LTI systems
Sa i X(k+1) = Ax(k), A € R®3, (5.46)
whereA; matrices are constructed from
A=MDMt i=1..4 (5.47)

It is sufficient to show that there exists a switching sequence betwgerisuch that the
resulting system has eigenvalues outside the unit circle. We simply consdectbmental
switching sequencl; — Ay — Az — Ag; then the dynamics of the system evolve according
to the matrix product

A= ALAYAA,. (5.48)

Since the eigenvalues éfare{1.18990.1058 0.2766}, then with one eigenvalue outside
the unit circle, this switching sequence is unstable. It is also interesting tothmeitéf

D is chosen such that all of its eigenvalues are on the right half of the uniecire.,

D = diag{0.9,0.8,0.6}, then theA matrix corresponding to the switching sequence (5.48)
has eigenvaluef0.58610.1517,0.3917} and is stable by Theorem 5.4.1.

Remark 5.4.3 For the class of linear discrete time switched systems that satisfy the condi-
tions of Theorem 5.4.1, one does not necessarily require the existtace@LF to show

the global attractivity of the origin. In other words, it is possible to find sviitgrsystems

that are stable by Theorem 5.4.1, and ttmhot have a CQLF. We emphasize that the class

of such systems (i.e., the subclass of pairwise triangularizable systemg}tig trger than

the class of simultaneously triangularizable systems. Indeed, Example 5.6duicgd in
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the next section presents such a switching system, which arises fronstecgraroblem

related to automotive control.

In what follows, we give two separate controller synthesis procedoreenhancing auto-
motive roll dynamics based on the main results of this section; we also note ¢hfatsth
application we introduce was the main motivation for initiating the study on therurre

chapter.

5.5 A stabilizing switched controller synthesis proce-
dure for configurable driving experience of auto-

motive vehicles

As an example of the application of the results presented in the previousnseetioon-
sider the design of an automobile dynamics enhancement system. The aimcohtha
design given here is to configure the driving experience based o attspension actu-
ators alone, and at the same time, to guarantee switching stability in the roll dgnainic
the vehicle subject to sudden changes in the dynamical characteristittaiai®@oconfig-
urable driving experience enhancement technologies utilizing activeot@ystems is a
topical subject for many luxury car manufactures. In fact, there aea@dyr some passen-
ger vehicles on the market that give the drivers the option to select coaridrsporty
driving experience settings with a press of a button, and/or modify theesagm set-
tings as a function of speed. For example the IVDC (Interactive Vehicjembics Con-
trol) technology from Ford (sdettp://www.ford.ie/ie/smax/smax_interior/smax_dyjand
the AIrMATIC (Adaptive Intelligent Ride System) technology from Mercedienz (see
http://www3.mercedes-benz.com/techlex/ 2006/main_dé, ioth utilize semi-active sus-

pension technologies to achieve these functions. In this section we skosukb a strategy
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may be implemented such that stability is guaranteed irrespective of switctiagillus-

trative purposes, we assume vertical changes in CG position as the antg &b switching
in the dynamical characteristic of the vehicle, which can result from pgsseand load
movement. Thus, the driving experience enhancement control desigriti in the se-
quel is based on a simplified roll dynamics model of a car and aims to adjustsperssion

settings as a function of CG position and without introducing any switchingtitisiess.

We first present the simplified roll plane model of an automobile with a secuaiet tn-
ear parameter varying (LPV) structure. The model presented in thelsegdhe simplest
model that captures the roll dynamics of a car and it is free from theteffiécincertainties
originating from unknown tire parameters. Assuming all vehicle mass is gpaifective

linear torques exerted by the suspension system about the roll cemtiefared as follows
Tspring=K @,  Tgamper=C ¢a (5.49)

wherek, c denote the linear spring stiffness and damping coefficients, respectidy
further define the roll torque input about the roll center (R.C1,aghich is assumed to be
provided by suitable active suspension actuators. For the sake of simple@gsume no
internal actuator dynamics or constraints. Using these notations and d&swnpe can
apply a torque balance in the roll plane of the vehicle in terms of the effestispension
torques and control torque inputs (see Figure 5.1 and Table 5.1 foefurtitations of the

roll plane model), and obtain the following®order relationship

Je®+ C@+ ko = mh(aycosp -+ gsing) + u. (5.50)

Note that for simplicity, it is assumed in this model that, relative to the groundpitumg

Iswitching in the dynamical characteristic of road vehiaas occur due to a number reasons
such as sudden changes in the vehicle mass, sudden chattge®iding configuration (i.e, shifting
CG position), sloshing of liquid loads, a failure in the csiascomponents or the active safety sys-
tems, a sudden switching of the gear during a high speed rogn@aneuver, or any other sources
of high/low frequency oscillations, all of which may causswalden change in the lateral and roll

dynamics response of the vehicle.
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Figure 5.1: Second order roll plane model.

mass rolls about a fixed horizontal roll axis which is along the centerlineedfdldly and at
ground level. In the last equatidk,, denotes the equivalent roll moment of inertia derived

using the parallel axis theorem of mechanics taking into account the CG haitgtion as

described below

Jeq 2 Joc+MIT. (5.51)

For small roll angles, i.eg <, we can approximate the nonlinear terms in equation (5.50)
ascosp ~ 1, sing ~ @. Further defining the state as=[ ¢, ¢]T, we can represent (5.50)

as in the following state space form

X = Acx+ Geay + Beu, with (5.52)
0 1 0 0
Ac: ) Gc: ) Bc: ) (5-53)
_k-mgh ¢ mh 1
JXeq ‘]Xeq JXeq JXeq

whereay is the lateral acceleration measured at the center of gravity. Next wéracns

discrete time approximation for this state space system. To this end considentimeious

197



5.5 A stabilizing switched controller synthesis procedurdor configurable
driving experience of automotive vehicles

Table 5.1: Model parameters and definitions

Parameter Description Unit
m Vehicle mass [kg]
g Gravitational constant [m/s?]
Jx Roll moment of inertia measured at the CGkg- ¥
T Track width [m]
h CG height measured over the ground [m]
c suspension damping coefficient [kg- /s
k suspension spring stiffness [kg-n?/s?]
[0] Roll angle measured at the roll center [rad]
) Roll rate measured at the roll center [rad]
u Torque input about the roll center INm
ay Lateral acceleration measured at CG [m/s?]

time system of the form

E(t)=F&(t) +Haw(t) +Gu(t), (5.54)

whereé (t) € R"is the state, anef € R™", H € R", G € R" are the corresponding system
matrices. Alsaw € R, andu € R denote the disturbance and the control inputs for the this
generic state space system, respectively. Then the discrete time equbfal@s system

can be expressed by
&(k+1) = Aé(K) + Broo(k) + Bou(k), (5.55)
where, denoting the discrete time stepdtythe matrices\, B;, B, are computed from
At At
A=l B = / eB-OHdr, By = / eSA-DHdr. (5.56)
0

0
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Note here tha€ (k) € R" is the corresponding discrete time state, Al R™", B; € R",
B, € R" are the accompanying system matrices. Considering the roll plane modal giv
with (5.52), (5.53) and using a first order approximation for the matrix e&ptials above,

the discrete time equivalent can be expressed with the following state space f

X(k+ 1) = Agx(k) + Ggay(k) + Bgu(k), with (5.57)
1 At 0 0

Ad = , Gy = , Bg= . (5.58)
_ (k=mghat 4 cAt mhAt At
Jieq Jxeq req Jeeq

It is important here to note that the roll plane model introduced above depenthe CG
height in a nonlinear fashion. It is known that the change in this paramgtéficantly af-
fects the roll dynamics of a vehicle [124], [125] and if these changesatr accounted for
in the active safety control implementations, they can cause accidentsstloh @llover
of the vehicle, during extreme driving situations. This is why we considecliaages in
the CG position here, which can potentially result from shifting loads insideghiele due
to inertial forces exerted during high speed maneuvers. Given that thesges in the CG
position can be detected in real time (see Chapter 2 for an example of a re@lGEmstima-
tion algorithm), we give next a synthesis method for a stable switched lina&otdesign
procedure for driving dynamics enhancement system based on sigtigension actuators,
and making use of the results obtained in Section 5.4. For the sake of exposianly
consider changes in the vertical position of CG here; however these édeabe extended
to more general implementations, where changes in the CG position in 3 dimeassals

accounted for.

The switched control structure is shown in Figure 5.2, where themd different controllers
that switch based on the current CG height (i.e., the CG height change ssvitehing
criteria). We emphasize that one of the goals of the controller design aigbm the
sequel is to guarantee that the feedback system is able to cope with thélitregahat
might be induced by switching of dynamics as a result of detectable chamtigssystem

parameters (in this case the CG height of the vehicle).
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Remark 5.5.1 For the ease of exposition it is assumed here that the changes in CG height
can be detected instantaneously. In general this is not a realistic assuagptios parame-
ter can not be measured directly in automotive vehicles. However, it igp®$3 estimate
CG height based on sensor data as described in Chapter 2, as weléasrnhpublications
[122], [121], [123]. Inherent delays in estimating the CG height usiegdtor other alter-
native methods can be compensated by the control design suggesteddqubk and this

shall be considered in the future extensions of the present chapter.

Controller Switching

Mechanism
u (k) T

Controller C,
Controller €4

Figure 5.2: Switched controller structure.

To keep the following discussion as simple as possible we asBum@, yielding an ex-

pression for the closed loop dynamics given by

X(k+1) = Ag,iX(K) + Gg iay(k) + By ju(k) for ie{1,23}, (5.59)
where
1 At 0 0
Adi = , Ggj = , Baji = : (5.60)
_ (k=mgh)At 4 _ cat mhAt At
‘]Xeqi ‘]Xeqi ‘]Xeqi ‘Jxeqi
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We propose the following switched linear state feedback control struitiutiee above set

of dynamical systems
G : ui(k) = —Kix(k), ie€{1,23} (5.61)

whereK; = [ ki1, Ki2 ] with Ki1,Ki2 € R, are fixed control gains corresponding to each CG

height configuration. Under this feedback controller, the closed losigsybecomes

X(k+1) = Ax(k) + G ay (k) (5.62)
where
~ 1 At
A = A4 —Bq,iKi = : (5.63)
_ (k=mgh+ki1)At 1 (c+kiz) At
'Jxeqi ‘]Xeqi

for eachi € {1,2,3}. We have now the following result which is useful for the control

design.

Lemma 5.5.1 Let the matricesh; € R?*2 for i € {1,2,3} be given as defined in (5.63).

Consider the diagonal matrices;[D», D3 € R?*? with positive real entries given as below
0
Dl == P D2 == ’ D3 == ) (564)

where the diagonal elements are such that A; < 1 andA; # A foreveryij € {1,2,3}

and i# j. Suppose further that invertible matriceg W, M3 € R>*? are defined as follows

Vi W1 m M Vi M
Ml = ; M2 = ) M3 = ) (565)

Vo o 2 N2 M2 V2 2
where all the entries/1, N1, U1, V2, N2, LUz are real numbers. Then the following choice of

control gainskis, k2 fori € {1,2,3}

Feq1
Kipr=mgh —k— =3 (A1 —1)(A2—1
1=md , s (=% —1) for i=1 (5.66)
_1\2_ _1\2
Kip = —c-+ St (it
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Ko =gt — k— 3% (s~ 1)(A2 ~ 1) for i=2 (5.67)
J V2 (A 1)\2

K22:—C+%% )

K31:mng—k—%%S(Al—l)()\g—l) for i—3 .69
J N2 (Aa1)2

guarantee that the unforced closed loop system matAge8, and Az can be expressed as
A=MDM™1  for ie{1,23} (5.69)

and thatA;, Ay, Ag satisfy the conditions of Theorem 5.4.1.

Proof of Lemma 5.5.1:We first show the result far= 1. Using the definitions db; and
M in (5.64) and (5.65), respectively, the similarity transformation¥pin equation (5.69)

can be expressed as follows

_ 1 AVill —Agl1Ve (A2 —Aq)Viph | (5.70)

V1o — UpV:
e (A1—=A2)U2V2  Agvillp —A1H1V2

?

Comparing the last equation with (5.63) for 1 results in the following relationships

AVl —Agl1Vo = Villp — [1Va, (5.71)
(A2—=Ar)vaps = (Va2 — p1vo)At, (5.72)
Feqr(A1—A2) V2 = —(K—mgh + K11)(Viplz — paV2)At, (5.73)
Jeeqr(A2Vitle —A1pliV2) = (Jxeqy — C— K12) (Vi — H1V2)AL. (5.74)

Arranging equations (5.71) and (5.72), the following set of identities eanbitained

V12 1-A2 Vi1 At
_ , - 5.75
H1V2 1-A Vil — Vo A2—Ap (5.75)
At At
Vi = A= 1V2, M1 = ml«lzy (5.76)

Also solving forkq1 from (5.73),k12 from (5.74) and making use of the above identities,

we obtain the corresponding relations for the controller gains given.bg)5
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Fori = 2, we again use the definitions bs andM, from (5.64) and (5.65), respectively

and obtain the following expression f8p

A, —
N1t — K12

AzN1t2 — Azp1n2

(Az—A2) 22

(A2—A3)nips

A2N1to — Azpiin?

(5.77)

Comparing the last equation with (5.63) for 2 results in the following relationships

A3tz — A1 N1tz — panz, (5.78)

(A2 —A3)N1ph (N1pz2 — pan2)At, (5.79)

Jreqz (A3 — A2) 22 —(k—mgh + K21) (N1 H2 — pan2)At, (5.80)

Jreqz (A2N1H2 — Agpian2) (Jeqz — C— K22) (M1H2 — HaN2)At. (5.81)

Arranging equations (5.78) and (5.79), the following set of identities eapbibained

N1k 1-A

N1y A

_ , — 5.82

Hin2 1-A3 Nik2 — 1Nz A2 —A3 (5-:82)
At At

n = py 112 H1= mﬂz, (5.83)

Also solving forks1 from (5.80), k22 from (5.81) and making use of the above identities,
we obtain the corresponding relations for the controller gains given wi@7)5Similarly,
the expressions (5.68) can be obtained as abovie£fd8 and using the appropriate set of
matrices. Itis trivial to show also that, due to the chosen structun;é fdoine resulting set of
closed loop unforced system matrices far Ay, Az satisfy the conditions of the Theorem

5.4.1.

Q.E.D.

Next we give a technical lemma from [102] to relate the exponential stabilttyeadinforced
systemx(k + 1) = Ax(k) to the bounded stability of the solutions of the forced system
(5.62).
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Lemma 5.5.2 Consider the following LPV discrete time system

x(k+1) = AKX(K) +B(Ku(k), (5.84)

yk) = Ckx(K). (5.85)

Let the above system be exponentially stable, and further suppose tleaelisgs finite

constantg3 andy such that

I1BH) [I<B, [ICK <y (5.86)

for all k. Then the discrete time LPV system is uniformly bounded-input,dealdoutput

(BIBO) stable.

See [102] for the proof of the lemma. Next we demonstrate the suggesigolaesign

with a numerical example.

Example 5.5.1 Letthe positive constanfsg, A», A3 be given as 94 0.6, 0.3, respectively.
Without loss of generality, we choose the constantgiy, N, as 12,3, respectively. Note

that the eigenvalues and the choicewsf sy, n, affect the amount of attenuation of the
dynamics under feedback; so these can be considered as the turangepes. Also, we

set the discrete time step As= 0.05. The vehicle model parameters used in the example
are given in Table 5.2, and they correspond to a compact class velnidlas example we
assume that the CG height of the vehicle can switch between any of the higJbgor hs
specified in Table 5.2 at any instant. Now utilizing the Lemma 5.5.1 and using the matrix
definitions in (5.64) we obtain the following set Bf matrices, which contain the target

closed loop eigenvalues of the roll plane models corresponding to eattei@fE position

0994 O 03 O 0994 O
Dy = , Do= , D3=
0 0.6 0 06 0 0.3

The correspondinlyl; matrices are obtained making use of (5.65) and utilizing the identities
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Table 5.2: Simulation parameters

Parameter Description Unit

m 1200 kg
g 9.81 [m/s?]
Jo 300 kg- n?]
c 5000 [kg-m?/s]
k 30000 kg- m?/&]
hy 0.5 [m]
hy 0.7 [m]
hs 0.9 [m]

(5.76) and (5.83), which result in

—-8.333 -0.25 —-0.2143 -0.25 —8.333 -0.2143
My = , M = , Mz =

1 2 3 2 1 3

Also according to (5.66),(5.67) and (5.68) the controller gains for ed&ln€lght position

are computed as follows

K11 = —23538 . .

for i=1 (CGheight-1), (5.87)
K12 = —128
K1 = 776964 _ _

for i=2, (CGheight-2), (5.88)
Koo = 14536
K31 = —1726824 _ _

for i=3, (CG height-3). (5.89)
K32 = 1296064

Then according to (5.69), the closed loop system matrges, andAg corresponding to
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the controller gains above are given as

- 1 0.05 - 1 0.05 1 0.05
AL = , A= As

—0.048 0594 -56 -0.1 —0.084 0294

(5.90)

Then evolution of dynamics corresponding to any periodic switching segueetween the
unforced closed loop system matricks A, andAg are stable by Theorem 5.4.1. That is,

the resulting switched unforced discrete time dynamical systems exprestaidas
x(k+1) = AK)X(K), A(K) € {A1,Ag,Ag},

have positive real eigenvalues in the unit circle, and thus are stableinfibiently implies
that with the suggested switched control structure, where controller smgtchbased on
the current CG height, results in stable roll dynamics of the vehicle regardf¢he switch-
ing parameters. Also, it follows from Lemma 5.5.2 that the closed loop foreé@dtsed roll
model given in (5.62) is uniformly BIBO stable for bounded lateral acedilen ay(k) in-

puts.

Remark 5.5.2 As mentioned earlier, it is important to note here that the closed loop system
matricesA; for i € {1, 2,3} obtained above in (5.9@o not have a CQLF, but is neverthe-
less exponentially stable. The non-existence of a CQLF can be confiumeetically using
LMI solvers. Therefore, the stability of this specific switched system siete tested with

non-CQLF techniques such as the one described here.

We finally give the numerical simulation results corresponding to the sugbesteroller

in feedback loop with a simple vehicle model. We generate the simulated vehiceideh
with a model commonly known as the “single track model with roll degree ofifre®,
which we initially introduced in Chapter 2. The model as illustrated in Figure 5.3eis th
simplest model with coupled lateral and roll dynamics, which assumes thatetbeng

angle 4, roll angle ¢, and sideslip anglg are small, and also that all vehicle mass is
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Figure 5.3: Linear bicycle model with roll degree of freedom.

sprung. We can write the equations of motion for the single track model witdeglee of

freedom and with active roll torque input as follows

g Jeq P Yeq_q _ _hc h(mgh-k Cy Feq h
My Jux mZ Jyx JexVix JexVx My Jux JxVix
P __K Gly
_ 2z Jz2Vx 0 0 Jzz 0
X = X+ 0+ u,(5.91)
__ho hp _C mgh-k hG, 1
Jxx ViJxx Jxx Jxx Jxx Jix
0 0 1 0 0 0

wherex = [B TR (p]T is the state vector, ande R is the roll torque input introduced

earlier. Also

o £ G+GC
P = Chlh—cvlv (5-92)
K 2 CI2+Gil2.

are the auxiliary parameters in terms of the tire cornering stiffnégsasdC;,. Further no-

tations and definitions are given in Table 5.3. For a more detailed introductibteaivation
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Table 5.3: Model parameters and definitions

Parameter Description Value Unit
m Vehicle mass 1200 [kg|
g Gravitational constant 9.81 [m/s?
Vy Vehicle longitudinal speed 20 [m/s]
o) Steering angle varying [rad]
Jux Roll moment of inertia at the CG 300  [kg-n¥]
Xz Yaw moment of inertia at the CG 1300 [kg- n¥]
ly longitudinal CG position w.r.t. front axle 1.2 [m]
Ih longitudinal CG position w.r.t. rear axle 14 [m|
h CG height measured over the ground varyingn|
c suspension damping coefficient 5000 [kg-n?/s
K suspension spring stiffness 30000 [kg- m? /<]
Cv linear tire stiffness coefficient for the front tire 30000 [N /rad]
Ch linear tire stiffness coefficient for the rear tire  50000[N /rad]
B Sideslip angle at vehicle CG varying[rad|

of this model see [50]. We used this model to represent the real vehidi@uasion and

in a feedback loop with the discrete time control design introduced earlier.réference
maneuver is a steady state cornering maneuver with a gradual step stepuings shown

in Figure 5.4, where the steering input starts at 4 seconds into the simulaticeaches

its peak steady state value of°8& 6 seconds. Note here that we assumed a steering ratio
of 1: 20 between the wheel and driver’s steering wheel. Also the vehétteity during

the simulation was fixed at = 20m/s. In order to represent the switching in the dynamics

we assumed the CG height profile shown in the lower part of Figure 5.4 hwicas-
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sume results from loads falling over inside the vehicle during the maneutéch{\inakes
sense). As specified in the control design, the CG height switches e8|, 0.7[m|,
and 05[m| only; also to simulate a gradual falling of loads inside the vehicle we assumed a

switching sequence of @m| — 0.7[m] — 0.5]m] in the CG height.

100
80
D 60 : : 8
k=)
w40 4
20+ 8
0 L L | I | | 1 1
0 1 2 3 4 5 6 7 8 9 10
time [sec]
— 0.9 il
£
— 08 .
Eﬁ 0.7 8
(0]
< 06 8
O
© 0.5
1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

time [sec]

Figure 5.4: Driver steering wheel inpud (where steering ratio is/20) and the time varying CG

height during the maneuver.

Using the controller gains (5.87),(5.88) and (5.89) corresponding to@&cheight config-
uration, results in the state histories during the maneuver shown in Figurer 5t fclosed
loop single track model. Note also in the figure that these states are companedaamf
an uncontrolled vehicle subject to the same parameter switching, and thevefiess of
the controller is evident from the results. Specifically, it is observed ftaroll angle and
the roll rate profiles shown in the left half of figure that the suggested lsedtcontroller
reduces the controlled roll angle significantly while preserving the vem&sgdonse char-
acteristics. Similar conclusions can be made from the corresponding y@and sideslip
angle plots shown in the right half of the same figure, where it is also obddhat the

control action results in a reduced side slip angle whereas it causesraased yaw rate
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values as compared to the vehicle with no control. These imply that for a gteening
input, the controlled vehicle can tolerate higher yaw rates without having eb sideslip

as compared to the vehicle with no control.

10 20
= @-with control l\" 1 g‘ dy/dt-controlled
— ghl == @-no control < 1 o = dy/dt-uncontrolled
81 1 D 15¢
S s
S 6t 5
) = 10}
2 =
2 4t 3
=z g
° S s5p
x 2r =
T
>
0 0
0 2 0 2
time [sec] time [sec]
15 0.5
g =
@ 10t [}
2 S
3 [N
s 2 ,
° S g
o) 2 5| '
© & N N
= % —2}| === B-controlled v
@ || == d@dt-nocontrol | - € -~ | T ||i==- B-uncontrolled
; ; 25 n n ; ;
0 2 4 6 8 10 0 2 4 6 8 10
time [sec] time [sec]

Figure 5.5: Comparisons of the states for vehicles with and withoutrabnt

It also is interesting to see how the suggested controller affect the vehitie To do this,
we note that the coordinatés, y) of the vehicle CG relative to the road satisfy
X(k+1) = x(k)+vxcoqB(k)+ g(k))At, (5.93)
y(k+1) = y(k)+wsin(B(k)+ @(k))At, (5.94)
where we choose the initial coordinate$0), y(0)) to be zero. In Figure 5.6 the CG trajec-
tories of the controlled and the uncontrolled vehicles are compared, wieepbserve that

due to higher yaw rate values of the controlled vehicle, the correspotdijegtory has a

smaller turn radius, which is favorable in terms of the cornering capability.
Comment: We observe based on the simulation results that, the state feedback control
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Figure 5.6: Comparison of controlled and uncontrolled vehicle trajees.

structure suggested in this section suppresses the roll motion of the cahtettiele under
parameter switching, which in return causes an increased yaw rate dunckdesideslip
values as compared to the vehicle without control. These characterigicerainiscent
of a sporty vehicle response in terms of increased responsiveness latdhal dynamics
and higher cornering performance. Therefore, the suggestesltentan be used used to
emulate sporty driving dynamics in a generic vehicle, as well as guaragtbeirswitched

stability with respect to changing CG height.

5.6 A stabilizing switched controller synthesis proce-
dure for transient-free emulation of roll dynam-

ics of automotive vehicles

As a second example of the application of the main results presented in SedtiomeHhow
consider a problem related to the roll stabilization introduced in the prevexi®s, but
this time there are added demands on the controller that include followingrargiference

state trajectory, providing a means for transient free switching as wellasugteeing the
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switching stability due to changing CG height. Applications of such a switchifgligiag
controller is abundant; to name a few, it can be used to modify vertical dndyramics
of a vehicle for various applications such as the dynamical emulation of g#igcles
(generic prototyping) [2], as well as optimization of the dynamics for dgwomfort or

sporty response settings.

Remark 5.6.1 Itis possible to use the control implementation described in this section as
an automotive vehicle rollover prevention system. For a detailed descriptibdiscussion

of the automotive rollover problem, see Chapter 3 as well as [124] ari].[ltds possible

to specify the reference roll angle trajectory used here for tracking gwat a dynamical
metric related to rollover occurrence (such as the dynamic load transteIL/BRy) is upper
bounded for given bounded disturbance inputs. However, sincaavmainly concerned
with the emulation of roll dynamics here, this is outside the scope of the cigeetion.

We will report an extension of this work for rollover prevention problenthi@ near future.

In the preceding section we introduced a simplified second order modékooll dynam-
ics of an automobile in (5.50). Surprisingly, there are many other dynamicaégses in
automotive systems as well as in other engineering systems, which carréserged with
the same dynamical structure. Before we give the controller synthesiedare for such
class of systems, we need to express the roll dynamics model given wif) {5.& more
suitable form so that it serves as a prototype for such class of systeraxad possibly ex-
press the second order roll plane model under the small angles assumjtieriollowing

form

ot gy oM, My 1y
‘]Xeq ‘]Xeq ‘]Xeq / ‘]Xeq ,

where the lateral accelerati@) < R is the disturbance input from lateral dynamics, and

(5.95)

u € R is the control torque imposed by the active suspension actuators. Werfdefine
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the following time varying parameters as functions of the CG height

k —

a0, — =M (5.96)
‘]Xqu ‘Jxqu
mhy 1

w = N , (5.97)
Jxqu \]xqu

where the subscrigg € {1,2,---,m} denotes the current (detectable) CG height setting.
Note also that the parametdy, is a function of the CG height, and the dependence of
it on the current CG heightyg is clear from its definition given in (5.51). Substituting
these definitions in the roll plane model above, we obtain the following sexatad linear

parameter varying (LPV) model structure,

d?p do
o Halag

iz +a0gp = wyay + Lgu, ge{1,2,---,m}. (5.98)

Using this prototype model structure, we next give the control synthestegdure.

The control strategy advocated here is similar to the one described in tetprg section
in that, it consists of a bank of linear controllers (one for each CG posititamg with a
switching mechanism that are connected in feedback as depicted in Figuré/é adopt
the following type of control strategy for each individual controller, whigce denote by

that correspond to th&' CG position setting

d de
C: cTL: — —bu+Kle+ K2, (5.99)

whereb; € R,K1; € R,K2; € R are the derivative, proportional and integral gains, respec-
tively. A controller of this form is a standard lead-lag (also known as qutignal-integral-
derivative or PID) controller that is described in elementary text-bo6$. [ As a side
remark, we here note that this type of control implementations are commonljiruaed
tomotive control applications; for example in the context of control of vaktitynamics
see [127], which uses a PI (proportional-integral) approach fokitngcontrol design. For
the ease of exposition of the suggested control structure given in (v8%)ere consider
the tracking (i.e., emulation) of the roll angle only. Therefere r — ¢ designates the roll

angle tracking error, wherec R is the reference roll angle trajectory for the maneuver. As
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Figure 5.7: Reference tracking, switched roll dynamics emulation e structure.

a further simplification, we also assume the switching logic selects the appeopdavid-

ual controller at the instant of a change in the CG height. It is important tothatehe
task of the emulation controller suggested here is not only the tracking inédesference
states relevant to roll dynamics, but also maintaining the stability of the nomirtehsa

closed loop system. Therefore, we demonstrate here how the resubtates Section
5.4 may be used as the basis for a switched controller design, which carisasbank of
linear controllers (one for each CG height configuration) along with a Bimgcmechanism

as depicted in Figure 5.7, and that accommodates all of the design cotisitera

To keep the discussion in the sequel as simple as possible, we assumerthar¢henly
three configurations that the CG height can switch to, thatds3, yielding an expression

for the closed loop dynamics given by,

X = Agx+Bgr+Ggay, Age {A1,A2,As}, (5.100)
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where the state is definedas- [ @, d@/dt, u;, U, uz]" and the system matricég, By

andGg are given as below

0 1 o o o | [ o ] [ o |
—a0y —aly Lidy Lody Lads 0 Wy
Ag=| —K1; —-K2; -by 0 0 | Bg=]| K1 [-Gg=| 0 |-(5.101)
—Kl; -K2 0 —h, O K1, 0
| —Klz K23 0 0 —bs | | Klz | | 0|

Note here thatly = 1 if the g controller is engaged at any instant, and it is zero otherwise.
A discrete time equivalent for this dynamical system follows from (5.54)jckvis of the
same form as (5.100) for eagh Utilizing a first order approximation for the matrix expo-
nentials (5.56), the following discrete time version for the forced roll plandehocan be

obtained

X(k+ 1) = Ad,gx(k) =+ Bd7gr(k) + Gd7gay(k)a Ad,g € {Ad717Ad,27Ad,3}ﬂ (5102)
where

1 At 0 0 0
—a0gAt 1—alght LicdhAt  LodoAt  LadsAt
Adg = | —KL;At —K2:At 1—biAt 0 0 , (5.103)

—KLAt —K2At 0 1— byt 0

“K1At  —K23At 0 0 1— bgAt
i ; :

Big = | 0 0 KLiAt KLAt K13At] ; (5.104)
- T

Gig = |0 wAt 0 O 0] ; (5.105)

for eachg € {1,2,3}. We emphasize that the choicerof= 3 is motivated by a desire to

aid exposition; the arguments and results obtained generalizatbitrary and finite. Next
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we give a technical lemma that is useful for controller synthesis for the dfsystems

introduced above.

Lemma 5.6.1 Let Ay g = {Ad.1,Ad 2, Ad 3} With Ay g defined as in (5.103) be given. Suppose
that the characteristic polynomials ofyA, Aq2,Aq 3 are denoted by {A), p2(A), and

p3(A) respectively, with,

PA) = (A —1+bpAt)(A —1+DbsAt)Hy(A),
P(A) = (A —1+byAt)(A —1+bsAt)Ha(A), (5.106)

p3(/\) = ()\ —1+ blAt)()\ -1+ bzAt)Hg(/\),
where
HgA) = (A —1°3+&A —1)2+by(A —1) +&, (5.107)

and the constantd,, by, & are defined as

& = (aOghg+LgKlg)At>. (5.110)

We choose the controller gainsll{ K24, by such that H(A) = Hz(A) =Hs(A) =H(A) for
all A. We consider the case where the roots of the polynon{i&) B- (A — 1+ biAt)(A —
1+ boAt)(A — 1+ bgAt)H(A) are distinct. Then each pair of matriceg A Ag2 and Ay 3
have exactly a1 linearly independent common eigenvectors, where “n" is the dimension

of the closed loop system (that is, 5).

Proof of Lemma 5.6.1:First we show the result foky 1 andAq ». Identical arguments can

be developed for the matrix paiffy 1,Aq3) and(Aq2,Aq3). Note thatAy, andAqy are
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identical matrices except in the second row as it is apparent from

1 At 0 0 0
—a0iAt 1-—aljAt LAt 0 0
Al = | KLAt —K2iAt 11— Db/t 0 0 ;

—KLAt —K2At 0 1—boAt 0

| —KIzAt  —K2;At 0 0 1— bt |
_ 1 At 0 0 0 —
—a0At  1-—alyAt 0 LoAt 0
Adz = | —K1;At —K2:At 1—biAt 0 0

—KLAt —K2At 0 1— boAt 0

| —KIzAt  —KZ2At 0 0 1-bsAt |

We need to show that for each common eigenvalue, the maticeandAy > have a com-
mon eigenvector, and that for the eigenvalue that is not common, the matageshb
common eigenvector. We also note that, by definitiyy, andAy > haven — 1 distinct com-
mon eigenvalues. These eigenvalues correspond to the robt§AgfandA = 1 — bgAt.

The eigenvalued = 1— boAt (corresponding t@d 1) andA = 1— b, At (corresponding to
Aq2) are not common to both matrices. We first look at the eigenvectors coreisyy to

common eigenvalues.

Common eigenvalues:
The form ofAg 1 andAg > implies that the common eigenvector corresponding te 1 —
bsAt is given byv; =[0 0 0 0 1]T. Now letA be an eigenvalue that is common to

both matrices that is not equal to-IbsAt. The eigenvector oy 1 that corresponds to the
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eigenvalueA can be obtained by determining the null spaca bf- Aq 1:

A1 —At 0 0 0 _
a0At A —1+alAt —LiAt 0 0
Al=Adq1= | K14t K214t A —1+4DbAt 0 0
K 1At K 2,4t 0 A — 1+ boAt 0

| KAt K 23At 0 0 A —1+bgAt |

Let[rAly,rAl,,rAls, rAls, rAls] denote the row vectors of the matix — Ay 1, whererAl,

is theit" row vector. As should be clear from the above discussion the eigesvahder
interest here are such thait# 1 — byAt whereg € {1,2,3}, that isA is a root ofH(A). It

is clear that the row vectorsAl;, rAls, rAls, rAls] are linearly independent, therefore
it immediately follows thatA| — Aq 1 is singular. Hence, it must be possible to wrifel,
as a linear combination dfAl;, rAls, rAly, rAls]. This implies that the eigenvector

corresponding td is completely specified by the vectdr&\1;, rAls, rAls, rAls|.

Now consider the matriRy ». The eigenvector of » that corresponds to the eigenvalle

defined above can be obtained similarly by determining the null spate-ef\j ,:

A1 —At 0 0 0 -
a0At A —1+alyAt 0 —LoAt 0
Al=Ad2= | K14t K214t A —1+biAt 0 0
K 1At K 2,4t 0 A — 1+ byt 0

| K1t K 23At 0 0 A —1+ bt |

As before, lefrA2;,rA2;,rA23,rA24,rA25] denote the row vectors of the matit — Ag »,
whererA2; is theith row vector. Again,A # 1—bgAt whereg € {1,2,3}, that isA is
a root ofH(A). Clearly the row vector§rA2;, rA2;, rA24, rA2s| are linearly indepen-

dent, and the matridl — Ay, is singular. Hence, it is possible to writ&2, as a linear
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combination of[rA2;, rA23, rA24, rA2s]. This implies that the eigenvector correspond-
ing to A is completely specified by the vectojr\2;, rA23, rA24, rA2s]. However, the
matricesAq1 and Aq» are identical except for the second row. Hence, it follows that
rAl; =rA2;, Vi={1,3,4,5}, and that the matrice%y 1 andAy > have a common eigenvec-

tor for all common eigenvalues, whereA # 1—bgAt for g € {1,2,3}.

Eigenvalues that are not common to matricég ; and Aq »:

Consider the matri¥\q 1. The eigenvalue of 1 that is not common td\y, is 1— byAt.
The eigenvector oA ; that corresponds to this eigenvaluevis=[0 0 0 1 0]". Now
consider the matriXg . The eigenvalue of > that is not common t@\ 1 is 1— biAt.

The eigenvector ol » that corresponds to this eigenvalueris= [0 0 1 0 0]'. Clearly,

Vo 75 V3.
Q.E.D.

We now note the following facts concerning the matiyg.

(i) rank{Aq; —Aq;} =1, fori # j,andi, j € {1,2,3}.

(i) The characteristic polynomialgi(A ), p2(A), andps(A) sharen— 1 common roots

(eigenvalues) iHj(A) =H(A), i € {1,2 3}.

(i) Let Hi(A) =H(A), fori e {1,2,3}. Then the matricedy; andAq ;, fori # j and
i,j€{1,2,3}, satisfy Lemma 5.6.1, and they share 1 common real linearly inde-

pendent eigenvectors.

The following corollary summarizes the sufficient conditions for the closed kwitched

system stability for this problem.

Corollary 5.6.1 The sufficient conditions for the matricég g € {Ad.1,Ad2,Ad3} to sat-

isfy the conditions of Theorem 5.4.1, and hence for the stability of the cefosystem,

X(k4+1) =Aggx(k),  Adge {Ad1,Ad2,Ad3} (5.111)
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are given by:

(i) the target polynomialsli(A) have positive real eigenvalues in the unit circle for all

ie€{1,2,3};
(i) Hi(A)=H;j(A), Vi, je{1,2,3};
(i) 1 >1—bAt >0,Vie{1,2,3};

(iv) the roots of the polynomidP(A) = (A —14biAt)(A — 1+ boAt)(A —1+bsAt)H(A)

are distinct.

When these conditions are satisfied, one can easily verify that any 5 6flittearly inde-
pendent eigenvectors given by the eigenvectolyaf Aq 2, Aq 3, are linearly independent.
Therefore, the hypothesis of Theorem 5.4.1 is satisfied, and the oritjie sivitched sys-
tem representing the unforced roll plane dynamics model given in (52 = 0 and

ay = 0, is globally attractive and asymptotically stable. BIBO stability of the forcetiesy
with r # 0 anday # O follows directly from elementary arguments given in Lemma 5.5.2

(also see [102]).

We next give the following corollary that is useful in obtaining roll dynaméosulation

controllers that satisfy Lemma 5.6.1.

Corollary 5.6.2 Suppose that the discrete time roll dynamics model with three switches as
described in (5.102) along with the matrices (5.103),(5.104), and (5.1@8)es. Noting

that each constituent switched system is'BfdBder, we assume that the closed loop system
matricesAq 1,Ad 2, Ag,3 share three real common eigenvalues and the corresponding real
eigenvectors. We denote these common eigenvalugs, gsys, and further assume that

they satisfy O< yy < 1 for eachg € {1,2,3}. Then with the following choice of the gains
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for the PID controller given in (5.99) for eadhe {1,2,3}

by — 3*(V1+V2+V3)_alg’ (5.112)
_ 3424+ (et it ek 1
K2y = . — a0y —alghy| —, (5.113)
At Lg
Kly = [1 ag+b93 yly?":"’—ao(‘l,bg,]l, (5.114)
At Ly

results in three closed loop switched systems (5.102) that satisfy the coadifibemma
5.5.1 and Theorem 5.4.1. The definitionsagtf)z,,ég appearing in the above expressions
are as described in (5.108),(5.109), and (5.110) and they utilize the rdilrparameters
given with (5.96) and (5.97) above.

Remark 5.6.2 (Condition for transient free switching)

It is known that a switched control structure such as the one introduseddan induce
undesirable transients, which result from state transitions after the svgtohacontroller
[139]. However, in a recent thesis [140] it is shown that when the tdaeat systems
corresponding to different controllers in the feedback loop have a consteady-state for
a given constant input signal, then the overall switched system hasnsietngs, given that
the switching occurs during steady state. In order obtain a more refimégbcdesign, we
can also make use of this result. Note that, for the emulation controller syngmesedure
we developed so far, we made no specific mention of the fact that eack ofdividual
switched controller€; defined in (5.99) can result in a different steady state roll angle for
a given constant lateral acceleration input. Denoting the steady-stateefgl controller
by X4(k), the steady state requirement for the discrete time switched forced rolliplachel

given in (5.102) is thaty(k+ 1) = 0, which yields the following expression

%g(k) = —AygBagr (K) — Ay Ga.gay(K), (5.115)

for g € {1,2,3}. In order to make the steady state roll angle uniform for &aclone can
possibly multiply the reference roll angi¢k) by a gain such that the first element of the

steady-stateg(k) is constant for each. That is, instead of usingk) as the reference roll
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angle signal, a modified signgj(k) can be used for each of the constituent systems, which

is defined as follows
fg(k) = agr (k), (5.116)

whereag € R are a set of scalars. Fixed gaiagare chosen such that the first element of
the steady-state (i.e., the steady state roll angle), which we dendfg|b¥) is constant.

Thatis
[Xi]2(k) = [Xj]1(K), (5.117)

for alli,j € {1,2,3}. Note that this condition is easily implemented in the control design

through a pre-filtering of the reference roll angle signal, which is shoviigure 5.7.

With this background in mind, and making use of Corollary 5.6.2 we next demab@she

roll dynamics emulation controller design with a numerical example.

Example 5.6.1 In this example we assume a similar simulation scenario to that of Section
5.5. That is, we assume the single track model with roll degree of freedamn o (5.91)

to represent the real vehicle in simulation with a constant velocity at20m/s. Also the
driver's gradual step steering input with a peak magnitude 6fv@fs assumed to be the
same. For the ease of exposition we assumed that the CG height of the sstitclees
between three distinct positions; this reflects a possible situation where tteedisdocate
inside the vehicle vertically as a result of the inertial forces induced dwinganeuver.
Without loss of generality, we assumed a repeating switching sequencedoe®®m| —
0.7[m] — 0.5]m] in the CG height as shown in Figure 5.8 along with the driver steering
input. Also, we set the discrete time stepfs= 0.005 and the rest of the vehicle model
parameters used in the example are as specified in Table 5.2, which @sergptive of a
compact class vehicle. Next we give the results of the discrete time contdiecated
here for roll dynamics emulation based on Corollary 5.6.2, and in a fekdbag with the

single track model with roll degree of freedom as the plant model.
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Figure 5.8: Driver steering wheel inpud (where steering ratio is/20) and the time varying CG

height during the maneuver.

Without loss of generality, we set the three eigenvalues that are commorhmeéhe

A4 1,Ad.2, Ag 3 matrices as follows
Utilizing the Corollary 5.6.2 we then obtained the the following controller gains

b; = 1516667 b, = 1543694 b; = 1560692

Kl; = 4.4343x10° 5 K1, 6.7681x 10’ » K1z = 9.8731x 10" -

K2; = 3.2976x10° K2, = 52448x10f K23 = 7.8498x 10°

Assuming a forward difference approximation for the derivatives ird)5a@d applying &-
transform with zero initial conditions, we implemented the switched controlledésasete

time transfer functions given below

Ug(2)  K2qz+KI1gAt — K2q
e(z2) z—1+bgAt

for ge{1,23}, (5.118)
whereuy(z) = Z[ug(k)], ande(z) = Z[e(k)].
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5.6 A stabilizing switched controller synthesis procedurdor transient-free
emulation of roll dynamics of automotive vehicles

In Figure 5.9 the resulting state histories are shown for the controlled aywhtrolled ve-
hicles during the maneuver. Note that we also show the reference rddi siggal in this
figure. Based on the simulation results, the roll angle tracking perfornaditice controller

demonstrates the effectiveness of the controller. An important observadiged on the
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Figure 5.9: Comparisons of the model states for the vehicles with andowitthe emulation con-

troller.

simulation results as seen in the figure is that the roll torque input genenatbe hctive
suspension actuators affect the lateral dynamics of the vehicle sigtiificamparticular,
the yaw rate of the controlled vehicle as seen at the top right of the figavesstignificant
changes in the steady state value of the controlled vehicle. Although the is\giiohthe
side slip angle of the controlled vehicle seen in the bottom right of the figuse lsaall
magnitude, the switching in yaw rate has very large magnitude and is likely tgeliaa
cornering behavior of the vehicle. Also, it might be uncomfortable (oneangerous) for
the driver when the steady state yaw rate switches as a result of thel @miwo. In order

to prevent this, the effect of the roll torque input on the steady state ghthe yaw rate can
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5.6 A stabilizing switched controller synthesis procedurdor transient-free
emulation of roll dynamics of automotive vehicles

be compensated utilizing active steering inputs in a second control loopreguses the
availability of active steering actuators in the front wheels, and we hereresa specific
type of such actuators commonly known as the “mechatronic-angle-siggop" steering
actuator. This type of actuators contain a physical steering column armd@oeratively
with the driver, while they permit various functions such as speed depesteering ra-
tio modification, and active response to mild environmental disturbance§l@elefor an

extensive discussion of active steering actuators). Using this typetactuthe effective

steering input to the vehicle can be expressed as

0 = Odriver + Oactive (5.119)

The effect of the roll torque input on the steady state yaw rate can hdat&ld analytically
using the closed-loop single track model with roll degree of freedomgivé5.91). At

steady state the closed loop model becomes
Xss= —A"1Bd — A"1Guy, (5.120)

wherexgs= [[335 Wss (})53 cpss] T is the value of the steady state. Al#oc R is the system

matrix given (5.91), an®, G are defined as follows from the same equation

T T
= e ly h = 1 ) .
e-| g g o] 6=|oo0 2 o (5.121)

Jx

In order to obtain the required active steering input to cancel the steaigycontribution
of u on the yaw rate, one can use (5.120) withas the only steering input and also ggt
to zero. This then yields the following switched active steering compensator

phgm

where the subscrigg € {1,2,--- ,m} denotes the current (detectable) CG height setting.
The resulting integrated control structure with both active suspensiomaeiveé steering

inputs are schematically represented in Figure 5.10.

Implementation of this simple active steering compensation to the simulation sceeario d

scribed above results in the effective steering input shown in Figurewtiere the resultant
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Figure 5.10: Integrated roll dynamics emulation controller structurighvactive suspension and

active steering.

steering input is also compared with the driver input. In Figure 5.12 thétirgguoll an-
gle and roll rate history is shown for the controlled and uncontrolled vehiblging the
maneuver. Note that we also show the reference roll angle signal in thie fiased on
the simulation results, the tracking performance of the controller demonstnatesffec-
tiveness of the suggested controller. The corresponding yaw ratgamdlip plots for the
controlled and uncontrolled vehicles are shown in Figure 5.13, wherdféuot ef the active
steering compensation on the yaw rate and sideslip trajectories are obviensempared
to the simulation results given in Figure 5.9 for the emulation controller withoutdtieea
steering compensation. Note here that there is still some visible switching in theligid
however its magnitude is very small and it would probably be undiscernibliaéodriver.
We emphasize that the aim of the active steering compensation here is tbtbanefect
suspension controller on the steady state yaw rate, this was achieveskagadibe from the
simulation results. Finally, in order to see how the suggested controllecs eftevehicle

path, we again used (5.93) and (5.94) to calculate the vehicle path durimgatieuver,
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= = = driver steering input
steering input with active steer compensation
I I

1
0 5 10 15 20 25
time [sec]

Figure 5.11: Comparison of the driver steering wheel inp}t and the effective steering input

0 = &4 + & as a result of active steer compensation.

where we choose the initial coordinateg0), y(0)) to be zero for both the controlled and
the uncontrolled vehicles. In Figure 5.14 the trajectories of the CG positithe @ontrolled
(with and without active steering compensation) and the uncontrolled veluola lateral
plane representing the road surface is shown. We observe that dwehgkhmagnitude
switching in the controlled vehicle with no active steer compensation, thespameing
trajectory has diverged greatly from the uncontrolled vehicle. It is ats@iwved from the
same trajectory that the switching in yaw rate causes significant changeslaieral mo-
tion of the vehicle and therefore the resulting path is non-circular. Howeweae of these
occur in the controlled vehicle with the active steering compensation, antrespond-
ing vehicle trajectory is almost identical to the uncontrolled one. This is morarapp
from Figure 5.15, where the instantaneous distances of the controlléclegetvith and
without the active steering compensation relative to the uncontrolled vehagbetiory are

compared. Note that, we compute the instantaneous relative distanceiagdord

distancegk) = \/(Xcont(k) — Xnocont(K))2 + (Yeont(K) — Ynocont(K) )2 (5.123)

for vehicles with either of the emulation controllers, where the pai(k), Yeont(k)) de-
note the instantaneous coordinates of the controlled vehicle, wheggasiK), Ynocont K))

denote that of the uncontrolled one. As seen from from this last figugejethicle with the
emulation controller and with the active roll compensation stays very closectmtmolled

vehicle. This is favorable in the sense that the suggested controller doegerfere with
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Figure 5.12: Roll angle and and roll rate history of the emulation comémlith active steering

compensation.

the vehicle path for tracking a certain reference roll signal, and thuseathiele retains its

natural lateral response. Moreover these characteristics arefecteeffrom the switches

in the CG height.

Remark 5.6.3 As a final comment, it is important to mention about the robustness of
the control design methods introduced so far. We assumed neither umiyeiriathe sys-
tem matrices, nor inexact knowledge of the switching instants for either @ftpkcations
introduced so far. When automotive applications are considered, sttetinty would prac-
tically be overly optimistic and uncertainty must always be taken into accoumaslbeen
shown in [113] that, uncertainty in the eigenvectors and eigenvalues afitehed sys-
tem matrices can lead to instability for a related class of continuous time systemséo tho
introduced in Theorem 5.4.1. The theoretical and numerical analysidbos$tess for the
class of discrete time switched systems introduced in this chapter is still an opstiog.

Our future work will include a detailed analysis of the robustness for thgstems, and the

control syntheses will include compensation of uncertainty.
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Figure 5.13: Yaw rate and side slip history of the emulation controllethvéctive steering compen-

sation.

5.7 Conclusions and possible future directions

In this chapter we have shown that the global attractivity results for a ofadscrete-
time switching systems is not necessarily equivalent to continuous time systemhigith
property. Hence, in cases when the existence of a CQLF is unknovihd@witched set
of LTI systems, qualitative statements concerning the system stability for tiimgous-
time as well as the discrete-time systems must be validated separately usin@hén-C
techniques. One such technique for a specific class of discrete time systamsented in
the current chapter; namely, a technique which proves global attradiivigynbedding the
original (n-dimensional) state space in a higher{(1) dimensional state space. This result
can be translated into practical control design laws for switched systema.ndotivation
for the applications of this main result, we presented two examples whereghisisaused
to design controllers that are robust with respect to switching action. Bilgrlexamples
are related to automotive roll dynamics stabilization problem that involves sngtas a

result of changing CG height. We have shown in the first application nuallgrithat,
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Figure 5.14: Comparison of controlled and uncontrolled vehicle trajees for the suggested emu-

lation controllers.

for a simplified version of the problem that is constrained to only three svgtohéhe
plant parameters, the chosen switched unforced system had no CQLiRj§ problem
we presented a stabilizing controller synthesis procedure utilizing the @it-@chnique
that is the main result of this chapter. In the second application we preseRti&lcontrol
synthesis procedure for the emulation of roll dynamics, where trackiedgeaence signal
related to roll dynamics was the main goal. Based on the numerical simulatidts yesth

examples demonstrate the efficacy of the suggested design techniques.
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Chapter 6

Integrated Decentralized Automotive
Dynamics Tracking Controllers that

Account for Structural Uncertainty

In this chapter we present a method for decentralized control desigry$er s
tems with multiple dynamical modes, which guarantees robustness with re-
spect to structural uncertainty. We consider the implementation of this ohetho
to the decentralized control designs for the automotive lateral and roll refer
ence dynamics tracking. The respective control rules that we utilizeased

on simplified, 2-state roll and lateral dynamics models of the vehicle. We uti-
lize a method for checking the overall stability of the integrated controllers
based on a frequency domain criterion. We also give a numerical example
for the integrated automotive tracking control designs based on Pl fe&dbac
which utilize active suspension and active steering actuators. Finally, we sho
how this result can preserve robustness with respect to sensor failgrechn

applications. We acknowledge that the work in this chapter is an application
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6.1 Chapter contributions

of some recent results by Shorten and Narendra reported in [L1@Borten,
Curran, Wulff, King and Zeheb reported in [109] and [110]; also it igadnt
work between ourselves, Dr. Mark Readman and Carlos Villegas asopar

the EU funded project CEmACS.

6.1 Chapter contributions

It is a known fact that most real-life engineering systems have dynamibalstems that
interact. With this perspective, the contribution of this chapter is in consmlerinovel
integration method for simplified decentralized controllers, each of whicdes®gned for
controlling different dynamical modes of a complicated dynamical system.igkis im-
portant problem as most engineering systems can be modelled with many simgyified
namical subsystems that interact with each other. In the context of autemetcle
dynamics control, we encountered the effects of dynamical interactioivggdbe roll dy-
namics tracking problem analyzed in Section 5.6. Thus, another major aditnitof the
chapter in implementing the suggested decentralized control design fordhlenprof si-
multaneous control of the vehicle roll and lateral dynamics, which can bsidered as a
means to dynamically imitate other vehicle types. Based on the results we shawéteth
suggested method can provide robustness with respect to structueaiaimiy, which can
be considered as a failure mitigation method in the case of sensor and/gsteub$ailure

in automotive vehicles.

6.2 Introduction

It is an irrefutable fact that decentralized control is a feature of thérabangineering
practice. A basic problem in the design of control systems is the lack of simpleodse

for designing decentralized controllers that are robust with respeettai types of struc-
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6.2 Introduction

tural uncertainties. Most complex engineering systems can be descyleediimber of
interacting dynamical modes and sub-processes. When control o§gstems are consid-
ered, the engineering practice is to utilize a number of control systemspéadfich are
designed to control a particular sub-process or a dynamical mode. des@ms arise for
a number of reasons. Firstly, it is human nature to divide a complicated probte a set
of simpler ones, each of which can be solved independently of each @keond, even
when a centralized controller is possible, in practice, a low order detigatt@ontroller is
often preferred due to their simplicity and ease of implementation. Third, wésvorked
control systems are considered, it is often the case that interconneb®gtems must be
designed to be individually stable, even when interconnected togethiiatsthey are ro-
bust to the effects of unreliable communication between each of the sulbsyskénally,
from the perspective of the industry, it is often the case that diffengimcentractors are
assigned separate parts of a complex control task; the automotive ingustigies a very
good example of this latter point. In terms of vehicle dynamics control applicatibis
common in the automotive industry that some parts suppliers design and ntareithe
roll over prevention systems, and some other manufacturers supply tha dByeamics
control systems (such as the E&Hor the same vehicle. Even though each of these control
systems affect one anotfeand even sometimes these utilize common sensor and actuator
units, they are often designed independently of each other. Also, it isieoa practice in
the automotive industry to utilize sensor measurements to artificially decoupéenityed
interactions of the vehicle, and the control task at hand then becomeswvtleftaent of
methods for the integration of these units so that the overall performaineetives, and

also a certain degree of robustness are met with respect to unreliabte ssasurements.

Motivated by these facts, our objective in this chapter is to present arfersathod and

to explore how some of the methods developed in this thesis can be integratesthveith

IWe have seen in the preceding chapters that the lateral @wbiihdynamics of the vehicle
interact at various levels. Therefore, controllers desitjto control these also interact, as we have

clearly seen in Section 5.6.
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6.3 A decentralized control design methodology

automotive control systems in a structured manner. To aid the expositioriilize decen-
tralized controllers based on the two-state single track model and the twadtgiane
model to simultaneously track reference vehicle states. Thereforeweedéscuss about
how to integrate a controller for the roll degree of freedom, with that folatezal degree of
freedom in a vehicle equipped with both active suspension and activeviteeel steering
actuators, while at the same time achieving a decentralized design that istnicted by

the structural constraints and uncertainties imposed on the problem.

6.3 A decentralized control design methodology

In an abstract setting, the basic task of the control approach we utilize isdta filecen-
tralized control structure that simultaneously stabilizes a number of subsysted the
integrated overall system, as well as it guarantees robustness witbtrespertain types of
structural (possibly time-varying) uncertainty. A basic mechanism faeatiy this objec-
tive is to select decentralized feedback structures such that the lirceelized loop system
admits a block diagonal Lyapunov function. The existence of such aun@pfunction is
not only sufficient for guaranteeing the stability of the constituent subsysand the inter-
connected system (i.e., the integrated overall system), but it is also suiffteé the overall
system is stable with respect to uncertain measurements, which affeat cegians of the
system matrix, and whose bounds can be quantified. In what followsynveafly describe

the problem and then present our approach for the decentralizedltemdiesign task.

Let A e R™" be a HurwitZ stable matrix, which represents the overall closed loop system

matrix of a dynamical process with two interacting constituent subsystemd) Wwhie the

2This means that all the eigenvalues of the ma#rikave strictly negative real parts. This also

implies that the LTI systenx = Ax is exponentially stable.
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following structure

A1 A

X = AX with A= ) (6.1)

A Ax
where bothA;; € R(M-mMx(=m) gndA,, € R™M are assumed to be Hurwitz stable also. For
example, this equation can be considered to represent the error dyrdraigs/en closed
loop system. A basic question that arises for this feedback system is wbathean find a

positive, block diagonal matrik = P > 0, such that

Al Pi1+PiiA;1 <0
AL Poz+ PooPos < 0 (6.2)
ATP+PA<O
with
P— , 6.3)
0 P»

wherePy; € R-mx(-m) andP,, € R™M, |n other words we want to stabilize each of
the constituent subsystems, and the entire interconnected system, simudtanésuch a
block diagonal, positive matrife = PT > 0 exists, then not only is the system stable, but
also it is stable with respect to structural uncertaintie8qspnandA,1,which in effect, can
be considered as robustness with respect to system failure. Despitg haong history

in control theory, this problem, namely the problem of finding vector Lyapuanctions,
remains open to this day. Fortunately, in our situation, one may find feedbat&gies to

ensure a block diagonal Lyapunov function as described in the sequel.

Let B € R™™ be the matrix of all zeros except for the lastows andm columns which are
set to be the elements of x midentity matrix, and which we denote by € R™™, such

thatB matrix is expressed as follows

On—m><m

B= . (6.4)

Im
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6.3 A decentralized control design methodology

Further we denote € R, as the scalar variable in the frequency domain. Suppose now that

one can find a symmetric matrix= PT € R™™ such that
PB' (sl,—A)!B, (6.5)

is Strictly Positive Real (SPR).

Suppose further that the matrix pék, B) is controllable and at the same time, the matrix
pair (A, BI5) is observable. Then, it follows from the KYP lemma [49] that the frequency

domain condition (6.5) is sufficient for the existence of a marix PT > 0 that satisfies:

ATP+PA < O
(6.6)

This in turns guarantees the existence of a block diagBmalatrix with P,, = P. This

simple idea translates into a decentralized design strategy for our applicafiaifoas.

Proposition 6.3.1 (Decentralized control design procedurg

Suppose that a feedback system structure of the form (6.1) is giverg thleeaim is to
design controllers for the subsysteras= A;1X1 andxXy = Agoxo such that the overall system
X = Ax with x= [x1,%]" € R"is stable regardless of bounded structural uncertainties that

might be present in the blockgAand A1. The following design rule achieves this.

(a) Design a feedback strategy for blogk= Axx2, where ¥ € R™, so that the basic
design requirements for this subsystem are met over a range of opecatilitions;

this also specifies the matrixe R™™,

(b) Select the control strategy for blogk= A;1x1, where x € R" ™ such that
PBT (sl,—A) 1B, (6.7)

is SPR.
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6.4 Decentralized control design for vehicle dynamics trddng

6.4 Decentralized control design for vehicle dynam-

ics tracking

To illustrate the technique introduced in Proposition 6.3.1, we use a problém thigially

considered in [2]. Specifically, here we implement the methodology desciribine pre-
ceding section for synthesizing vehicle dynamics controllers for simultaeacking the
reference lateral and roll dynamics. The motivation for this problem wasribed in detail
in Chapter 5. While we considered the roll dynamics tracking to be the mairs fodhe

preceding chapter, here we are concerned with the tracking of bothnallateral dynam-
ics based on decentralized controllers and utilizing active suspensioactind steering
actuators. In doing so, we take the dynamical interactions into account detign such
that the stability of the resulting controlled roll and lateral dynamics are ectaffl from the
interactions. To keep the discussion reasonably simple, we use simplifieteve@ynamics
models, which have already been introduced in the preceding chapteetaih Specif-
ically, we design the lateral tracking controller based on the active steactugitor and
using the two-state single track model, while we use the two-state roll plane mitel
active suspension actuator for designing the roll dynamics trackingatlent\We then in-
tegrate both controllers based on the design methodology outlined in Prop@&s8id. We
show the efficacy of the resulting integrated tracking controller with nunlegiicaulations,

and as applied to a four-state single track model with the roll degree eofdnee

6.4.1 Lateral PI controller design based on LQR

In this subsection we introduce a simple lateral dynamics reference traoiimigplier de-
sign utilizing the linear single track model with active front steering input. FHerdantrol
design we assume that mechatronic-angle-superposition type activiegt@etuators on

the front wheels provide the sole control input. We previously introddkbede actuators
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6.4 Decentralized control design for vehicle dynamics trddng

in Chapter 3 in the context of rollover prevention control design. Also tilized the two-
state single track model for vehicle parameter estimation in Chapter 2. Herenadne
this model and the actuator to design a simple PI control law, where the cgatnd are

obtained by LQR (Linear Quadratic Regulator) design techniques.

The two-state single track modes$ the simplest model that represents the lateral dynamics
of a car in the horizontal plane, where the effects of heave, roll, an pittions are all
ignored [2]. It is also assumed that only the front tire is used for ste¢ghegehicle, and
that the steering angle is small. In this model, we represent the horizontahiysin terms
of the state variable8 and(, that is thesideslip angleand theyaw rate respectively. Both
of these states are assumed to be small for linearization. The correspatate space

representation of the model with active steering input is given as follows

B _o P 1 B o) o)

=| ™ ™ : ™ a | ™ | (6.8)
. ) Y Cyly Cly
w 3z _JZEVX L'U Iz Xz

wheredy is the driver steering command, anglis the steering command from the active

steering actuator. Also, the auxiliary parameterp, andk are defined as below

o £ C+GC,

p 2 Cilh—Cly (6:9)

K = C\,|3 —I—Chh%
For further description of the parameters of the model, refer to Table @.tharChapter 2.
The purpose of the control design we consider here is to follow a refergaw rate trajec-

tory*. This choice is motivated by the fact that the yaw ritealong with the lateral accel-

erationay are responsible for most of thateral handling feel(i.e., the lateral response) of

3See Figure 2.1 for the graphical representation and theionseof the model.
4t is possible to consider the tracking of both the yaw iatand the sideslip ang|é given that

there is more control authority such as the differentiaklmg and/or active front and rear wheel

steering. However, we assume neither of these actuatdnssidiscussion.
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6.4 Decentralized control design for vehicle dynamics trddng

an automotive vehicle, and therefore are the natural targets for emulsif®ean achieve

this by introducing a new integrator stageas a function of the yaw rate tracking error
X =~ Yret = —ady, (6.10)

whereyie s denotes the reference yaw rate trajectory, which is a linear function dfithex
steering inpu®y. Thus, the scalart is the steady-state gain from the driver steering input
dy to the reference yaw rat@+ for the vehicle that we want to emulate. Further, we can

define an augmented statec R3 given as below

T
Xy = [ B ¢ x } ; (6.11)
which results in the following augmented feedback system description
X1 = A11X1 +B1dg +Bour  with
g P G G
S mg Lo m M (6.12)
= = Iv = |V
All Jﬁzz - ‘]ZZVX ’ Bl % ’ BZ %
0 1 0 —a 0

Now in order to track the reference yaw rate trajectory, it is possible tigulesPI linear

state feedback rule based on the active steering impot the form below

U = KX1: |: Kpl sz K, :|X1, (613)

whereKp1, Kp2 are the proportional gains for the first two states, Knds the control gain
corresponding to the integrator state. While there are many ways to spexsgy/ gains, we
use a quadratic cost optimization technique known as the LQR for desigréngptiirol
input. This choice is motivated by the fact LQR is a well known method for sesdlfack
design and also that there are convenient numerical tools develogbisfpurpose (such as
the Matlal® control system toolbox). Just to briefly explain, for a linear systesAx+ Bu

with x € R", u € R™ andx(0) = Xo, the LQR design method for choosing a state feedback
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controlleru = Kx amounts to finding the fixed control gain vector

such that the closed loop system is stable, and also that the quadratigraiirf

J0,u() = /0 " [x@®TQx() +u(t)TRut)] dt, (6.14)

is minimum for the choice symmetric matric®s= Q" > 0 R™"andR=R" >0e R™™,
The matriceQ andR are known as thaveighting matriceand are the tuning parameters
in this design approach. We shall present the numerical implementation obtttiskber in
Section 6.4.3 below, where we will choose the matriQesnd R such that SPR condition

given in (6.7) are satisfied.

6.4.2 Roll PID controller design based on pole placement

In this subsection we use the second order roll plane model derivediio®a.3.2 in detalil,
for designing the roll angle reference tracking controller based ondtieeasuspension
actuators. We note that the control design approach suggested hergeis largely on
the pole placement controller introduced in Section 5.6; the difference is irwdhhere

consider the continuous-time version with fixed and known system parafeter

Assuming that the sprung mass of the vehicle rolls about a fixed horizafitakis along
the centerline of the vehicle body relative to the ground, and also thatg#sare small,

the equations describing the roll plane motion of an automotive vehicle catpbessed in

SWe emphasize that it is also possible to consider linear wanging systems in the scope of the

control design approach introduced in this Chapter, whingil e future direction.
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6.4 Decentralized control design for vehicle dynamics trddng

the following state space form with reference to Figure 5.1

) 0 1 ) 0 0
= . + ay + Uy, (6.15)

o _k-mgh _ ¢ | ‘mh 1

¢ Jeg heq ¢ Jeq Jeq
whereay is the lateral acceleration and is the roll torque input generated by the active

suspension actuator. Alsd,, denotes the equivalent roll moment of inertia defined as

Jxeq == Jxx+ ml’?

For further description of the parameters of the model, refer to Table 5.1.

The purpose of the control design we consider in this subsection is to falteference roll

angle trajectory. In order to achieve this we propose the following Pl@rabstructure
d de .
d—'”f = —Krliz+Kre+Ke o with  e= @er — @, (6.16)

whereK;1,K2,K;3 are the PID gainse is the roll angle tracking error, an@lq; is the

reference roll trajectory. Now we can define an augmented statéR® given as below

T
which results in the following augmented feedback system description
Xo = AooXq + Bzay + Bs@et with
0 1 0 0 0
(6.18)
A=| _ay -—a a |» Ba=| m |, Ba=| o
deeq
_Krl _Kr2 _KrS 0 Krl
where
k—mgh c 1
Heeq Heeq

eq

The characteristic polynomial corresponding to the closed loop system rAgrix
(6.20)

p(s) = s+ (g + Kr3)s2 + (a0 + @Kz + a1Kr3)s+ (K3 + Kr1ap).
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Denoting the closed loop eigenvalues (i.e., the target polek),as, A3, the target charac-

teristic polynomial of the closed loop system can be expressed as
P(S) = S — (A1 + A2+ A3)S* + (A1A2 + A1A3 + A2A3)s— A1A2A3. (6.21)

Comparing (6.21) with (6.20) we obtain the following fixed control gains in teofrthe

target poles and the elements of the system matrix

apar + ao(A1+ A2+ A3) — A1A2A3

Ko —
rl a
2 _
K, — al+a1(/\1+)\2+/\3) ao+A1)\2+/\1)\3+)\2)\3, (6.22)
a
Kis = —a1—(A1+A2+A3).

Now taking the Laplace transform of the controller (6.16) we can exphesssulting PID

controller in frequency domain as follows

K +Kezs

u2 (S) S+ Kr3

&(s),

whereuy(s) = Z{ux(t)}, ande(s) = Z{e(t)} are the Laplace transforms of the control
input, and the tracking error, respectively. As a final remark we notethigadesign pa-
rameters for this tracking controller are the target pdled,, As; in order for the closed
loop system to be stable these are set be negative real. In what follews)plement the
integrated control methodology based on the decentralized control dé@sigpduced in the

current and the preceding subsections.

6.4.3 Robust integration of controllers

In this subsection we give an implementation of the design methodology desitriBeopo-
sition 6.3.1 for simultaneous, and structurally robust emulation [2] of theeede vehicle
states related to the lateral and the roll dynamics. In doing so, we utilize the sieqse-

tralized control structures introduced in the preceding two subsectiahshaw that the
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6.4 Decentralized control design for vehicle dynamics trddng

resulting controller integration approach is robust with respect to certp@styf structural

uncertainties.

For the controller integration we consider the four-state single track moitleltiae roll

degree of freedom to represent the real vehicle. This choice is matibgt¢he fact that

the four-state single track model is the simplest model that considers thectidasaof

both the roll and the lateral dynamics, and thus it is an ideal choice fosggthe control

integration idea. We utilize the version of the model with the stétes [[3 gy o qo]T

and the model assumes control inputs from both the active front wheeingie@ctuator and

the active suspension actuator. Then, the linearized equations of motiesmanding to

this model with two inputs can be expressed follows

§ = A +G103+Grur+Goup  with
[ 0deq Pl _q himghk)
MVJdxx mvEJxx Vedx
P K
A — 2 T Wz 0
0 0 0
_ho hp mgh-k
Jux Vidxx Ik
G]_ = C"‘]Xeq Cilv h&
L MV Jxx Jzz Jxx

T
G, = h
:| ’ 2 Vxdxx

_ _he
Vidxx

0

1

(6.23)

: (6.24)

T

o L. (629

whereu; represents the mechatronic-angle-superposition type active steerangus,rep-

resents the active suspension roll torque input. For further definitioals the parameters

and notations appearing above, see Table 2.1 as well as the Chaptdr3, 2vuere variants

of this model have been utilized extensively. Also see [50] for a detailadadien of this

model.

The task of the integrated controller considered here is to follow refereicangle@er,

and reference yaw ratgs trajectories corresponding to a different vehicle. In our nu-

merical studies we simulate this scenario by utilizing two four-state single traclklsjod

each with a different parametrization; we shall refer to the vehicle thatave t@ emulate

as thereference vehiclewhich generates the reference trajectories, and the other vehicle
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Table 6.1: Fixed model parameters

Parameter Reference Vehicle Controlled Vehicle unit

m 1400 12241 (kg
Jux 500 362 [kg- P
J2z 1500 1279 [kg- ]

ly 1.4 1.102 [m]

I 1.5 1.254 [m]

h 0.6 0.375 [m]

c 6000 4000 [kg-m?/g
k 39000 36075 [kg-m? /|
Cv 80000 90240 [N/rad]
Ch 175000 180000 [N/rad]
a 4.019 [1/9

is referred to as theontrolled vehicle In Table 6.1 we give the numerical values for the
model parameters corresponding to each vehicle. Figure 6.1 below shgresiual step
steering inputdy of the the driver that is applied to both vehicles at a constant speed of
vx = 20m/s (where a constant steering ratio of 1/20 assumed for both); this results in th
dynamical responses shown on Figure 6.2, which clearly indicates ttfatébicles have

distinct dynamical characteristics.

Now in order to implement the controller integration procedure describedapoBition
6.3.1, we need to express the full state feedback system as a functianatritrol gains.

To do so, we first introduce a new state R® representing the full controlled vehicle states
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3, [ded]

time [sec]

Figure 6.1: Gradual driver step steer input.

as defined below

.
X1 Xl:[ﬁd—’xl]

X= , with T (6.26)
X2 X2 = [ » 9 u ]

Next we substitutel; from (6.13) andu, from (6.16) in the four-state vehicle model given

in (6.23)-(6.25), which results in the following closed loop state spacemysdéscribing

the vehicle dynamics

X = Ax+B183+Bo@er with (6.27)
T
x X 3, — | Cdeq Cly hG,
~ A1 A B1 [ g —a 0 ™ O} )
A — ’ MV Jyx N T Jxx (628)
Ay Ag I§z—[oooo|<rl},
where
J Je J
(— g T i Kp) 32 (o + i Kp2) 32— 1 o 520K
A — ly lv ly
At 7+ 5K ~ g+ K2 Shk |» (629
0 1 0
h(mgh-k)  hc _ h
Ve Jyx Vi dyx Vixdxx
Alz = 0 0 0 , (6.30)
0 0 0
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Figure 6.2: Comparison of the lateral and the roll dynamics responsdbeofeference and the

uncontrolled vehicles.

Aog

(mgh-k)

‘]XX

—Kn

—Kr2 —Kr3

0
1 0
< _1
Jxx Jxx

: (6.31)

(6.32)

In Figure 6.3 below the integrated control structure and the corresppoltised loop feed-

back system is shown schematically.

Now we are in a position to numerically implement the control design as outlineadpoPr

sition 6.3.1. First, we start with designing the roll tracking controller base&extion

6.4.2. Recall that the target poles (eigenvalues) are the only designgtara for the roll

controller. Without loss of generality we skt = —40, A, = —50, A3 = —60 as the target
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X2

Krl+s Kr! ot
s+ K

Y
L A

Xi

Figure 6.3: Schematic representation of the integrated decentratiaettol structure.

poles; then from (6.22) the PID control gains are calculated as
K1 = 6.0533x 10/, Kro = 3.3614x 1P, K3 = 1425195 (6.33)
Then in order to find® we solve the following Lyapunov equation numerically
AL P+ PAy = —Qp2.

For this numerical solution, without loss of generality, we@gt= 10«3, wherels denotes

the identity matrix inR3*3. This solution results in

1.276x 1019 7.544x10F —8.763x 107
P=| 7544x108 4.830%10° 65.919 (6.34)

—8.763x10° 65919 0364

Next we design the control gains for the lateral PI tracking controllecritesd in Section
6.4.1, according to the iterfb) of Proposition 6.3.1. In order to do so, we first utilized the
Matlald® control system toolbox to compute the LQR controller gains described in)(6.13
which minimizes the quadratic cost function (6.14). Again, without loss o&gaity, we

assumed a diagonal structure for theighting matrices @ndR in conjunction with the
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6.4 Decentralized control design for vehicle dynamics trddng

LQR solution (note here that, as the lateral tracking controller is based mgla sput,

thenRis a scalar). We used the following values for these;
Q=18xl3, R= 550 (6.35)

Then one can numerically show that condition (6.7) satisfied. We note thatsb#ing
matrix pair (A, B) is controllable and the paiA, BP) is observable. In Figure 6.4 we show
the variation of the eigenvalues BB' ((jw— &)ln—A) 1B+ (PBT ((jw— &)l — A)~1B)*
demonstrating SPR condition in a section of the frequency domain for vagyin®, where

€ is an arbitrarily small scalar [49].

x 10 x 10°

eigenvalue—1| = = = eigenvalue-2

0
500 -500

N I

e o E
N IS

go':=---

500

4 .:"'\ 1
’ ““
K4 N
2 ’.I ‘«
- -’ s, -
-500 0 500

Figure 6.4: Eigenvalues oPB' ((jw — &)ly—A) "B+ (PBT((jw — &)I, — A)~1B)* in frequency

domain, fore = 1015,

Comment: Note that SPR condition is easily checked using spectral methods [100], [1
or by solving a generalized eigenvalue problem. Here we give an apmtx graphical
frequency domain check to illustrate that the problem of the existence df diagonal
Lyapunov functions can be reduced to a frequency domain searechm@ivation in doing
this is that we can quantify the uncertainty in our model over frequenagesathat are of
interest in our design. Note also that the limiting conditions given in [49] aesa#isfied

and have been checked numerically. It is also easily verified that owrotlability and
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observability conditions are satisfied.

In order to test the integrated controller, we considered an obstacleaageidnaneuver
scenario conducted by the driver. The vehicle speed was assumefixecatv, = 20m/s
during the course of the maneuver and the driver steering input is showigure 6.5.
The resulting dynamical responses of the reference and the contrehédes is shown in
Figure 6.6, where we observe a good agrement in the reference andrinelled states.
Note here that the lateral acceleration in simulations was computed using theirfgllo

relationship

ay=W(B+ ). (6.36)

Based on the simulation results, we observe that the decision of following saya refer-
enceyi.t Was a reasonable one, as this also resulted in good tracking results fatetiaé
acceleration of the reference vehicle. Considering the fact that thellatereleration is one
of the most important variables for the lateral dynamics response, tratiedfeess of the

controller is evident.

8, ldeg]

| | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
time [sec]

Figure 6.5: Driver steering input.

It is also interesting to look at how the suggested integrated controllett alffec/ehicle

path. To do this, we recall that the coordinatesy) of the vehicle CG relative to the road
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Figure 6.6: Comparison of the lateral and the roll dynamics responsdbeofeference and the

controlled vehicles.

satisfy

X = vcogB+ 1), (6.37)

y = vsinB+y), (6.38)

where we choose the initial coordinateg0), y(0)) to be zero. In Figure 6.7 the trajecto-
ries over the road plane for the reference, the controlled, and thentnalled vehicles are
compared. Again we observe a good agreement between the refarahtiee controlled

vehicle trajectories.

As part of the numerical analysis, we finally look at the robustness ofufgested con-
troller with respect to structural uncertainty. In order to simulate suchrtainges, we arti-
ficially multiplied the blocksA;, andAy1 with a scalar constant. Without loss of generality

we chose this number to be3 such that the closed loop system mafigorresponding to
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Figure 6.7: Comparison of the horizontal trajectories for the refeegruontrolled and the uncon-

trolled vehicles.

the controlled vehicle is now expressed with

Ain —3A

p~3}
Il

—3A1 A
Under this uncertainty we repeated our simulations for the same drivingrsoes before
where the steering input is as given in Figure 6.5. The resulting dynangspbnses of
the controlled vehicle is shown in Figure 6.8 where we observe that theotledtvehicle
is stable, however the tracking performance of the states have beaaddédgiue to the
structural uncertainty, which is expected. In Figure 6.9 we show the toajes of the
controlled and the uncontrolled vehicles with the structural uncertaintyrapa@d with the
reference vehicle trajectory. We observe from this plot that the cordre#iaicle maintains
a close tracking of the reference vehicle for a range of structuradrtainty, while the

uncontrolled vehicle shows an infeasible and a divergent behavior.

6.5 Conclusions and possible future directions

In this chapter we presented a novel approach for decentralizeatdagign for systems

with multiple interacting dynamical modes. We applied the suggested design teehniq
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Figure 6.8: Comparison of the lateral and the roll dynamics respons#seofeference vehicle and

the controlled vehiclevith structural uncertainty .

for the robust integration of the decentralized control designs for thealaded the roll
reference tracking controllers for an automotive vehicle. We presé¢heedfficacy of the
integrated vehicle emulation controller with numerical simulations, which shoigadier-
formance and accurate tracking results. Finally, we showed numericatlththauggested
control design preserves robustness of the closed loop system wiibctes structural

uncertainty in such applications.

As a future direction we shall look into extending our results to the caseentherplant
is subject to parameter variations and/or undergoes discrete switches.walshall look
into extensions of the integrated vehicle emulation control design that utilizeicatians
of the active four-wheel steering, the active suspension as well aiffagential braking

actuators in conjunction with our decentralized control design approach.
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and uncontrolled vehiclesith structural uncertainty .
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Chapter 7

Two Problems on Existence of
Common Lyapunov Solutions for
Switched Linear Systems: Interval

Uncertainty & Regular Inertia

In this chapter we give some results on common Lyapunov solution (€isS) e
tence for certain classes of switched linear systems. For a subclasgciay
Hurwitz systems with bounded uncertainties in the matrix elements, we show
that the quadratic stability can be verified using simple algebraic conditions.
We also illustrate this with numerical examples. For another switched system
class, which involves a pair of switching system matrices with the same regu-
lar inertia and in companion form, we extend the classical Lefschetz version
of the Kalman-Yacubovich-Popov (KYP) lemma to derive an easily \#eifia
spectral condition to have a CLS. As a final extension, we combine these tw

results for a particular switched system class.

255



7.1 Chapter contributions

7.1 Chapter contributions

The scientific contribution of this chapter over the state of the art is mainly inrdee
stability theory. While most of the achievements of the chapter have theoratitiahtions,
some of the results have applications to control design for uncertain systben§irst ma-
jor contribution of the chapter was the extension of recent results on exéstd common
quadratic Lyapunov functions (CQLF) for the class of switched linestesys that involve
a pair of Hurwitz matrices in companion form. We extended these results tatiaupar
lar class of switching linear systems, where the elements of the switched systeites
have bounded interval uncertainties. Particularly, we showed thatafi@astability of such
uncertain systems is easily verified by checking the eigenvalues of only &mpedducts.
Also, we gave a numerical example of this result for checking the stabilityeadiiomotive
roll dynamics subject to parametric uncertainties and switching. The seocotribution of
the chapter was the derivation of a simple algebraic condition that is equivaleommon
Lyapunov solution (CLS) existence for a significant class of pairs ofioggtin companion
form and with the same regular inertia. We achieved this by extending thecelalsef-
schetz version of the Kalman-Yacubovich-Popov (KYP) lemma for matricds negular
inertia; we then utilized this lemma to derive a result on CLS existence for thigfispe
class of switching systems. The final contribution of the chapter was taliese two re-
sults to obtain CLS existence conditions for switched pair of matrices with nreggdia

and with interval uncertainty.
The work contained in this chapter has resulted in the following publications:
(i) Zeheb E., Mason O., Solmaz S., Shorten @n‘the quadratic stability of switched
interval systems: Preliminary resulisProceedings of the 2005 IEEE International

Symposium on Intelligent Control, and 2005 Mediterranean Conferemégoatrol

and Automation, Page(s):12 - 17, 2005.

(i) Zeheb E., Mason O., Solmaz S., Shorten Rafne results on quadratic stability of
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switched systems with interval uncertaihtinternational Journal of Control, Vol.

80, No. 6, Page(s):825-831, June 2007.

(i) Mason O., Shorten R., Solmaz SOh the Kalman-Yakubovich-Popov lemma and
common Lyapunov solutions for matrices with regular inértlanear Algebra and

its Applications, Vol. 420, Issue 1, Page(s):183-197, January 2007.

(iv) Solmaz S., Mason O., Shorten RGéneral Inertia and Circle Criteriof)y Proceed-
ings in Applied Mathematics and Mechanics”, Vol. 6, Issue 1, Page(sB365
December 2006. (Initially presented at 77th Annual Meeting of the Gebafisitir

Angewandte Mathematik und Mechanik e.V., March 27th - 31st, 2006.)

7.2 Introduction

Classical Lyapunov theory provides a strong method for checking thenextial stabil-
ity of linear time-invariant (LTI) systems of the form= Ax, A € R™" without explicitly
calculating the eigenvalues @f [26, 43]. The result is that, the zero statexof Ax is

asymptotically stable if and only if the solution of the Lyapunov equation
ATP+PA=—Q,

is a symmetric positive definite matrixfor all Q = Q" > 0. Here, the matri®® = PT >0
is called aLyapunov solutiorfor A. Also, the asymptotic stability of = Ax implies that
all the eigenvalues ok have strictly negative real parts, where such matrices are said to be

Hurwitz .
In this chapter we consider certain subclasses of the switched lineamsyst¢éhe form
Z:x=A)x, (7.2)

wherex(t) € R", A(t) € R™" A(t) € {A4,...,An}. One way of establishing the stability

of such systems is to show that for some positive definite mBitthe quadratic Lyapunov
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functionV (x) = x"Pxis decreasing in time; namely thA,IPJr PA <Oforall1<i<m.

When such a function exists, then the associated LTI systems
Za i Xx=Ax 1<i<m (7.2)

are said to have a common quadratic Lyapunov function (CQLF). Rlscreferred to as a
common Lyapunov solution (CLS) for the inequaliti®sP+ PA < 0, 1<i < m. Recently,
motivated by the stability of switched systems [59], the problem of determiningpaot
conditions for the existence of a CQLF for a finite number of LTI systemsaBasmed a
position of great theoretical importance in the mathematics and engineering catesiu
see [9, 115, 116, 29, 30, 90, 75, 6] for some of the recent work inattda. Also in an
earlier publication, CQLF existence problem has been investigated in abiojunvith the
stability of LTI systems with uncertain parameters in [41]. Drawing from thresalts, in
this chapter, we give some extensions of the CLS existence results f@ncaibclasses of

the switched linear systems of the form (7.1).

As a first extension we consider, in Section 7.3, the exponential stabilityceftain class
of switching systems, which involves Hurwitz system matrices in companion &wth
with elements having bounded interval uncertainties. We show that it is p@$sibbtain
analogs of the CQLF existence results in [116, 115] for this particulaesyslass. This
extension has significant implications for control engineering, as mamyifieegystems
involve controllers based on simplified dynamical models with uncertainties awe $een
some examples of these in Chapter 2 in the context of automotive systems.etorals
extension in Section 7.4, we consider a pair of LTI systems with regular ineréaning
that the system matrices can have nonzero eigenvalues on either sideno&tjreary axis
(but not on it), thus are not necessarily Hurwitz. We extend the cladsiésthetz version
of the KYP lemma and utilize it to show that the algebraic conditions for existdree€bS
(with a regular inertia) can readily be verified for this system class. FinalBeition 7.5,
we combine these two results to obtain a CLS existence result for a switchietnsglass

that involves matrices with both interval uncertainty and regular inertia.
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7.3 CQLF existence problem for interval matrix fam-
ilies

In this section we consider the stability of a certain subclass of the switched gstems
given in (7.1). Although great progress has been made on the gab®tf existence
problem in recent years, the problem of determining whether or not af 48t systems
subject to interval uncertainty has a CQLF has received relatively littletatterdespite
its obvious considerable practical importance. Our objective in this sectiorstsidy this
problem for a restricted class of switching systems subject to intervattaintg; namely
the class of switching systems given ky="A(t)x, A(t) € {A,A—gh'}, whereg,h are
vectors in R", and the system matricés A— gh' are subject to interval uncertainty of the

formgij < aj <aj.

The class of switched linear systems that we study is thus restricted in two ways

(i) We consider switching between two LTI systerg,, a,;

(ii) the system matrice8; andA; differ by rank one f, = A; —gh').

The first restriction, although a special case of the general problewitfhing between
an arbitrary number of LTI systems, is important, has numerous applicaindsias been
extensively treated in the literature (see e.g. [90, 30]). Also, this restrigtioelevant to
control systems which include a relay with two states e.g. “on” and “off"pthier linear
dynamical systems containing a single switch whose position is assumed to tekiies
from a discrete set of the forg©, 1} according to a certain rule. Moreover, many dynamical
systems with nonlinearities due to saturation, hysteresis, or backlash chestrbed as

switching between two linear systems.

Obviously, a necessary condition for the existence of a CQLF for a fieitef4 T1 systems

lWe emphasize that the vectays € R" are not necessarily fixed.
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is that every pair of systems belonging to the set has a CQLF. Moreoeee, tlan exist
system classes for which the existence of a CQLF for any pair of systeanfénite family
implies the existence of a CQLF for the entire family. This was shown to be tledfaathe
class of second order positive systems in [37]. This fact providéisumotivation for the

study of the problem of CQLF existence for pairs of systems.

With regard to the second restriction, pairs of systems differing by raekhane histori-
cally occupied a position of great importance in systems theory, and selassical results

on absolute stability for single-input single-output (SISO) systems suttte&@epov Crite-

rion andCircle Criterion can be considered in this framework. Also, this class of systems
includes pairs of systems whose system matrices are in companion formladass. Fur-
thermore, switching between systems differing by rank one arises in a nuinjpectical
applications. For example, in [134] a control system for four-whee&rdbg-wire vehicles

is described, which involves switching between a pair of LTI systems iiidry rank one,

and whose parameters are subject to interval uncertainty. It shoultdelsoted that sys-
tems differing by rank one have received a considerable amount ofiatt@mthe literature

[115, 76, 51].

It should be emphasized that, in compensation to these restrictions, thisexégeas re-
sults for the class of systems under study in a very important directiony Eneghematical
model of a physical system is inaccurate and includes uncertaintiese @he<ither in-
herent to the model or a result of measurement inaccuracies or envintairoeanges, etc.
These uncertainties can often be characterized by interval parametbesritodel, exam-
ples of which were analyzed in Chapters 3 and 4. Such “interval modeds’hawever,
difficult to analyze and thus are frequently neglected unjustifiably. Alteslg, numeri-

cal methods are used, as was the case in Chapters 3 and 4, wherevmeinregical LMI

solvers to find Lyapunov solutions satisfying certain matrix inequalities. Irsétsion we
treat such interval uncertainty in a systematic analytic way, which is indep¢rd the

uncertainty.
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7.3.1 Mathematical preliminaries

Throughout the current chapter, we adopt the convention that gaot®" are assumed to

be column vectors. Alsq, is used in the chapter to denote the complex number satisfying
j2 = —1. Moreover, for a vectox in R", we denotex; as thei'" component ok, and for

a matrixA in R™", we denote the entry in th@, j) position bya;;. Also, we useo(A) to
denote the spectrum (i.e., the set of eigenvalues) of a given square Aaffixally, we
denotdp, as then x nidentity matrix. We have the following definitions and results that will

be useful for the rest of the chapter.

Companion matrices:

We say that a matrid € R™" is in companion fornj102, 42] if

0 1 0 0
0 0 1 0
A = : ) (7.3)
0 0 o ... 1
—ap —a —a ... —an-1

whereay,...,ay_1 are real numbers. It is straightforward to verify thafifs in the form

(7.3), then the characteristic polynomial/fs
det(sh—A) ="+ a,_ 18" 1+ + as+ap.

In this chapter, for notational convenience, we shall denote the comparatix (7.3) by

C(a07 .- -,anfl)-

The Circle Criterion and CLS existence for systems differing by rankone:

One of the most fundamental results on the stability of dynamical systems inglmeering
literature is the Circle Criterion. The relevance of the Circle Criterion [76]unpresent

context stems from the fact that it provides a necessary and sufficiedition for two fixed
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Hurwitz matrices in companion form to have a common Lyapunov solution (or BFEQ
Formally, if A, A—gh' are two Hurwitz matrices ilR™" in companion form, wheré, g

are vectors ilR", then they have a CLS if and only if the rational function
1+h'(sl,—A) g (7.4)
is strictly positive real (SPR), meaning that
1+Re{h" (jwl,—A)"1g} >0 forallweR. (7.5)

Moreover, it follows from Meyer’s extension of the KYP Lemma in [67] tktia condition
(7.5) is also sufficient for CQLF existence for two LTI systefsZ g whereA, A— gh'
are Hurwitz matrices differing by rank one, but not necessarily in compdarm. Recently
in[115, 114], it has been established that the frequency domain coniti®yis equivalent
to a simple condition on the eigenvalues of the matrix proéat—gh'). This equivalence
was first demonstrated in [115] for matrices in companion form and themdedeto the
case of a general pair of Hurwitz matricks A, with rank(A; — A1) = 1 in [114]. We state

the most general form of the result here.

Theorem 7.3.1 Let A, A—gh' be Hurwitz matrices ilR"*", where gh € R". Then
1+Re{h" (jwl,—A) g} > 0forall we R

if and only if the matrix product #A —gh") has no negative real eigenvalues.

See Appendix C for the proof of this theorem.

Combining the result of Theorem 7.3.1 with Meyer’s extension of the KYP Lelf@rg
yields the following spectral condition for CLS existence for Hurwitz matritiffering by

rank one.

Theorem 7.3.2 [114] Let A, A— gh" be two Hurwitz matrices ilR™" where gh are vec-

tors inR". A necessary and sufficient condition for the existence of a commaquhge
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solution for the matrices A, A gh' is that the matrix product /A — gh") does not have

any negative real eigenvalues.

In the remainder of this section, we shall show how Theorem 7.3.2 may deausbtain

results on CQLF existence for pairs of LTI systems subject to intervadrtaiaty.

Kharitonov’s theorem and rational transfer functions:

In obtaining the main results of this section, we shall make use of a versiohasftgnov’s
Theorem for rational functions that was derived in [24]. l%tbe the family of interval

polynomials of orden given by
p(s) = po+ PaS+- -+ pns’, (7.6)

wherefpi < pi < for 0<i <n. Then define the four Kharitonov polynomials associated

with &2:
K'(S) = Pyt PpS+PS+Pss+: (7.7)
K'(S) = Py+PiS+PS+psS+ps (7.8)
Ky'(S) = Po+PpS+P,s+PaS+Ps +- (7.9)
K'(S) = PotPis+ps+ps+: (7.10)

If &2 and 2 are two families of interval polynomials of ordarand m respectively with

n<m, thens? /2 denotes the family of proper rational functions of the form

O (7.11)

q(s)
wherep € & andg € 2. The following result on the strict positive realness of all of the

rational functions in%? / 2 was derived in [24].

Theorem 7.3.3 Every transfer function in the family? /2 is strictly positive real if and
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only if the following eight transfer functions are strictly positive real.

(
)’ (7.12)
(
(

where I{/’ kr@, 1 <i < 4, are the Kharitonov polynomials corresponding to the interval

polynomial families?” and 2 respectively.

In what follows, we give the main result of this section.

7.3.2 CQLF existence for interval matrices in companion form

In this subsection, we derive a result on CQLF existence for a pair b§y3tems, which
involve interval matrix families in companion form as the system matrices. Partigule

consider the case when each matrix family is independently subject to interaitainty.
Based on results from two different areas and applications for this plartitype of switch-
ing systems, we give necessary and sufficient conditions expresggdiditly in terms of

eight fixed coefficient matrices.

We denotes and# as real interval matrix families iR™" consisting of companion ma-

trices as defined below

o ={C(ao;...,an-1) ER™": g <g <gforO<i<n-1}
(7.13)
% ={C(bo,...,bp_1) ER™": b < <bjfor0<i<n-1}

In Theorem 7.3.4 below, we consider the following problem.

Determine necessary and sufficient conditions for any pair of LTI s\,

2p with Ac o7, Be % to have a CQLF

We are concerned with CQLF existence for pairs of systEm<g with A€ &7, B € 4.

Hence, we shall assume that all of the matrices belonging to the fan¥lie® are Hurwitz.
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The problem of determining whether or not a family of interval matrices ctssistirely
of Hurwitz matrices has itself been the subject of a considerable amouesednch [108,
100, 142], and in the case of interval matrices in companion form, Khasitefideorem

can be used to test for stability.

For the interval matrix familys, construct the four matrices

A; =C(ag,a4,32,33,...)

Ao :C(QoaélvéQvQngAv”') (7 14)

As =C(ao,a,2,33,a, .. .)

A4:C(507317§27§37"')7 )
in analogy with the Kharitonov polynomials given by (7.7)—(7.10). The matigeBy, Bs,
B4 are defined in the same manner for the faniy We are now ready to state the main

result of this subsection.

Theorem 7.3.4 Consider the interval matrix families/, % given by (7.13), and assume
that all the matrices belonging te7, % are Hurwitz. Then for every pair of LTI systems of
the formZ,, 25 with A€ o7, B € % to have a CQLF, it is necessary and sufficient that none

of the eight matrix products
A1B2, A1B3, AoB1, A2By,
AgB1,A3Bas, A4B2, A4Bs,
has a negative real eigenvalue.
Proof of Theorem 7.3.4Let A=C(ap,...,8,-1), B=C(bo,...,b,_1) be two matrices in
the families.ez and % respectively, and writ® = A— gh" whereg = (0,0,...,1)T, and

h=(bp—ao,...,bn.1—an 1)". Then it follows from the Circle Criterion that the LTI

systemsa, Zg have a CQLF if and only if the rational function
1+h"(sl,—A) g
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is strictly positive real. It is known that for any vectbe= (fo,..., f,_1)T in R",

_ fo+ fis+...+ fros™ 1
T . 16 0 1 n—1
F(sh=A"g det(sl,—A) ’

(7.15)
for se C [47, 102]. Utilizing this result, it can be verified by direct computation that

1+h"(sl,—A)~tg=b(s)/a(s) (7.16)
where the polynomiala(s), b(s) are given by

a(s) =ap+aiS+ - an_18" 1 +9"
(7.17)
b(S) =bg+bis+--- bn_ls'“*l +g"

It now follows that every pair of LTI systenia, g with A€ o7, B € % will have a CQLF
if and only if all of the rational functionb(s)/a(s) are strictly positive real whera(s) and

b(s) belong to the interval polynomial families
a(s)=ag+ais+---an 18" 1+ with a<a<a for 0<i<n-—1,
and
b(s) =bo+bis+---by 18" 1+ with b <b <b for 0<i<n-1,

respectively. By a slight abuse of notation, we shall use the notatipg? to denote these

polynomial families also.

Now, Theorem 7.3.3 establishes that all of the rational function®in7 are strictly posi-

tive real if and only if the functions

are strictly positive real. The result now follows from Theorem 7.3.1.

Q.E.D.
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Remark 7.3.1 The above result provides simple conditions that are necessary dnd suf
cient for CQLF existence for a pair of LTI systems in companion form suligeinterval
uncertainty. In fact, it is only necessary to calculate the eigenvalueshdframmtrix products,
whereas testing for strict positive realness requires evaluating trdnstions at infinitely

many values otv.

7.3.3 Applications of the results

In this subsection we present two numerical examples to illustrate the useaferh 7.3.4.
The first example is based on a hypothetical switched system with intersattamty. The
second example is motivated by automotive roll dynamics that is analyzed ihwigtén

this thesis. In this example we show how the results of this chapter can be utilizhdck

whether the roll dynamics is stable under switching and subject to paramettainties.

Example-1: (Hypothetical switching plant with interval uncertainty

Consider the following stable family of matrix pairs in companion form and with vater
uncertainty, as expressed in terms of our notation given in (7.13),

o = {C(a07a173-2) ‘dp € [17 2]val € [57 6]73-2 € [374]} (718)

% = {C(bp,b1,by) : bo € [1,1],b1 € [1,2],b; € [3,4]}
whereC(ap, a1, ay) denotes the companion matrix whose last ro-Hsy, —ai, —ap). We
are interested in the stability of arbitrarily switching linear systemsandZg, whereA €
o/, B € %. We emphasize that this problem originates from an example in [24], wheye th

consider the following stable family of transfer functions with interval uteisty,

. 1+bis+ szZ—FS’3 ith bo € [171]7b1 € [172]7b2 € [374]
T agtasta?+s3

G(s)
ao € [1,2),a1 € [5,6],a2 € [3,4]
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Here we express this transfer function family as a rational function of ttepval families

of companion matricesy, % < R>*3 as described in (7.18).

For this problem, the corresponding Kharitonov family of companion matrieéeeatl by
(7.14) are as follows
A1 =C(1,5,4), A, =C(1,6,4), A3=C(2,5,3), A4 =C(2,6,3)
(7.19)
Bl = C(17 17 4) ) BZ = C(17 27 4) 3 B3 = C(l> 17 3) ) B4 = C(la 27 3)

Then, bother and % consist of Hurwitz matrices and the eigenvalues of the eight matrix

products of Theorem 7.3.4 utilizing (7.19) are presented in Figure 7.1.

Imag < AB,
1+ ] v ABg
A Az"B1
0.8 o e ASB,
e o AB
0.6~ = AFB,
*  ASB,
0.4 A *B,
v 4 "3
S A<
0.2+
0 L = * v—¢ <+—A
Real
¢ :4
06
o °
-1+ "
I I I I J
-2 0 2 4 6 8 10

Figure 7.1: Eigenvalues of the matrix products of Theorem 7.3.4.

As can be seen from the plot none of the matrix products have negagiveigenvalues.
Theorem 7.3.4 therefore guarantees the existence of a CQLF for anyfpd| systems

2a, 2ZgWhereAe o7, B € £.
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Example-2: (Switching automotive roll dynamics subject to interval untainty)

In this example we show how the results of the current section can be utilizeftetk
whether the roll dynamics of an automotive vehicle is stable under switchimg \atso
subject to parametric uncertainties. The example is motivated by the fact ¢éhiatlltialy-
namics of a vehicle can change as a result sudden switches in the vetedless of gravity
(CG) height. Also, the suspension parameters and/or the roll centehaage depending

on many factors When using linearized models to analyze the problem, it is possible to

model these variations as bounded interval uncertainties.

Assuming that the sprung mass of the vehicle rolls about a fixed horizatitakis along
the centerline of the vehicle body relative to the ground, and also thatg#saare small,
the equations describing the roll plane motion of an automotive vehicle catpbessed in

the following state space form with reference to Figure 2.2

® 0 1 ) 0

_ . + ay (7.20)
hy k—mgh , h
¢ e el L9 3

whereay is the lateral acceleration, an:i;;Lq denotes the equivalent roll moment of inertia

defined as
Jieq = Jox+MIT. (7.21)

For further description of the parameters of the model, refer to Table 2.1.

Now we consider a scenario where the CG height can switch between tuesVve=
[h1,ho]. Further we assume that the uncertainties in the linear suspension stkfreess$

the linear damping coefficiertt can be expressed as bounded interval uncertainties such

2In a real vehicle, the suspension parameters are nonlineatiéns of the vehicle speed, aero-
dynamic forces, suspension geometry and varying roll cemenell as other factors such as the tire
pressure, temperature etc. However these factors do netappthe simple, linearized roll plane

model (7.20), which motivates the consideration of paraimancertainty ink andc.
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thatk € [k, k] andc € [c,T]. We are interested in stability of the roll dynamics subject to the

switching in the CG height, and uncertainties in the linear suspension paramkters

Under these assumptions, the roll dynamics evolve according to two matrix fafiies

andB € % depending on the two possible CG positions, and they have the following form

0 1 0 1
A= , B= ) (7.22)
_k-mgh _ ¢ _k=mgh ¢
Heq1 Heq1 Feeq2 Jeqz
where
Jeq = I+ Mif,  for i={12}. (7.23)
Further we define the following auxiliary parameters
_ k-mgh a— -C
R T (7.24)
= kimg = c
bO ‘]Xeqz ’ b2 ‘]Xeqz

wherek € [k, k] andc € [c,T]. Then, we can cast the resulting family of system matrices from
(7.20) into our notation given in (7.13) as two interval families of companioniosstye,

A defined below

o ={C(ag,a1) : a € [ay,a0], a1 € [a1,a1]} (7.25)

% = {C(bo,by) : by € [bg, bo], by € [by, b1}

For the numerical analysis we assumed the parameters given Table 7 i regués in the

following companion matrix family from (7.25)

o/ ={C(ag,a1) : @ € [30.142542.6425, & € [5,10} (7.26)

% = {C(bg,by) : by € [16.232224.1186, by € [3.15466.3091}

The corresponding Kharitonov family of companion matrices defined byl ‘afe then
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Table 7.1: Model parameters for numerical analysis

Parameter Numerical Value unit definition
m 1200 kg vehicle mass
Jux 500 [kg- mz] roll moment of inertia about CG
hy 0.5 [m] CG height configuration-1
ho 0.8 [m] CG height configuration-2
k 40000 [kg-n?/s?]  spring stiffness (upper bound)
k 30000 [kg-n?/s?]  spring stiffness (lower bound)
T 8000 [kg-n?/s]  roll damping coefficient (upper bound)
[v 4000 [kg-n?/s]  roll damping coefficient (lower bound)

given as follows

A1 =C(30.14255) , A, = C(30.1425 10)

Az =C(42.64255) , Ay =C(42642510) (.27

B; = C(16.23223.1546) , B, = C(16.2322 6.3091)

Bz =C(24.11863.1546) , B, = C(24.11866.309])

Then, bothes and % consist of Hurwitz matrices and the eigenvalues of the eight matrix

products of Theorem 7.3.4 utilizing (7.19) are presented in the figure obe

As none of the matrix products have negative real eigenvalues, Thebfe4 guarantees
the existence of a CQLF for any pair of matricks <7, B € 4, thus the described roll
dynamics model subject to random switches in CG height as well as intersattainty in

the suspension parameters is stable.
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A *
a0 : Imag(A) + AB L
v ABy
30 - . . B AZ*BI H
# . e
‘ A3*Bl
201 - : + o A8, H
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10k AlBs]]
0 >
Real()\i)
_10 — . . . -
¢
-20+ 4 N -
# * o
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Figure 7.2: Eigenvalues of the matrix products of Theorem 7.3.4 for diledynamics.

7.4 Generalized KYP lemma and common Lyapunov

solutions for matrices with regular inertia

In the preceding section we considered an extension of some recelt$ @s CQLF ex-
istence for a set of Hurwitz matrices to switched systems with interval uncgrtaike
will consider a further extension here for a particular subclass of agbawitched lin-
ear systems. Recall that, for the case of a pair of systems, the CQLF erigiezblem
amounts to determining necessary and sufficient conditions for the exastércpositive
definite symmetric matri® = PT > 0, P ¢ R™" that simultaneously satisfies the matrix

inequalities

AIP+PA <0 , AIP+PA <O (7.28)
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where all eigenvalues of the given matriogs A, € R™" lie in the open left half of the
complex plane, that i, A, are Hurwitz. When there existsRa= P" > 0 satisfying the
above inequalities, then the scalar functiofx) = x" Px is said to be a common quadratic
Lyapunov function (CQLF) for the dynamical systelg : X = Ax i€ {1,2}, and the
matrix P is a common Lyapunov solution (CLS) for the Lyapunov inequalities (7.28a |
slight abuse of notation, we shall often refer to sudhas a CLS for the matrice&, A,.
The existence of CQLFs is of considerable importance in a number of emgigeroblems
[58] and consequently the CQLF existence problem has assumed d poletian research

on stability theory.

It is generally accepted that determining the existence of a CQLF for a fielitefd Tl
systems is very difficult to solve analytically. However, in certain situatioris tiee case of
switching between two LTI systems, elegant conditions for the existencEQIL& may be
obtained when restrictions are placed on the matigeandA,. Recently, one such result
was obtained for the case whe&kgandA; are Hurwitz andank(A; — Az) = 1; in this case
a CQLF exists foka, andZ,, if and only if the matrix producy A, does not have any real
negative eigenvalues. Furthermore, it has been shown recently ihtfiet3his result can
be seen as a time-domain version of the Kalman-Yacubovich-Popov (K¥idewhich

was introduced by Kalman in [47].

Our primary aim in this section is to extend this result on CLS existence to themtese

the matriceg\; andA, are no longer Hurwitz, but rather have regular inertia [43]. Note that
the general problem of CLS existence for matrices with regular inertiades ¢tonsidered
by various authors before [39, 29, 30, 9, 99], and, in particulagltelinking CLS existence

to the inertia of so-calledonvex invertible conesf matrices have been established for the
cases of Hermitian and triangular matricesRifr" and for matrix pairs irflR2*2. In this
section, we shall extend the KYP lemma from classical stability theory to matrites w
regular inertia and show that, in analogy with the classical case of Hurwitzces{i76],

this extension leads to elegant conditions for CLS existence for matricesagithar inertia
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also.

7.4.1 Mathematical Preliminaries

In this subsection we present a number of basic definitions and resules¢hatquired for
the discussions in the remainder of this chapter.

Matrix Inertia:

The inertia of a matriXA € R"™*" is the ordered triple
IN(A) = (i (A).i_(A).io(A)) (7.29)

wherei (A),i_(A),io(A) are the number of eigenvalues &fin the open right half plane,
the open left half plane, and on the imaginary axis, respectively. We ab thas regular

inertia ifig(A) = 0.

The Matrix Ray 0Oy e [A1, A2]:

Later in the current section, we shall refer to thatrix ray oy .. [A1, Az]. Formally, this is

the parameterized family of matrices of the form
Oy[0,) [Al,Az] = {Al—l- YA y € [0, 00)} (730)

We shall say thabty o )[A1,Az] is non-singularif Ay + yA; is non-singular for ally > 0;

otherwise it is said to bsingular. It is trivial to show that singularity of the matrix ray
Oyi0,0)[A1, Az is equivalent to the matrix produst 1A, having a negative real eigenvalue if
A; andA; are non-singular. Also, we say thaf ) [A1,Az] has constant inertia if there are

fixed non-negative integers.,n_,ng such thatn(A; + yAz) = (n4,n_,ngp) for all y > 0.

Technical lemmas:

We next record some basic technical facts that shall be used in proemgititipal results

of this section.
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Lemma 7.4.1 Suppose that A R™" and has regular inertia, such that(A) = (n;.,n_,0).

Then
det(w?l,+A?) > 0, (7.31)
forall w e R.
Proof of Lemma 7.4.1:As the matrixA has real entries and has regular inertia, it follows
that for anyw € R,
det w?ln 4+ A?) = |detjwln +A)|? > 0. (7.32)
Q.E.D.
Lemma 7.4.2 [47] Let Ac R™" and A— gh" € R™" be in companion form, where ine
R" with g=[0,...0,1]". Then we can write
1+Re(h" (jwl,—A)1g} =1—-hTA(w?l,+A%) g

The next lemma verifies the fact that any symmetric mariwhich satisfies the Lyapunov

inequality for a matrixA, also satisfies the Lyapunov inequality for its inverser.
Lemma 7.4.3 [29] Let A € R™" be non-singular. Then for any symmetrieFPT in R™<"
with In(P) = In(—A),

ATP+PA<O (7.33)
if and only if

A HTP+PA Y <O (7.34)

Proof of Lemma 7.4.3:This follows immediately from the observation that
A HTP+PA L= (A HT(ATP+PAAL (7.35)
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Q.E.D.

The principal contribution of the present section is to extend Theorem .3t case of
pairs of matrices with the same regular inertia. First of all, we recall someafoadtal
facts on the existence of solutions to the Lyapunov inequality for a single mvattixeg-
ular inertia. The first part of Theorem 7.4.1 below is usually referredstthaGeneral
Inertia Theorem([43], while the second part follows from general results on the existenc
of solutions to the Sylvester equatidtX + XB = C (For instance, see Theorem 4.4.6 in
[43]). While the General Inertia Theorem has been established for m&tniith complex
entries, we state it here for real matrices as we only consider the CLSmdgieoblem for

real matrices in this paper.

Theorem 7.4.1 General Inertia Theorem [43]

Let Ac R™" be given. Then there exists a symmetric matrix PT in R™" such that
ATP+PA<O (7.36)

if and only if A has regular inertia. In this case, (R) = In(—A).

Furthermore, ifAj 4+ A; # O for all eigenvalues);, Aj of A, then for every Q= QT <0in
R™N, there is a unique P- PT with In(P) = In(—A) and AP+PA=Q < 0.

In the sequel, the two main contributions of this section are described. Figdt, an
Theorem 7.4.2 we extend the classical Lefschetz [54] version of the KaWfaeubovich-
Popov (KYP) lemma to the case of matrices with regular ingaiad in companion form.
Historically, the KYP lemma has played a key role in stability theory and has leditmber
of important results on Lyapunov function existence for dynamical sysieohsding the

Circle Criterion[76] and thePopov Criterion97, 81]. We shall see below that the extension

3We note that in a recent publication [99] a generalized versif the KYP lemma has been

reported, which does not impose some of the restrictiotstbaequire in our version of the proof.
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of the KYP lemma to the case of matrices with regular inertia also has implicationsefor th
existence of common Lyapunov solutions in this more general context. trcydar, in
Theorem 7.4.3 we derive a simple algebraic condition that is equivalent $e2lstence

for a significant class of pairs of matrices in companion form, and with the sagutar

inertia.

7.4.2 The KYP Lemma for matrices with regular inertia

The classical KYP lemma considered the existence of constrained solutibedigapunov
inequality for Hurwitz matrices. More formally, the following question, which sl

address below for matrices with regular inertia, was considered.

Given, Ac R™" Hurwitz, vectorsg,h € R", a real constant > 0, and a positive definite
matrixD =DT" > 0, determine conditions for the existence of a veqgterR", a real number

£ > 0 and a positive definite matrik = P" > 0 € R™" such that

ATP+PA = —qq' —eD (7.37)

Pg—h = Viq. (7.38)

Before we proceed, we prove the following technical lemma which shalebded later in

this subsection.

Lemma 7.4.4 Let Ac R™" be a nonsingular matrix such that for all paifg, A; of eigen-
values of AReg(Ai + A;) # 0. Further suppose that,§ are column vectors iiR" such that
for any h, the matrices A ,and-Agh’ can simultaneously be transformed to companion

forms using similarity transformations. Then
Re{h" (jwl,—A)1g} =0forall we R (7.39)

implies that h= 0.
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Proof of Lemma 7.4.4:Without loss of generality, we can assume thas in companion
form and thatg = (0,...,1)T. We shall argue by contradiction. Assume now that (7.39)
holds and thah = (hy,...,h,_1)" is non-zero, and consider the rational functR{z) =

h' (zl, — A)~1g. Then we can write

_ ho+hz+ -+ hy_1 21

R(z) = Go A , (7.40)

and moreover, under our assumptions the following facts must hold:

(i) R(2) is not uniformly zero;

(i) R(2) has at least one pole and any such pole must be an eigenvaiie of

(iii) R(z) takes strictly imaginary values on the imaginary axis.
From (iii), it follows that the functiorR; (z) = jR(jz) takes real values for real and hence
thatRy(2) is a real rational function. Thus, the polesRif(z) must be real, or else occur in
complex conjugate pairs. Moreoverifis any pole ofR;(z), thenjA is a pole of the orig-
inal functionR(z). From this it follows thaR(z) must either have a pole on the imaginary
axis or else that there are two polas,A; of R(z) with Re(A; +Aj) = 0. Remembering that

any pole ofR(z) must be an eigenvalue & this is a contradiction. Thusmust be zero as

claimed.

Q.E.D.

Remark 7.4.1

(i) The proof given above is based on an argument presented in Ctéaatie[54],

where it was shown that for a Hurwitz matrixe R™" in companion form, and

Re(h" (jwl,—A)lg} =0forallwe R
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implies thath = 0. This is not in general true for a companion matiwith regular

inertia as can be seen from the simple example

01
A= ,g=h=(0,1)".

4 0
Clearly, the additional assumption made in Lemma 7.4.4 , thédjReA;) is non-

zero, is automatically satisfiedAfis Hurwitz.

(i) The assumption, that R& + A;) is non-zero, for all eigenvalues, Aj of A is sat-
isfied generically. More precisely, given aAy= R™" in companion form with reg-
ular inertia which does not satisfy the assumption, and0, there exists a matrix
A’ € R™" in companion form with the same inertiaAsuch thaf|A— A'|| < € and
Re(Ai + Aj) is non-zero for all eigenvalues, A; of A'. (Here||.|| can be any matrix

norm onR"™".)

(iii) It is important to note that if R@\; + Aj) is non-zero for all eigenvaluek, A; of
A, then it follows from the last part of Theorem 7.4.1 that for any negatefite
matrixQ= Q' < 0inR™™", there is a unique symmeti= PT with In(P) = In(—A)
such thaiAT P+ PA= Q < 0. We shall make use of this fact in the proof of Theorem
7.4.2 below.

We are now in a position to state the principal result of this subsection whicheistansion

of the classical KYP lemma to the case of matrices with regular inertia.

Theorem 7.4.2 Let Ac R™" be a companion matrix with regular inertia such tRe(A; +
Aj) # 0 for all Aj,A; € o(A), and let gh € R" be vectors such that Agh' is also in
companion form. Moreover, let B DT > 0in R™" and 1 > 0in R be given. Then the

following two statements are equivalent:

i) There exists a symmetric matrix=P P" in R™" with In(P) = In(—A), a vector
Y
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g € R" and a scalare > 0 such that
ATP+PA=—qq —eD (7.41)
Pg—h=/Tq. (7.42)
(i) T+2Reh™(jwln—A)~1g} > Oforall we R.
Proof of Theorem 7.4.2:For convenience, throughout the proof we shall use the notation

A, to denote( jwl, —A) andm;,, shall denote the complex vector-valued functj%JTa%g.

It is then straightforward to check that for aRy= PT in R™",
AP+ PAj, = —(ATP+PA), (7.43)

Moreover, multiplying the left and right hand sides of (7.43)f3yA; ;) andA; ;g respec-

tively, we see that
gTijw—i—m]-‘ng: —mjfw(ATP+ PA)M; . (7.44)
(i) = (ii):

Suppose that the equations (7.41), and (7.42) hold. It follows immediatety (fr.41) and
(7.44) that

M ,Pg+9 Pmy, = mi,qq" mjg, + £mj,Dmje,. (7.45)

In (7.45) we can replace thieg term using (7.42) and arrange to get
meuh+h My +VT(ME,q+a" mje) = M ,aq" mje + emi,Dmyq,
or equivalently,
2Re{h"mj,} = mi,qq" mje, — 2v/TRE(q" My} + €M, DMy (7.46)
It now follows that
2Re(h' mje} = |q" Mje, — /T[> — T+ emi, DMy, (7.47)
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and hence, ab is positive definite ané has regular inertia,

T4 2Re(h"mj,} >0 (7.48)
forall w e R.
(i) = (i):

Without loss of generality, we can assume & in companion form, ang= (0,0,...,1)7.
In this case, it can be verified by direct calculation [47, 102] that for aector f =
(fo,..., fn1)T INR",

_ fot fiz+ . frg ™t

fT(zlh—A)g= 7.4
(Zh =~ detlzh—A) (7.49)
forze C.
For convenience, we shall ug¢w) and(w) to denote
K(w)=2Re(h"mje,},  m(w)=mi,Dmje, (7.50)

for w € R. Then:

() T+k(w)>0forallweR, andt +Kk(w) — T as|w| — o;
(i) m(w) >0 for all w e R andr(w) — 0 as|w| — .
It follows from (i) there exists a positive constant > 0 such thatr + k (w) > my for all

w € R. Also, (ii) implies that there is some constavi; > 0 such thati(w) < M for all

w € R. If we now choose& > 0 with € < % then it follows that for allw € R,
T+ 2Re{h"mj,,} — em, DMy, > 0. (7.51)
It can be verified by calculation that the left hand side of (7.51) can itewiin the form:
T+ i h-+h'mjg, — emj ,.Dmyg,

n(w)

~ det{w?l, +A2) (7.52)

wheren(.) is a polynomial with the following properties.
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(i) n(.) is a polynomial of degreer2with real coefficients and leading coefficient

Thus, any non-real zeroes Bf.) occur as complex conjugate pairs.

(i) Only the even coefficients aff are non-zero. Thus, for any zezgof n(.), —zy is

also a zero with the same multiplicity as

(iii) n(w) > 0forallwe R. Thus, for any real zeray, of n(.), cy and—ay have the

sameevenmultiplicity.

It follows from the above considerations that there exists a polynadiabf degreen with

real coefficients, and leading coefficiegit, such that
n(w)=06(jw)6(—jw), (7.53)

for all w € R. Now, if we definey(z) = det(zl, — A), then, as the leading coefficient &fis
VT,

_ 69 _v(®
V- e " we (7.5

wherev(z) = go+qz+--- +gn_12""1 is a polynomial of degree at mast- 1. Thus, from

(7.49)

V(é)) =q"(zlh—A)"th (7.55)

whereq = (do, .., Gn-1)-

For this vecton, it follows from Theorem 7.4.1 that there exists a symmetric ma&rixP"

with In(P) = In(—A) such that
AP+ PA= —qq" —&D. (7.56)
Moreover, combining (7.52), (7.55) and (7.54), we see that

T+ mi,h+h'mj, — emi ,Dmje, = |v/T — g mjhf? (7.57)
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It now follows immediately that

mi,h +  hTmj, — emi,Dmj,,
= (~Mj,q+ VD) (=q Mo+ 1)~ T

M ad' M — v/T(q" Mj, +Mi,q).
We can now use (7.44) and (7.56) to obtain

mi,h+h'my, —  emi, Dmj, = mi,Pg+g' Pmj,

e ,DMje, — v/T(q" My, -+ M ,0).

After suitably rearranging the equations above we see that
m,Pg+g'Pm, — mih—hTmy,
— VTq'mju— VIMi,q=0
and hence,

mt,(Pg—h—/7q) + (Pg—h—v/10) "'mj, =0

~  2Re{(Pg—h—/7q) My} = 0.

(7.58)

(7.59)

(7.60)

As (7.60) holds for any real value af, it now follows from Lemma 7.4.4 thd&g—h = /7q.

This completes the proof of the theorem.

Q.E.D.

7.4.3 Common Lyapunov solutions and the generalized KYP lemma

We shall now show how Theorem 7.4.2 can be used to obtain simple algebraiitions

for CLS existence for a significant class of pairs of matrices with the sagudaranertia in

R™"M. The following theorem establishes this result.
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Theorem 7.4.3 Let A, A—gh" be two matrices iR™" in companion form and with the
same regular inertia, 10A) = In(A—gh") = (n,,n_,0), where gh are vectors irR". Fur-
ther, assume that for any pair of eigenvaludsA;, of A,Reg(A; +A;j) # 0. Then, the follow-

ing statements are equivalent:

(i) There exists a symmetric matrix=PPT in R™" with In(P) = In(—A) = In(—(A—

ghT)), and positive definite matrices;@ 0, Q» > 0 such that

ATP+PA= —Q
(7.61)

(A—gh")TP+P(A—gh') = —Q;

(i) The matrix raysoyo ., (A,A—gh') and gy, (A~*,A—gh') have the same regular

inertia.
(iii) The matrix AA—gh") has no real negative eigenvalues.
(iv) 1+Re{hT(jwl,—A)"1g} >0, VYweR.
Proof of Theorem 7.4.3:We shall obtain the result by showing that = (ii) = (iii) =
(iv) = (i).
(1) = (i):

Suppose that there is a symmetie= P" satisfying (7.61). From Lemma 7.4.3 we know

thatP also satisfies
(A—gh")")*P+P(A—gh")"t <0 (7.62)
Hence for ally € [0, )

(A+y(A—gh"))TP+P(A+y(A—gh")) < 0 (7.63)

(A+y(A—gh" ) ™ HTP+PA+y(A—gh")™) < 0 (7.64)

It now follows immediately from Theorem 7.4.1 that (ii) is true.
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(ii) = (i) :
Assume that (ii) is true. Thedy~1 + y(A—gh") has regular inertia for alf > 0. In partic-
ular, A= + y(A—gh") is non-singular for ally > 0. It follows immediately that the matrix

productA(A—gh') has no negative real eigenvalues.

(i) = (iv):
Assume thatA(A— gh") has no real negative eigenvalues. AsA —gh' have the same

regular inertia, it follows that
det(w?ln+ (A—gh")A) >0 (7.65)
for all w € R. This implies that

det(w?l,4+ (A—gh")A) > 0

= det(lnw?+A2—gh'A) > 0
and hence
det(w?l,+ A?)det(l, — (w?l, +A%)"IghTA) > 0.

In this last relation we know thatet(w?l, + A?) > 0 from Lemma 7.4.1. Thus we can

conclude that
det(l, — (w?lh+A2)"1ghTA) > 0 (7.66)

for all w € R. Now making use of the identitgtet(l, — AB) = det(l,, — BA), (whereA ¢

R™MandB € R™") we can express the last inequality as follows;
det(1—h"A(w?l,+A%)~1g) > 0. (7.67)
Notice that the argument in the last relation is a scalar, and hence that
1-hTA(@?lh+A%)1g=T(w?) > 0. (7.68)
Now comparing this last equation with the result of Lemma 7.4.2, we see that
T(w?) =1+Relh" (jol,—A) g} >0 (7.69)
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which proves (iv).

(iv) = (i):
Finally, assume that (iv) is true. Choose some positive definiteD™ > 0 in R™". Then
it follows from Theorem 7.4.2 (witht = 2) that there exists a symmetrit= PT with

In(P) = In(—A) and a vectoqg such that

ATP+PA=—qq —eD (7.70)

Pg—h=+2q. (7.71)

It can be verified by direct computation that tilss a common Lyapunov solution fe,

A—gh'. This completes the proof of the theorem.

Q.E.D.

Remark 7.4.2 Itis sufficient that either one &, or A—gh' satisfy the spectral assumption

that RéA; + A;j) # O for any pair of eigenvaluek, A; of the matrix.

7.5 CLS existence for interval matrix families with

regular inertia

In this section we give an extension of the common Lyapunov solution (CkiS)eace
result of Section 7.4 for a specific class of pairs of matriceR" with the same regular
inertia, and with bounded interval uncertainties in their entries. This alsesas a general
inertia extension of Theorem 7.3.2 for interval matrices with regular inertaskiéw that
the generalization of the KYP lemma as recorded by Theorem 7.4.2 can dheagsia to
obtain easily verifiable algebraic conditions for CLS existence for the iatematrices with

regular inertia. The following theorem establishes this result.
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Theorem 7.5.1 Consider the interval matrix families’/, 2 € R™" in companion form
given by

o ={C(ag,...,an1):a<g<g for 0<i<n-1
{C( 1) 18 } 7.72)

% ={C(bp,...,bn_1) 1 <b<b for 0<i<n-1}
and assume that all the matricescAe7, and Be 4 have the same regular inertia, that is
In(A) = In(B) = (ny,n_,0). Further, assume that any pair of eigenvaludsj;, of Ac .o/
(and/or Be %), satisfy thaRe(A; + Aj) # 0. Then a necessary and sufficient condition for
any pair (A,B) with Ac o7 B € % to have a common Lyapunov solution=FPT ¢ R™N
with In(P) = In(—A) = In(—B) is that the following eight matrix products

A1By, A1B3, AoB1,A2By
(7.73)

AsB1,AgBg, AsB2, A4B3
have no real negative eigenvalues, where each of the matriges. A4,B1,...,B4 are
specified by

Al :C(§O7§17327a37"') ) Bl :C(DO7Q17627637-~-)
AQZC(QO,al,éz,%,Qm...) R BZZC(DO,Bl,Bz,b 7b ,)

(7.74)
AG:C(QO7§17§27§37347"') 9 B3:C(607Q]_7927B37B47"')

A4:C(307317§27Q37"')7 ’ B4:C(607617927b47"')

Proof of Theorem 7.5.1:

Without loss of generality, we can express the family of matrBes# asB = A—gh',
whereg= (0,0,...,1)T, andh= (bp—ao, ...,bn_1—an_1)". Then it follows from Theorem
7.4.3 that the matrix paifA,B) has a common Lyapunov solutidh= PT with In(P) =

In(—A) = In(—B) if and only if the rational function

1+Refh" (jwl,—A)"1g} >0, VweR,
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that is, it is strictly positive for alA € o7, andB € #. Using the fact that for any vector
f= (fo, R, fn_l)T in Rn,
_ fot fiz+ . 4 frg ™t

T AV 1y
fT(zl,—A)'g detzh A : (7.75)
for ze C [47, 102], it can be verified by direct computation that
1+Refh (jwlh —A)~'g} = Re{b(jw)/a(jw)} (7.76)
where the polynomiala(jw), b(jw) are given by
aljw)=ag+a1(jw)+--an1(jw)" 1+ (jo)"
(jw) 1(jw) 1(jw) (jo) 7.77)

b(jw) =bo+by(jw) + - bra1(jw)" * + (jo)"
It now follows that every pair of matricg#\, B) with A € o7, B € 2 will have a CLS if and
only if all of the rational function&e{b(jw)/a(jw)} are strictly positive, where( jw) and

b(jw) belong to the interval polynomial families

ajo)=a+ta(jo)+ a1(jo)" T+ (jo)" with a<a<g, (7.78)
and

b(jw) =bo+bi(jw)+---bp_1(jw)" 1+ (jow)" with b <b <b;, (7.79)

where 0<i < n—1. By a slight abuse of notation, we shall use the notatiQn’s to denote

these polynomial families also.

Now, considering the Kharitonov polynomials associated with the intervalnpatyals
(7.78) and (7.79), Theorem 7.3.3 establishes that all of the rationaidusdnRe{ %/ < }

are strictly positive if and only if the functions
P 2 2 P
Re{ K <S>},Re{ S (S)},Re{ ki (S)},Re{ ki <s>},
7 (9) ki’ (s) 5 (9) 5 ()

k/ o k' ( ks’
lige) " le ) ke )

are strictly positive. Then for each of the rational functions abovepiéra 7.4.3 verifies

the spectral condition for the corresponding matrix products in (7.73).

Q.E.D.

288



7.6 Conclusions and possible future directions

7.6 Conclusions and possible future directions

In the first half of this chapter, we have considered the stability of switthedr systems
subject to interval uncertainty, and gave necessary and sufficiaditioms for CQLF ex-
istence for pairs of LTI systems in companion form and with interval uniceytan the
entries of their system matrices. Particularly we gave an easily verifiabtérapeondi-
tion for CQLF existence for this class of systems. We also gave two numexaaiples
to illustrate how the results of the section can be used in practice, wherecdedsex-
ample was motivated by automotive roll dynamics. As an extension of this reswdhall
consider obtaining practical design laws for synthesizing stable switargbters for un-
certain systems arising from practical automotive control problems, plarizcéor the roll
dynamics and the lateral dynamics control applications for improving dristimgfort and

vehicle safety.

In the second half of the chapter we derived a verifiable spectralittmmdor common
Lyapunov solution (CLS) existence for pairs of matriceRih" in companion form, and
with the same regular inertia; thereby extending a recent result for gdieravitz matrices
in [115]. We then further extended these results to case when the elerhdmsatrices

for this particular system class included bounded interval uncertainties als
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Chapter 8

Concluding Remarks

In the closing chapter of the thesis, we give a brief summary of the preced
ing chapters, and highlight the major contributions accomplished during the

completion of the work reported within.

The starting point for this thesis was a practical problem related to automathieles,
which is known as the rollover. Statistically, rollover accidents have the kidghglity rate
among all accident types, and they pose a real threat for top heaigfegetuch as trucks,
busses, vans and SUVs. Based on these observations, we starte@ghisthanalyzing
the roll motion of automotive vehicles and found that the two of the most impdeaturs
affecting rollover tendency of a vehicle are lateral acceleration andeighthof the center
of gravity (CG). While the former is a measurable quantity using standastseguipment

on cars, the CG height is a time varying quantity that is not measurable directly.

Motivated by these, in Chapter 2 we successfully implemented a technigus kasthe
MMST (which originates from adaptive control field), for the problemreél time CG
position estimation, that makes use of multiple identification models to minimize a nonlin-
ear cost function based on the identification errors. We used simplified linedels for

roll and lateral motion of the vehicle in conjunction with the algorithm and shathatd
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this method can give good estimations of the longitudinal and the vertical posttiG®,

as well as the linear suspension and tire parameters. We also gave an imptenenf
the method off-line measurement data from a real vehicle with successddnto assess
the limitations of the suggested method, we made an analysis of the cost funetipthé
switching criterion) of the estimation algorithm, and found that when the paraspetee of
the identification models does not contain the exact plant parameterizatiersgtrithm
may end up with wrong estimations. This problem is related to the fact that thae is
1-1 mapping between the output space (of identification errors) and tampter space of
the identification models. While using a dense number of identification modelsdbige
problem, this solution might be infeasible for automotive applications due to datigmal
overheads. As a remedy we suggested an adaptive algorithm to modify tiet space of
the multiple model algorithm in an iterative fashion, which resulted in a small nuofber
identification models with good estimation accuracy. We demonstrated the gffittds
method with numerical examples utilizing a scalar dynamical system as well as gtilizin

second order vehicle models in conjunction with the CG position estimation problem.

Having considered the parameter estimation related to the automotive rollowempr, in
Chapter 3 we gave a robust controller design technique to mitigate rolloverstggested
controller design is based on a particular bounded-input boundedtg@[BO) stability
result, which considers bounded driver steering command as disterlrgna, and load
transfer ratio (LTR) as the performance output. We showed the rele\d#ld R in terms
of rollover occurrence and obtained a dynamical version of LTR in tefriigecstates of the
vehicle. We also showed that our controller design guarantees robsisifith respect to
parameter uncertainty, subject to the condition that the uncertainty beloagetwex hull.
In numerical simulations we considered robustness with respect to CG lagigivehicle
velocity and showed that rollover can be prevented based on this @bpide implemented
the controllers based on differential braking and active steering acsuata showed that

both can be used to mitigate rollover effectively. In conjunction with the conesign
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we also considered a mode switch based on the imminence of rollover, wisiglteckin

controllers that are not intrusive when the rollover potential is low.

In Chapter 4 we fused the CG position estimation method of Chapter 2 with thst
trol design procedure of Chapter 3 to obtain adaptive rollover mitigatiotraiters in the
sense of MMST framework. We showed numerically that the resulting agapiitched
controllers with active differential braking performed better than thegbbontroller alter-

native with fixed gains.

In Chapter 5, we considered the discrete time extension of a recentyaguxhov result for
the stability of a class of switched systems in continuous time. Specifically, vedesad
the asymptotic stability of a subclass of discrete-time switching linear systemee wéeh
of the constituent subsystems is Schur stable among other conditions. Weadsented
an example to motivate our study, which illustrated that the bilinear (i.e., Tustirgftnan
does not preserve the stability between the discrete and continuous siMitodar sys-
tems. This implies that the continuous time stability results cannot always beotmauesf
to discrete time analogs using this transformation. We then presented a sudjcasrete-
time switching systems with globally asymptotic origin, which arise frequently inticedc
applications. We showed that global attractivity can be established withgquiring the ex-
istence of a common quadratic Lyapunov function (CQLF) for the switchedtigystems.
Utilizing this result we then gave constructive procedures to synthesitehavg stabiliz-
ing controllers for two separate problems in automotive control basedtive aospension
actuators; the first problem was related to the stabilization of road vehitldyramics
subject to changes in the center of gravity (CG) height; we showed thatahisoller can
also be used to change driver experience. The second probleerneddhe design of PID
tracking controllers for emulating reference roll dynamics while guarangegeansient free

switching as well as stability due to varying CG height.

During the course of the control designs for roll dynamics enhancemeZiiapter 5, we

observed interactions between the lateral roll dynamics of the controlledlee These
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required us to compensate the effects of the roll torque control inputstfre suspension
actuators onto the lateral dynamics, which we partially achieved using attigeng ac-
tuators. Motivated by these considerations, in Chapter 6 we applied hdenentralized
controller integration method for systems with multiple dynamical modes, whiclewes
robustness with respect to structural uncertainty. Based on some resalts in the liter-
ature, we utilized a method for checking the overall stability of the integratattalers
based on a frequency domain criterion. We then applied the design methtia fimte-
gration of decentralized controllers for the simultaneous tracking ofaeber lateral and
roll dynamics of an automotive vehicle. We designed the decentralizederdgrbased on
simplified models utilizing active suspension and active front wheel steadngtors. We
presented the efficacy of the integrated vehicle emulation controller with meahsimu-
lations, which showed high performance and accurate tracking resurdtdlyFwe showed
numerically that the suggested control design preserves robustriibestifsed loop system

with respect to structural uncertainty in such applications.

Finally, in Chapter 7 we considered theoretical problems related to the swgtthaar
systems. The first problem we considered was related to the stability of sditttear
systems subject to interval uncertainty. Specifically we showed negemsdrsufficient
conditions for CQLF existence for pairs of LTI systems in companion fanchwaith inter-
val uncertainty in the entries of their system matrices. Then we gave a blritiandition
for CQLF existence for such uncertain systems. We also demonstratesstiiewith two
numerical examples, where the second example was motivated by autorotitiygnam-
ics. The second problem we considered in Chapter 7 was related to comypapuariov
solution (CLS) existence for pairs of matrices in companion form, and withahegeg-
ular inertia. As part of this problem, we extended the classical Lefscleziion of the
Kalman-Yacubovich-Popov (KYP) lemma. Then, we derived an easilfialele spectral
condition for CLS existence for this class of systems. As a final problencowsidered in-

terval matrices in companion form and with regular inertia; we showed tsdy earifiable
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CLS existence conditions can be obtained for this particular switched sygtdsmas well.
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Appendix A

Proof of Theorem 3.5.1

We acknowledge that the proof given here follows [91] with minor modificetioBefore
we obtain the proof of Theorem 3.5.1, we give two results from literaturteigheelpful in
obtaining the proof of the theorem. We first start with the definitioho&tability that we

utilize in the following discussion.

Definition (L. Stability) [91]: Consider a general nonlinear input-output system below
X = F(xw) (A1)
z = HXxw), (A.2)

wherex(t) € R" is the state vector at time andw(t) € R' is the exogenous (disturbance)
input whilez(t) € RP is the performance output. We define the input-output system above
to bel., stablewith performance levey if the following conditions are satisfied.

(i.) The undisturbed system= F(x,0) is globally uniformly asymptotically stable about
the origin.

(ii.) For everyw(t) andx(tp) = 0 withtp > 0, we have
1z < fwt)]le,  Vt=to.
Note that scalay is an upper bound on tHe, gain of the system.
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The following theorem from [91] records a sufficient condition for thestability of the

system described by (A.1), (A.2) with a level of performapce

Theorem A.0.1 [91] Consider a general nonlinear input-output system describeddad)(
and (A.2). Suppose there exists a matrix P and positive scatays and u, such that for

allx e R"andw € R' we have
X'PF(x,w) <0 when XPx> ol w|? (A.3)
and
IH (X, @)|[? < pax" Px+ piz]| o] |2. (A4)
Then system (A.1), and (A.2) is ktable with level of performance

Y = v/ HoH1+ H. (A.5)

See [91] for the proof of this theorem. We next give the following wellkndheorem that

is commonly referred to as the Schur complement result.

Theorem A.0.2 [42] (Schur Complement Result): Suppose that a symmetric matex Q

R(HM> (M) js partitioned as follows

o Qu1 Q2 | A6)

QL Qx»

where Q1 = QI; € R™", Q2 = QJ, € R™M are symmetric square matrices, and G

R™M Then Q is positive definite, i.e., Q0, if and only if

Q11 >0, Q22> 0, Qi1 — Q12Q5,Q1, > 0. (A.7)

See [42] for the proof of this theorem.
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Corollary A.0.1 ltis straightforward to show that the Schur complement result given with

inequalities (3.22) corresponding Q 0 implies also that

< 0 < Qu<0  Qn<0  Qu-QuQIQL<0,
> 0 <= Qu>0, Q»2>0 Qu-Q1QJQ,>0  (A8)

< 0 < Qu<0,  Q2<0  Qu-Q1QJQ,<0.

Next, making use of these two theorems, we give the proof of the main thedr€hapter

3. We emphasize that the proof given below follows that given in [91].

Proof of Theorem 3.5.1: Now consider a system described by (3.14)-(3.15) satisfying
Assumption 3.5.1. Further suppose that there exist a m&thS" > 0, a matrixL and
scalarsBy, ... By > 0 andpo, tj, U2j > 0, for j = 1,...,r that satisfy the hypotheses of the
Theorem 3.5.1. We will first show, based on the inequality (3.22), thecgariticondition

for the stability of the dynamical system (3.14).

As the inequality (3.22) conforms to the hypotheses of Theorem A.0.2, nveseathe Schur

complement result on it, which yields
[3-2
Bi(SAT + AS+ LBl +ByL) + S+ u—'BiBiT <0.
)

Pre and post multiplying this inequality /= S~! and arranging results in

Bi

ATP+PA +PLTB} P+ PBu.LP+B P+ PBBTP<0

Again, we pre and post multiply the last relation:;dyandx, respectively; we also add and

subtract " PB;w to inequality, which results in the following expression

Bt

2x" P(Aix+ Bjw + ByLPx) — 2xTPBw+Bx Px+ X TPBBPx< 0.

Now denoting||.|| as the 2-norm, and substituting the definitiond.of KS= KP~! and

u= Kxin the last inequality, and after few arrangement steps we obtain

TP(AX+ Biw+ Byiu) — 2x7 PBw+Bx Px+—|]BTPx||2<O
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In is straightforward to show that this last in equality can be written as follows

) 2 1
2xT P(Aix+ Bjw+ Byu) + 5‘ [GTG— ‘B";wTw] + EXTPXS 0,
0 i i

whereG = (x'PgB — %a)). Now sinceG' G > 0, and further;, Lo were chosen to be
positive scalars, then removing tlﬁéosGTG in the above inequality does not change semi-

negativity, that is

1
2xT P(Ax+ Bjw+ Byiu) — l;;wTa)Jr EXTng 0,
| |
which is equivalent to
1 .
2XTP(AX+Bijw+ Byiu) + = (X' Px— pollw||?) <0 for i=1,....N  (A.9)

B

for all xe R", andw € R. Sincef; > 0 fori=1,...,N it now follows that
X"P(AX+Bijw+Bu) <0 when XPx> pol|lw||>  for i=1...,N (A.10)

Since it was assumed that the system matrices (3.14)-(3.15) satisfy thenptgsu3.5.1,
then (A.10) implies that

X P(A(6)x+B(6)w+By(8)u) <0 when XPx> Lol w|?, (A.11)

wheref is some parameter vector that captures the plant nonlinearity/uncertaiinti, eem
depend o, x, w andu. Now definingF (0) = A(6)x+ B(8)w+ By(8)u and substituting in

the last inequality yields
T 2
X"PF(6) <0 when XPx> polwl|?, (A.12)
which is same as the inequality (A.3) of Theorem A.0.1.

It remains to show that the inequality (3.23) of theorem holds so that the ranlimcertain
system (3.14)-(3.15) ik., stable according to the theorem A.0.1. Now, pre and post multi-

plying the inequality (3.23) with



and substituting = LP andCdji =Cj; +Dju K, (WhereCdji denotes the closed loop system

matrix fori=1,...,Nandj=1,...,r) results in the following inequality

_Uljp 0 C;:rlji
0 —my DI |0 i=l..N  j=l..rn (A.13)
CClji Dj. —I

Again, we can use Schur complement result to write this inequality in the follofoimg

Cg]jiCCIji - I"lll P C:(-Zl-h'i DJI < O

— 9

(A.14)
D Cu; D] Dj; — pizj!
Since it was assumed that the system matrices (3.14)-(3.15) satisfy thepigsu 3.5.1,

then above inequality implies that
Cel (0)Cq; () —p1jP Cy,(6)"Dj(6)

Dj(6)Cu/(6)  D;(6)TD;(6) — !
whereCg), (6) = Cj(6) +Dju(6)K, and6 is some parameter vector that captures the plant

<0, j=1,...r, (A.15)

nonlinearity/uncertainty, which can dependtox w andu. Utilizing the Schur complement

result on (A.15) and further arranging implies that
(Ci(8)x+Dj(8)w+ Dju(e)U)T(Cj (8)x+Dj(8)w+Dju(6)u)
— X" PX— j|w[* < 0 (A.16)

forall xe R"andw € R. Now settingH (8) = C;(6)x+D;(8)w+Dj,(8)u and substituting

in the last inequality yields
IH(6)? < pajx"Px-+ iz || ], (A.17)

which is the same inequality as (A.4) of Theorem A.0.1. Therefore the namlinecertain
system given with equations (3.14)-(3.15) in compliance with Assumption 3.B.ldtable

by Theorem A.0.1, with a level of performangg where
Yj = \/Holj + Hzj- (A.18)

Q.E.D.
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Appendix B

Iterative algorithm for robust control

design

In our rollover controller design we attempt to minimize the level of performamneeile

keeping the level of performange below some specified levgl,. Utilizing the structure
of the data in the rollover control design problem, and making use of the Re&3rad, one
can solve the minimization problem described in Theorem 3.5.1 by solving theviatjo

problem:

Minimize L1 subject to

((SAT+ASHLTB] +B,L)+S BB
BI( A Uj U ) BI I < 0 for i=1...N
BBl — Hol
-S s
¢ < 0
GS  —pul (B.1)
-s U
< 0
L —paol
NOUlZSV%
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and

S=5" > 0
Mo, M11, M12 > O (B.2)
B > 0 for i=1,...,N

Theny, = /Tiopir; andK = LS.

To solve the above optimization problem, one first needs a valyg fof which the above
inequalities are feasible. To achieve this one can first minirvﬁze HoH12 subject to all

the inequalities above except those involving andy,. After this first minimization ones
obtain a value of, which we denote by,t. Now choose/, > ¢ ; in this papery, = 5y+.

Having obtained a feasible value »f, one can can then minimize = Lop11.

The inequalities (B.1), (B.2) above and the objective functiogsi1, tot12 are not linear
functions of the variables. However if we separate the variables into twupgs, L, t11, H12
andps,..., By, Lo, the inequalities are linear with respect to each group of variables. Also,
we can use commercially available software to solve optimization problems with linear
objective functions and linear matrix inequality constraints. Based on theseations,

we propose the following iterative algorithm in an attempt to solve the above opgtioriz

problems.

Algorithm  To initiate the optimization ofs one needs feasible symmetric matri@s
andL. These can be found by solving the corresponding quadratic stabilizgintiblem

using the following linear matrix inequalities
SAl +AS+B,L+L'B+2nS < 0 for i=1,...,N (B.3)

for somen > 0. Notice that if there is no solution to this quadratic stabilization problem,

then the first inequality in (B.1) does not have a solution.

The next part of the algorithm now iterates through Steps 1-3 in an attempt imizery..
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1. Fix SandL to those values obtained as a solution to (B.3) or from the previous

iteration.

Minimize L subject to

i(SAT +AS+LTB] +ByL)+S BB
Gi(SA Ui ul) FiB 0 for i=1,....N

BBl — Mol
G > 0 for i=1...,N

Ho > O

2. Fix By, ..., By andup from the previous step.

Minimize p2 subject to

((SAT +AS+L™B] +B,L)+S BB
A(SA 4t Bul) AB < 0 for i=1,....N
BiB' — Uol
-S LT
<0
L —paol
s=8" > 0
iz > O

3. Letys = Loz and return to Step 1 unlegshas not decreased by a certain prespec-

ified amount from the previous iteration.

Although the above steps may not achieve a global minimunyfoa feasible value of
¥2 (which we denote bys:) will be obtained along with corresponding feasilllend L

matrices. We now fixs aty, > yor; in this thesisy, = Sys.

The next part of the algorithm attempts to minimjgesubject toy, <y,. It iterates through

Steps 4-6.

4. Fix matricesSandL from the previous stage or the previous iteration.
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Minimize po subjectto

B(SA +AS+LTBl +ByL)+S BB

BBl — ol
B

Ho

5. Fixf1,...,Bn and g from the previous step.

Minimize 11 subject to

B(SA +AS+LTBl +B,L)+S BB
pBl —Hol |
-S Sq ]
CGS  —pal |
_s LT ]
L — U2l |
HoH12
S=¢'
H11, a2

IN

Vv

IN

IN

IN

IN

Vv

6. Lety? = Lop1 and return to Step 4 unlegshas not decreased by a certain prespec-

ified amount from the previous iteration.

Note that although the iterations above may not achieve a global minimizatian edch

iteration of Steps 4-6 decreasgs
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Appendix C

Proof of Theorem 7.3.1

We acknowledge that the proof given here follows the one in [115]. fobh@wing lemma

is helpful in obtaining the proof of this theorem.

Lemma C.0.1 [46] Let A,A—gh" be Hurwitz matrices iiR™", where gh" € R". Then
for any complex number s,

_1_ det(sl— (A—gh'))

1+h'(sl—A) detsl A

(C.1)

Proof of Theorem 7.3.1:Without loss of generality, we may assume tpht is in one of

the following Jordan canonical forms

c O 0 0 0
O .. ... 0 1 ... ... 0

0| SONE . €2)
0O ... ... 0 0O ... ... 0

As AandA—gh" are both Hurwitz, their determinants will have the same sign, so it follows

that the producA(A — gh™) has no negative real eigenvalues if and only if, foratt 0
det(Al +(A—gh")A) =det(Al + A2 —gh"A) > 0
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If gh' is in Jordan form then it follows that the expressions
det(Al +A% —gh'A)
and
Re{det(Al +A?—gh'A— VA jgh")},
are identical. Thus, writing = w? we have that for all reab
Re{det(w?l +A?—gh"A— jewgh™)} > 0. (C.3)

It now follows, after a short calculation (see [115],[89]) that foralE R

det(jwl — (A—gh'))
o det(jwl —A)

}>0. (C.49)
Making use of Lemma C.0.1 It follows that for all real
1+Re(h" (jwl —A)1g} >0

as claimed.

Q.E.D.
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