
Topics in Automotive Rollover Prevention: Robust
and Adaptive Switching Strategies for Estimation and

Control

A dissertation

submitted for the degree of

Doctor of Philosophy

by

Selim Solmaz, B.Sc., M.Sc.

Supervisor: Prof. Robert Shorten

Hamilton Institute

National University of Ireland, Maynooth

Ollscoil na hÉireann, Má Nuad

Maynooth, December 2007



For my wife Aslı, and my daughter Melis Naz

&

For my mother, father and all the family.
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Abstract

The main focus in this thesis is the analysis of alternative approaches for estimation and

control of automotive vehicles based on sound theoretical principles. Ofparticular impor-

tance is the problem rollover prevention, which is an important problem plaguing vehicles

with a high center of gravity (CG). Vehicle rollover is, statistically, the most dangerous ac-

cident type, and it is difficult to prevent it due to the time varying nature of theproblem.

Therefore, a major objective of the thesis is to develop the necessary theoretical and practi-

cal tools for the estimation and control of rollover based on robust and adaptive techniques

that are stable with respect to parameter variations.

Given this background, we first consider an implementation of the multiple modelswitching

and tuning (MMST) algorithm for estimating the unknown parameters of automotive vehi-

cles relevant to the roll and the lateral dynamics including the position of CG. This results in

high performance estimation of the CG as well as other time varying parameters,which can

be used in tuning of the active safety controllers in real time. We then look into automotive

rollover prevention control based on a robust stable control design methodology. As part of

this we introduce a dynamic version of the load transfer ratio (LTR) as a rollover detection

criterion and then design robust controllers that take into account uncertainty in the CG

position. As the next step we refine the controllers by integrating them with the multiple

model switched CG position estimation algorithm. This results in adaptive controllers with

higher performance than the robust counterparts.

In the second half of the thesis we analyze extensions of certain theoretical results with im-

portant implications for switched systems. First we obtain a non-Lyapunov stability result

for a certain class of linear discrete time switched systems. Based on this result, we sug-

gest switched controller synthesis procedures for two roll dynamics enhancement control

applications. One control design approach is related to modifying the dynamical response

characteristics of the automotive vehicle while guaranteeing the switching stability under
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parametric variations. The other control synthesis method aims to obtain transient free

reference tracking of vehicle roll dynamics subject to parametric switching. In a later dis-

cussion, we consider a particular decentralized control design procedure based on vector

Lyapunov functions for simultaneous, and structurally robust model reference tracking of

both the lateral and the roll dynamics of automotive vehicles. We show that thiscontroller

design approach guarantees the closed loop stability subject to certain types of structural

uncertainty.

Finally, assuming a purely theoretical pitch, and motivated by the problems considered dur-

ing the course of the thesis, we give new stability results on common Lyapunovsolution

(CLS) existence for two classes of switching linear systems; one is concerned with switch-

ing pair of systems in companion form and with interval uncertainty, and the other is con-

cerned with switching pair of companion matrices with general inertia. For bothproblems

we give easily verifiable spectral conditions that are sufficient for the CLS existence. For

proving the second result we also obtain a certain generalization of the classical Kalman-

Yacubovic-Popov lemma for matrices with general inertia.
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Chapter 1

Introduction and Overview

In this chapter we first explain the motivation for the thesis and the prob-

lems considered in it, and then give a detailed literature review of the multiple

model control literature, which is utilized extensively in this thesis. We provide

a critical review of the recent literature in this area and also point out the open

problems, some of which we consider in the later chapters. We conclude with

a summary of the chapters and explain the contribution of this work.

1.1 Background and motivation

In this thesis, we are concerned with switched estimation and control problemsthat originate

from and are motivated by automotive vehicles. The work of the thesis is alsomotivated by

the practical importance of switched linear systems and the known fact that such systems

can become unstable even when they are constructed by switching betweenindividually

stable constituent systems [89]. This requires easily verifiable and constructive methods for

designing feedback systems that guarantee the stability of switched linear systems under

arbitrary switching rules. While viewing automotive vehicles as time varying andswitching
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dynamical systems is not a traditional approach preferred by the industrydue to complexity

issues, it is possible to obtain sound control and estimation algorithms based ontime varying

principles and utilizing only the stock sensors and actuators, which can potentially improve

the overall vehicle performance and safety. In this thesis we consider several such methods

for a number of estimation and control problems.

An important motivation for this thesis is the problem of automotive vehicle rollover, which

is, statistically, the most dangerous vehicle accident type. Rollover is a particularly impor-

tant problem for vehicles with a high center of gravity, and its prevention is difficult due to

the time varying nature of the parameters affecting it. Considering the fact that the com-

position of the current automotive fleet consists of nearly 36% light trucks, minivans and

SUVs [22] along with the recent increase in the popularity of SUVs worldwide, makes the

rollover an important safety problem, as these vehicles have unusually highcenter of grav-

ity (CG) positions. While automotive manufacturers often provide the measurement of CG

position and other vehicle parameters, this often pertains to an empty vehicle withknown

load distribution. Considering the fact that passenger, and/or load distribution in road vehi-

cles can vary significantly, and sometimes even dangerously, it is difficult tooverlook the

change in the CG position and its influence on the rollover tendency of automotive vehicles.

Given the importance of this problem, the automotive industry can greatly benefit from

real-time CG position estimation capabilities. Such estimators can be used as a warning

system to the driver or can conveniently be integrated into active road handling or rollover

prevention controllers thus improving the overall vehicle and passenger safety. Motivated

by these considerations, and inspired by the success of Multiple Model Switching & Tun-

ing (MMST) methodology, we devote a significant portion of the thesis to implementing

and analyzing the multiple model framework for the estimation and control of automotive

rollover. Using the multiple model framework in conjunction with simple linear vehicle

models we design real time estimator structures that infer vehicle parameters such as the

CG height and the linear suspension parameters in relation to the rollover prevention prob-
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lem. This information, when used in conjunction with active rollover preventionsystems,

can significantly improve the roll stability of road vehicles without sacrificing from the cor-

nering performance. We give a detailed implementation and analysis of such an adaptive

control structure as compared to alternative robust control designs in the following chapters.

There are two distinct types of vehicle rollover: tripped and un-tripped. Tripped rollover

is usually caused by impact of the vehicle with something else, resulting in the rollover

incident. For example, a tripped rollover commonly occurs when a vehicle slides sideways

and digs its tires into soft soil or strikes an object such as a curb or guardrail. Driver induced

un-tripped rollover can occur during typical driving situations and poses a real threat for top-

heavy vehicles such as SUVs. It is however, possible to prevent suchrollover accidents by

monitoring the car dynamics and applying appropriate control effort ahead of time. In this

context, an important consideration for active rollover mitigation system design is related

to the assessment of the rollover risk. In this thesis we introduce a dynamicalcriterion that

we name as "dynamic Load Transfer Ratio", to assess the rollover propensity of a vehicle;

we utilize this criterion to trigger a range of active control mechanisms. In the following

chapters we suggest several such control designs with a range of control objectives, and

making use of a variety of control actuators that include active differential braking, active

steering, and active suspension actuators, as well as their combinations.While most of the

problems we tackle in this thesis relate directly to un-tripped rollover mitigation systems,

many of our results can also be applied for tripped rollover mitigation.

In this thesis we also consider other alternative strategies based on certainLyapunov and

non-Lyapunov results for guaranteeing the stability of switched linear systems. In this con-

text we consider the extensions of these results and implement them to automotive control

problems related to roll and lateral dynamics control applications. Here the practical ob-

jective is the robust and transient free emulation of reference states, where the vehicle is

subject to arbitrary parameter switches. The solution of this problem is complicated due to

undesirable interactions between the vehicle’s lateral and the roll dynamics. We also con-
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sider control design methods that take these interactions into account, and are robust with

respect to certain structural uncertainties in such applications.

Throughout this thesis at the beginning of each chapter there is a relevant literature review.

For the literature on multiple model estimation and control, which is common to many

chapters, a review follows.

1.2 Overview of Multiple Model Control and Estima-

tion Methods

In this section we explain and motivate the need for the study of Multiple Model Control

(henceforth MMC) to meet the challenge of real world time-varying controlobjectives for

uncertain systems. This is followed by a review of the past and the currentliterature on the

topic along with the description of the prominent approaches and their criticalevaluations,

thus presenting the state of the art in the area.

1.2.1 Motivation for MMC

Real world control problems of today’s highly sophisticated technologicalsociety are diffi-

cult due to the four following reasons [83];

• computational complexity,

• nonlinearity,

• uncertainty,

• time-variations.
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Computational complexity relates to the ever growing high dimensionality of the problem

formulations, which require more calculations per solution. Nonlinearity of any form is

a source of complexity as the general nonlinear analysis tools are still incomplete, while

uncertainty is a measure of how well we know about the system at hand; themore we don’t

know the more difficult the control task will be. Finally, time variations may resultdue to

changes in operating conditions, external disturbances or complete/partial failure in some

of the subsystems of the plant, thus need to be compensated.

In the light of these challenges, adaptive and learning schemes were developed to tackle

with the uncertainty problem, while in parallel neural network approaches were developed

to cope with the complexity and the nonlinearity problems. However none of these methods

can handle time variations properly [83]. Although the adaptive control theory has been

developed with the objective of controlling uncertain and time varying problems, most of

the results given in this field assume, since the very beginning, that the plantparameters

vary very slowly compared to the dynamics of the system. This in theory can work given

the model is accurate enough and the initial parameter errors are small. However this can

not be guaranteed in all the real world applications, as in most cases modelsare poor and

control designers have difficulty in finding a parametrization for the dynamical models such

that they represent the systems under interest accurately.

As reported in various publications in the literature [14, 77, 78, 79, 84, 85, 87, 83], numerical

studies as well real world experience suggest that the classical stable adaptive controllers

suffer from lack of robustness. When the initial parameter errors are large, the adaptive

controllers tend to perform poorly in their tracking task and usually result inoscillatory

control errors along with unacceptably large amplitudes during the transient phase of their

dynamics.

In order to achieve the ultimate objective of stable robust adaptive control,Narendra and

Balakrishnan suggested in 1992 the use of the multiple models and switching control al-

gorithm in the seminal technical report [77]. In this report as well as the follow-up papers
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that appeared in the literature [78, 84] they elaborated the use of an indirect adaptive con-

trol approach and proposed the use of multiple identification models that are paired-up with

corresponding controllers, which was derived as an extension to the explicit MRAC (Model

Reference Adaptive Control [136], [135]) method. Their proposedalgorithm drew serious

attention as the improvement in the transient tracking performance of the controller was

consequential, and as a result it inspired many researchers to work on the multiple model

switching & tuning paradigm that developed into a whole methodology today. Before pro-

ceeding with the details of the prominent work in the literature related to MMC, we find

it appropriate to list the specific reasons for using multiple models and switchingcontrol

algorithms as described in [83], and [89].

(i) Local dynamics:A model is a mere representation of a dynamical process in a conve-

nient form [83], which is usually based on the laws of physics under certain simplify-

ing assumptions. While such simplifications (e.g. linearization) are usually required

to assure mathematical tractability of the problem, the best choice of assumptions

may change depending on the operating condition. This naturally calls for theuse of

multiple locally valid models and corresponding linear switched controllers [56].

(ii) Multi-modal performance:Many engineering systems are inherently multi-modal

[89], meaning that their operation consists of different operating modes that result in

different dynamical characteristics. Use of multiple model and switching controllers

can yield better performance compared to traditional robust linear controldesign

techniques based on a single model. The best application example for this is the

longitudinal speed regulator [117] (cruise controller) of an automobile asformulated

in [118]. In this problem, the car goes through different modes of operation dictated

by each gear shift. A design based on switched controllers can performsignificantly

better compared to a single linear controller.

(iii) Robustness and adaptation:The requirements for a good control system are speed,

accuracy and stability. The biggest interest for the need for supervisory switching
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stems from the modern adaptive control problems, which aim for fast, precise and

stable operation under uncertain and time-varying environments. Of special inter-

est is the reconfigurable controller structure in the event of subsystem or component

failure [56]. Such objectives can be archived usingmultiple models switching & tun-

ing (MMST) controllers which can detect such changes rapidly and accurately and

compensate accordingly [77, 78, 79, 84]. As mentioned earlier, classical stable adap-

tive controllers and robust control design methods can not achieve good performance

under time varying and uncertain conditions.

(iv) Decentralized design:It is common practice to design complex engineering systems

in a decentralized manner. Subsystems are designed in relative isolation andthen the

entire system is constructed by combining each component. The interaction ofthe

subsystems are governed by a supervisory logic and such an applicationis ideally

suitable for switched control systems [56].

(v) Constrained control:Practical control systems operate under sensor and actuator

constraints. Switching between multiple control designs can provide satisfactory

performance while still satisfying the constraints of the system [56, 89].

In the literature, control designs that possess the above qualities are often referred to as

intelligent controlsystems [85, 31]. There are a number of approaches suggested to achieve

these objectives, which are described in detail in the following section.

1.2.2 MMC Literature Review

Formally speakingMultiple Model Control(MMC) is a model based control strategy incor-

porating a set of model/controller pairs along with a logic-based supervisory switching rule

rather than relying on a single robust controller to handle all operating conditions [105].

There are two prominent approaches to answering the question of how, when and to which
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model/controller pair to switch. The first approach is theindirect MMC approach in which

the switching is made in a discontinuous fashion as in the MMST algorithm [77, 78, 79, 84].

This requires multiple identification models, and a model is chosen to representthe plant

based on minimizing a cost function of the identification error. The corresponding control

input is used to control the plant. As opposed to the hard switching of MMST approach, the

direct MMC approach uses a weighed sum of the multiple controllers such that the control

action is performed in a continuous fashion as in [105, 12].

To the best of our knowledge, the first ideas on multiple model arrays and switching started

to appear in the literature as early as mid 1960s in the PhD thesis of Magill that culminated in

the paper [61]. In his paper Magill suggested an optimal (in the mean square sense) adaptive

estimator for sampled Gauss-Markov random process with a certain structure of unknown

parameters. He showed that the optimal adaptive estimate is an appropriately weighted sum

of the conditional estimates of a set of elemental linear estimators. The calculation of the

weighting factors required nonlinear probability calculations on the measured data. Also,

the feasibility of his algorithm required that the unknown parameter vector must belong to a

finite set of possibilities that are known a priori. He suggested that his algorithm may be im-

plemented to time-varying problems but provided no analysis of it. Although Magill’s work

brought a new perspective into the optimal and adaptive control theory,the assumptions he

made limited the use of his approach.

In the following decade the works of Lainiotis [52, 53], Athans et al. [12]and Baram et al.

[15, 16] contributed to the development of the topic. In [52] and [53] Lainiotis defined his

multiple model estimation and control method as thePartitioning Algorithm. He suggested

the use of multiple Kalman filters with the same structure but different parameterizations,

running in parallel to estimate the state of the plant. He used the residuals (innovations) of

the Kalman filters to compute the posterior probabilities to decide which one of the Kalman

filters is the correct one. Eventually the sum of the weighted estimates of the Kalman filters

yields the state estimate along with the most likely parametrization. The approach required
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only Gaussian white noise on the state and the measurement equations. In [52] he also tried

to extend the same method to nonlinear plants with unknown parameters, which requires

the use of nonlinear state estimators or extended Kalman filters. In [53] Lainiotis integrated

his multiple model estimation algorithm with multipleLinear Separationcontrollers (an

optimal quadratic-cost stochastic control design that assumes known model parameters)

to obtain a closed loop estimator/controller structure that he namedPartitioning Adaptive

Controller shown in Figure 1.1. The nonlinear computation of the posterior probabilities

pertaining to each model constitutes the adaptive part of the control algorithm, while the

linear separation controller implementation is the non-adaptive linear part. It should be

pointed out that the controller is suboptimal unless probability attached to the model with

the correct parametrization is 1, because the eventual control effort isthe weighted of sum

of multiple controllers running in parallel. Also, given the difficulties of implementation

of the Kalman filters, especially the extended Kalman filters, along with the assumption of

white noise on the process and the measurement model (as it is required by the Kalman

filter) renders this algorithm difficult to implement.

Figure 1.1: Partitioned adaptive controller.

An early real-life application of the MMC (which was missing in Lainoitis and Magill’s pre-

vious publications) to our knowledge was the equilibrium flight controller implementation
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for an F-8C supersonic jet fighter [12] published by Athans et al. of MIT Electronic Sys-

tems Laboratory. In this paper Athans et al. assessed the use of the MMC algorithm for the

simple task of obtaining equilibrium-flight speed regulators at different flight regimes. They

represented the highly nonlinear aircraft dynamics by a set of simple linearmodels that are

valid within certain speed regimes. Here the problem was to get the best possible perfor-

mance from the directional and the lateral control surfaces at different flight speeds ranging

from subsonic flight dictated by laminar aerodynamic flow conditions to supersonic flight

governed by shock waves, which has totally different dynamics compared to the former. As

a consequence, a linear feedback controller optimized for one flight condition would not be

suitable for another. Their controller concept was a complete Linear-Quadratic-Gaussian

(LQG) design for each flight condition as shown in Figure 1.2, and everyLQG consisted of

a Kalman filter to process the noisy sensor data as well as to infer some state variables such

as the angle of attack and the sideslip angle, which were assumed to be unmeasurable and

were required to obtain the control command. The adaptive controller structure resembles to

that of Lainiotis in [53] for the most part, only differing in the optimal stochasticcontroller

design rule as well as in the use of steady state Kalman filters, in order to reduce the com-

putational overhead. The LQG controllers, designed forN linear stochastic time-invariant

Figure 1.2: Multiple model adaptive controller implementation of Athans et al.
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dynamic systems, generated two signals at each time step, which are;

(i) The control vectorui(t), which would be the optimal control if the aircraft was flying

at the flight regime corresponding toith parametrization,

(ii) The residual innovations vectorr i(t) generated by each Kalman filter (that is inside

the ith LQG compensator).

The residuals can be used to recursively calculate the conditional probabilities denoted by

Pi(t). In the paper they argue that since they used steady state Kalman filters,Pi(t) for i =

1,2, ..N are not the exact conditional probabilities. Using the control vectors generated by

each LQG controllerui(t), one can then compute the “adaptive” controller input as follows;

u(t) =
N

∑
i=1

Pi(t)ui(t).

They showed using real flight data that the suggested algorithm worked,however they did

not present a comparison with alternative gain scheduling controllers. Itis also pointed out

in the paper that there is no rigorous proof of asymptotic convergence ofthe conditional

probabilityPi(t) associated with the true model, to unity. This brings in the question of sta-

bility in the case when erroneous models are used to estimate the states due to mismatched

or badly tuned Kalman filters. Such an implementation therefore would not be favorable in

the case of time-varying parameters as the tuning of Kalman filters for time variations can

pose to be a difficulty.

To the best of our knowledge, the first proof of stability for a multiple model estimation

algorithm was shown by Baram et al. and was detailed in the papers [15] and [16]. They

again used a Kalman filter based approach, where it was assumed that the identical models

for the Kalman filters were linear, and dynamic equations as well as measurement relations

were corrupted by uncorrelated white noise. The unknown parameters for the Kalman fil-

ters were assumed to belong to a finite set with arbitrary size. Their proof didnot require

the actual model parameter vector to be in the model set as this would be, in general, an un-

realistic assumption. They further assumed that error covariances of allthe Kalman filters
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corresponding to the parameters in the set are positive definite, finite, andall the residuals

(innovations) are ergodic. Under these assumptions they showed that themodel in the near-

est probabilistic neighborhood of the actual parameter vector will minimize the distance

measure based on Kullback information metric. They also proved asymptotic convergence

of the parameter vector under these assumptions. Although mathematically attractive, these

results are difficult to implement in real life simply because the assumptions made for the

proof were too limiting and hard to comply with.

In all the MMC publications that appeared since mid 1960s till late 1970s, only continuous

control signals were considered which were composed of the convex combination of a set

of linear optimal controllers. What’s more, the stability analysis of the resulting controller

was usually missing, or was proved only under very strict constraints, and most of the time

the problem of using multiple models/controllers was considered only from the optimality

perspective. In the context of stabilization of adaptive systems, switchingschemes assumed

importance towards the end of 1980s with a trend that was initiated with the PhD thesis of

Bengt Mårtenson [63] which he later detailed in the papers [64], and [60]. In these publica-

tions he proved the stability of discontinuous switching (which occurs at increasing intervals

i.e., switching gets slower in time) between a set of stabilizing adaptive controllers designed

to stabilize a linear time invariant plant. He neither made stochastic assumptions on the sys-

tem nor he assumed persistently exciting reference signals. The structureof Mårtenson’s

direct switched adaptive control implementation is shown in Figure 1.3, whereKi are oper-

ators each representing a finite set of stabilizing controllers that are known a priori. Also

the direct controller parameter adaptation rule is a continuous increasing function and was

based on the input and the output of the plant. The biggest achievement ofMårtensson’s

work was the relaxation of the common stochastic assumptions made in the previous publi-

cations on multiple switching models/controllers, up to that date. He also suggested the use

of discontinuous switching between adaptive controllers to stabilize linear plants.

Following the trend started by Mårtensson, two kinds of switching algorithms were pro-
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Figure 1.3: Mårtensson’s switching function controller.

posed in the literature. The first of them was the direct switching approachas in Mårtens-

son’s implementation, where the choice of when and to which controller to switchto is

determined based on the output of the plant. Although this is a conceptually simpleidea, it

was reported to be impractical to utilize in complex systems [79, 31]. The second approach

is the indirect approach that was initially suggested by Middleton et al. in [69]which in-

volves using multiple identification models to estimate the unknown parameters of the plant

based on a suitable performance index. Estimated plant parameters are thenused to im-

plement a controller based on the certainty equivalence principle. Their implementation

required the assumption that the identified parameter belongs to a finite group of convex

sets (not necessarily disjoint), where models corresponding to the parameters in each of

these sets are uniformly stabilizable. In a separate paper, the same year, Middleton and

Goodwin reported their findings on the adaptive control of time-varying linear systems in

[68]. In this paper they proved that their adaptive algorithm achieved BIBS (Bounded Input

Bounded State) stability without the persistency of excitation requirement, androbust with

respect to unmodeled dynamics for the time varying linear system. They assumed param-

eter variations to be bounded yet slowly varying or have infrequent jumps. Although this

method was designed for adaptive control based on a single model, it should be possible to

extend the results to the multiple model case by dividing the arbitrarily large region of the
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parameter space into multiple convex regions.

In the following years Morse [71] studied the use of multiple fixed models and optimization

for robust set point control. He suggested the use of a supervisory "high-level" algorithm

that is capable of switching to a sequence of linear positioning or set-point controllers from

a set of candidates in order for the output of the process to approach and track a constant

reference input for a single input single output (SISO) plant. The supervisor continuously

evaluated each candidate controller using a performance criterion basedon norm-squared

estimation errors of the candidate nominal process identification models. He later detailed

his method in the papers [72], and [73] and looked into the theoretical aspects of the robust-

ness as well as the steady state tracking performance of the switching algorithm.

In the mean time, Narendra and Balakrishnan suggested in a 1992 technicalreport [77] that

it is possible to improve the transient performance of adaptive controllers that operate in

rapidly time varying environments, using both switching and tuning along with a multiple

model structure. They developed and presented the idea during the 1990s in a series of pa-

pers [14, 77, 78, 79, 84, 85] and named the resulting algorithm multiple modelswitching &

tuning (MMST) controller. They also referred to it as "intelligent control" todirect attention

to its ability of recognizing the environment that it is operating and act accordingly in a fast,

accurate manner while guaranteeing stability. They defined the intelligence ofa controller

as the speed and accuracy with which it responds to a sudden and large change [79]. In the

papers [77] and [84] the MMST algorithm was considered as an extension to the indirect

MRAC method, where multiple identification methods were used to identify an LTI plant

with unknown and time varying parameters.

In the MMST algorithm each identification model is paired-up with an adaptive controller

as seen in Figure 1.4, and based on a performance index of the identification error the

model/controller pair is chosen to control the plant at every instant. The plant to be con-

trolled has the inputu(t) and outputy(t). A reference model provides the desired output

yre f(t) and the task is to drive the control errorec(t) = y(t)− yre f(t) to within specified
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Figure 1.4: Multiple model switching & tuning Controller (MMST).

bounds or, if possible, to zero.N identification models{I j}N
j=1 with corresponding outputs

{ŷ j(t)}N
j=1, where each one has identical structure but different parameterizations, are used

in parallel to estimate the parameters of the plant. The identification error for each model

is defined asej(t) = y(t)− ŷ j(t). Motivated by quadratic optimal control, the following

performance criteria is used to select the model representing the plant at each instant;

Jj(t) = αe2
j (t)+β

∫ t

0
e−λ (t−τ)e2

j (τ)dτ.

whereα ≥ 0 is the weighting factor for the instantaneous changes,β > 0 is the weight

for steady state error variations andλ > 0 is the forgetting factor. It is assumed that the

model that minimizes this cost function is the closest model to the plant, and basedon

the certainty equivalence principle, the corresponding control input ofthe model is used

to control the plant. Narendra and Balakrishnan explained the reason for using an indirect

control method with the fact that stable control of identification error in real-time would

lead to a stable control of the plant. This argument however is shadowed bythe fact that

there is no 1−1 correspondence between the identification error and the control error based
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on their switching criteria1.

The global stability of the MMST algorithm applied to linear time invariant (LTI) plants

was proved in [77] and [84] using candidate Lyapunov functions. Thestability proof made

no assumptions on the switching sequence given that there is a certain minimum dwell time

between each switches (i.e., the controller is not allowed to switch too quickly).In later

papers [78],[79] and [85] the algorithm was extended to include fixed (timeinvariant) mod-

els, adaptive models with fixed initial conditions, and adaptive models with re-initialized

initial conditions, as well as various combinations of these. In these papersit was shown

hypothetically as well as through numerical simulations that while the use of fixed models

are computationally more efficient and they provide fast transient response, slow adaptive

models are required to obtain zero steady state control error and long termimproved per-

formance.

Figure 1.5: Switching between fixed models and tuning using adaptation.

The idea of using a combination of fixed and adaptive models can be illustratedwith Figure

1.5, whereS is a closed bounded set that symbolizes the finite parameter space, andSi

represents subsets ofSeach corresponding to a fixed model. ˆpi denotes the parametrization

for the ith fixed model which represents the plant in the subsetSi . We designate the actual

plant parameters withp∗. Now assume that the algorithm is initialized at ˆp1, at this point

1We shall explain this problem in detail later in Chapter 2.
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the MMST algorithm will switch to ˆpi (perhaps after several switches) as it is the closest

fixed model (based on the given performance criteria) to the actual plantparameters. At this

point we can initialize the adaptive model from ˆpi an let it converge asymptotically top∗

(tuning). In [79] and [85] it has been shown that using multiple fixed modelsalong with a

free-running and a re-initialed adaptive model performs quite satisfactorily in the control of

plants with rapidly time-varying environments.

The extension of the MMST algorithm to nonlinear plants was first suggestedin [14] using

neural networks, however stability proof was missing in this paper. In a more recent paper

[87] however, stability of the MMST algorithm for a simple class of nonlinear systems was

proved. Also, application of the MMST algorithm for adaptive stochastic control of discrete

time systems was presented in the recent papers [82],[141],[86], and in the PhD thesis [31].

Summing up, MMST algorithm has theoretically, as well as through numerical simulations,

been shown to be a high performance alternative way to tackle the adaptivecontrol problem

without the limitations of the previous approaches. However there are still questions that

remains unanswered in the current literature on MMST, such as the previously mentioned

1-1 non-correspondence between the parameter space and the outputspace. This problem

partly relates to the selection of the performance criteria to be minimized. The waythe per-

formance criteria was chosen seems to be heuristic and intuitive. The question to be asked

is; what is the correct choice of the performance index as a function of the identification

errors such that nearness in the parameter space uniquely correlates tonearness in the out-

put space of the models? Another problem is related to the distribution of modelsin the

parameter space, as having too many models for achieving sufficient accuracy may impose

a computational overhead and limit the use of the algorithm in cost sensitive applications.

Having too few models however, may limit the accuracy or the transient performance gained

by the algorithm.

In parallel to the development of the MMST algorithm, a direct multiple model switch-

ing adaptive controller algorithm, advocated by Michael G. Safonov and Tung-Ching Tsao,
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1.2 Overview of Multiple Model Control and Estimation Methods

emerged in the late 1990s. Preliminary versions of the idea appeared in the mid 1990s how-

ever it made its debut in a 1997 paper [103]. They called it “Unfalsified Control” motivated

from the scientific process of experimental validation, or unfalsification ofexperimental

data against various parameterized classes of plausible models in search of one that has the

best fit to the data according to some selected criteria. As it is a direct control approach, the

algorithm does not require any identification models, which can exhibit only some aspects

of the real plant. This prevents the designer from making crude and limiting assumptions

on the plant structure or its stochastic characteristics. The idea is based ondirect evaluation

of the performance of all candidate controllers to identify and switch to the controller that

will guarantee the specified performance criteria (by performance it is meant that how close

the closed-loop plant would follow the reference signal had the candidatecontroller been

in the feedback loop). This does not necessarily require the candidate controllers to be put

into feedback-loop with the plant before they could be unfalsified, ratherit can be done with

stored input and output data. Through elimination (falsification) of the unsuitable controller

structures, a data driven adaptive learning scheme is achieved. As pointed out in [103], the

algorithm is a generalization of open loop model validation techniques to feedback systems.

Figure 1.6: Unfalsified control concept.

Unfalsified control concept can be illustrated as in the Figure 1.6 where thegoal is to use

the controllersκ ∈ K to control the plantP to ensure a certain closed loop system response,

which we denote withTspec. Notice that any control law using any minimal representation

can be chosen to design the candidate controller. Further, we can denotethe space of inputs,

outputs and reference inputs withU , Y andR respectively, such thatu(t) ∈U , y(t) ∈Y and

18



1.2 Overview of Multiple Model Control and Estimation Methods

r(t) ∈ R. Now the unfalsified controller problem can formally be stated as follows [130]:

Given,

(i) Measurements of the plant input-output signals(u0,y0) ∈U ×Y,

(ii) A candidate set of controllersκ ∈ K ⊂ R×Y×U ,

(iii) A closed loop performance criterionTspec⊂ R×Y×U ,

then determine whether or not the control law satisfies the performance criterion.

In order to perform model free direct adaptive control one then startswith a candidate

controller in the loop, where it remains till it is falsified by the data. In the case of falsifi-

cation it is replaced by another candidate controller from the array of unfalsified controllers

which manifests the inherent switching nature of the algorithm. Furthermore, the fact that

controllers do not need to be inserted in the feedback loop to be falsified, guarantees fast

response and improved transient performance compared to traditional adaptive controllers

based on single models.

The questions regarding robustness, stability (whether the switching ceases at a point stabi-

lizing the plant) and asymptotic convergence characteristics of the unfalsified direct adap-

tive control algorithm was addressed in the recent papers [129] and [45] by Safonov et al.

They argued in a heuristic manner that from a practical point of view, the acquisition of an

unfalsified controller is not asymptotic but rather immediate. This is due to the fact that

the controller in the feedback loop is always the unfalsified one, which will guarantee the

stability and convergence regardless of the plant being linear time-invariant or non-linear

time-varying. Furthermore, they linked the robustness of the algorithm due tothe following

two facts;

(i) The set of controllers is monotone decreasing and bounded below by the empty set,
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1.2 Overview of Multiple Model Control and Estimation Methods

(ii) An unfalsified controller that is not stabilizing is unlikely to remain unfalsifiedfor a

long time.

In a recent paper, Paul and Safonov [94] compared the performance of the unfalsified adap-

tive control concept to that of Narendra’s MMST algorithm for the MRACproblem. In

terms of tracking performance both controllers obtained similar results. Several applications

and theoretical extensions of the unfalsified control concept has beenreported in the recent

literature [13, 19, 21, 93]. Summing up, we believe that the simplicity of implementation of

the unfalsified control algorithm has inspired many researches and engineers to implement

the idea as evidenced by a high number of application papers in the recent years. Simplicity

is partly due to the fact that the algorithm does not need identification models. However

there are still questions regarding the choice of the candidate controllers,especially for

complex systems. The size of the controller bank and the fact that the computational re-

sources need to be facilitated to store and process the input output data in real time may

come with computational overhead. Nevertheless, when the class of stabilizing controllers

are known (say through experience or some nominal model) then unfalsified control algo-

rithm offers quite good transient performance improvements without using complex models

for the process. This algorithm can prove to be quite useful for widely used proportional-

integral-derivative (PID) controller design and on-line tuning for improved performance as

presented in [44].

Slight variations of the methods described thus far have also been published. In [5] ideas

from MMST and unfalsified control approaches has been somewhat fused, where identi-

fication models as well as a falsification algorithm were employed. They suggested two

different falsification criteria based on Lyapunov function variations and a statistical falsi-

fication based on closed loop variables. They named their approach Switching Supervisory

Control (SSC), and demonstrated the improvement in the transient control performance of

an uncertain linear time-varying plant through simulations. The algorithm has been ex-

tended for non-linear systems in [10].
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A flashback to the Kalman filter based methods occurred recently with the papers [33],

[34], and [35] by Fekri et al. The method is very similar to that implemented by Athans

in the 1977 paper [12], where the fixed controller gains in the original paper were replaced

with robust controllers designed with mixed-µ synthesis. They appropriately named the

algorithm Robust-MMAC (Robust Multiple Model Adaptive Control or RMMAC).

Before finalizing this section we should mention that by no means this review is exhaustive,

and there are many other authors publishing in the field of MMC. However webelieve the

methods reviewed so far covers the general trend in the area. In the next section we cite and

briefly describe several applications of MMC.

1.2.3 Applications of MMC

The applications of MMC has been primarily focused on aircraft and missile autopilots

and dynamics control, as well as chemical process control, while severalapplications in-

cluding spacecraft attitude and structural control, air traffic control, drug delivery control,

solar power plant control, robotic manipulator arm control, and automotive control has also

been reported. The common divisor for all these applications is that they involve multiple

operating modes and/or multiple operating environments.

Aerospace industry has been a constant driving factor for research in control theory. With-

out much surprise, the first implementation of MMC was for an aircraft control problem, as

the need for the re-configurable, fast and accurate flight controllersare of cardinal impor-

tance for increasing aircraft safety and survivability in the presence of subsystem failure and

structural damages [31]. As mentioned earlier, Athans et al. [12] did the first implementa-

tion of MMC in 1977 for the autopilot of the F-8C fighter aircraft, and for use in equilibrium

flight control at different operating regimes. They used an indirect method based on multi-

ple parallel-running Kalman filters that are connected in series to LQG controllers as seen in

Figure 1.2. In the 1990s Maybeck continued the use of Kalman filter based MMAE (Multi-
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ple Model Adaptive Estimation) and MMAC algorithms and implemented it in a F-15 STOL

(Short Take Off and Landing) aircraft [65, 66]. Bošković implemented the MMST idea of

Narendra et al. for detection of sensor failures in aircraft [17]. Unfalsified control algorithm

found use in robust on-line PID parameter tuning of a missile autopilot [20].Along these

implementations, a somewhat related topic of multiple model air traffic control has been

addressed by Bar-Shalom and Li in [57].

Multiple model control algorithms, in part due to their increasing popularity, started to

appear in the space applications recently. A good example is the geostationary satellite

attitude controller implementation reported in a recent paper by Safonov et al.[130] using

the unfalsified control algorithm. In an earlier paper by Maybeck et al. [36] MMAE and

MMAC algorithms that are based on the Kalman filter approach, were suggested for use in

the control of structural vibrations of large flexible space structures.

Chemical process control is another area that can benefit from multiple model control appli-

cations as the problems in this field usually involve nonlinear dynamical characteristics and

multiple operating environments. In [106] Schott and Bequette applied Kalman filter based

MMAC algorithm for the control of Van de Vusse reactor and classic exothermic continuous

stirred tank reactor. Same authors applied the MMAC method to the drug infusion control

problem in [105], where infusion rate of nitroprusside is used to controlthe blood pressure

in animal experiments. The same paper has a review of literature for the druginfusion

control using multiple model approaches.

Robotic manipulator arm control using MMST approach has been reportedby Narendra

et al. in [14], while a similar implementation using the unfalsified control algorithm has

been reported in [129] by Safonov et al. Safonov’s implementation was nonlinear, and was

shown to be robust with respect to load variations on the manipulator arm.

The adaptive control of a solar power plant is the subject matter of [96],where the power

plant employs a distributed collector field to direct and collect the solar energy through a
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heat exchanger. The heat energy is transferred to oil that circulatesthe system and is used to

generate electric power. The electric power generator requires that theoutput temperature

of the circulating oil needs to be kept constant under changing daily solarradiation cycle

and atmospheric conditions. The paper concluded that multiple model switchingcontroller

implementation performed better than the traditional adaptive control designs.

Automotive applications of the multiple model estimation and control algorithms, which

are addressed in this thesis, are quite new. A recent PhD thesis [23] used multiple model

adaptive estimation and adaptive control for the adaptive cruise control(ACC) problem. In

this thesis we tackle the problem of automotive rollover estimation and mitigation using

the MMST framework. The summary of these and the other specific contributions of the

current thesis follows next.

1.3 Thesis Overview and the Contributions

In Chapter 2 we introduce a real time parameter estimation algorithm based on themultiple

model switching framework for inferring the unknown, and time varying parameters of au-

tomotive vehicles. Among the estimated parameters are the center of gravity (CG) position,

which has primal importance for vehicle dynamics control applications. Afterexplaining

the estimation algorithm we give an analysis of the switching criterion of the multiple model

switching algorithm with important conclusions. Based on these, we suggesta model space

adaptation method in conjunction with the multiple switched estimator structure, for over-

coming the limitations of the switching criteria and present the efficacy of the suggested

technique with numerical examples.

In Chapter 3 we consider a novel approach for designing robust automotive rollover preven-

tion controllers. As part of this analysis we introduce a dynamic version of the load transfer

ratio (LTR) as a rollover detection criterion and then design robust controllers that take into
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account uncertainty in the CG position. The control methodology we utilize is based on

guaranteeing a set of linear matrix inequality (LMI) conditions, which resultin controllers

that areL∞ stable. We also consider a controller mode switch to increase the performance of

the resulting robust controllers, which does not affect the stability of the closed loop system.

Again we present the resulting controllers with numerous numerical simulations.

In Chapter 4 we fuse the results of the previous two chapters to obtain a particular type of

switched adaptive rollover mitigation control design. Based on the real time estimation of

certain vehicle parameters, our controllers switch among a set of controllers, each of which

guarantee robustL∞ stability of the closed loop system. We also show numerically that this

results in stable adaptive controllers with higher performance than the robust counterparts.

In Chapter 5 we consider a discrete time extension of a certain stability result for a class of

switched discrete time linear systems and show that the stability result do not directly follow

from the continuous time versions with this property. We obtain the conditions for stability

of this system class by using a non-Lyapunov technique. This result alsohas an important

interpretation for switched systems; the bilinear transform may not always preserve the sta-

bility properties between the continuous & discrete time counterparts of dynamical systems,

and their stability properties need be analyzed separately. We then suggest two constructive

pole-placement control design procedures based on the main results of the chapter; one is

related to enhancement of driver experience subject to parameter switches and the second

is related to transient free model reference tracking of vehicle roll motion regardless of

arbitrary switches that can occur in the vehicle parameters.

In Chapter 6, we consider a particular decentralized control design procedure based on

vector Lyapunov functions for simultaneous, and structurally robust model reference track-

ing of both the lateral and the roll dynamics of automotive vehicles. We show that this

controller design approach guarantees the closed loop stability subject to certain types of

structural uncertainty, which we demonstrate with detailed numerical simulations.
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Finally, in Chapter 7 we extend certain theoretical results on the stability of switched linear

systems. Particularly, we consider the problem of common Lyapunov solution(CLS) exis-

tence for two classes of switching linear systems; one is concerned with switching pair of

systems in companion form subject to interval uncertainty, and the other is concerned with

switching pair of companion matrices with a regular inertia. For both problems wegive

easily verifiable spectral conditions that are sufficient for the CLS existence. For proving

the second result we also obtain a certain generalization of the classical Kalman-Yacubovic-

Popov lemma for matrices with general regular inertia.
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Chapter 2

Realtime Vehicle Parameter

Estimation using Multiple Models

and Switching

In this chapter we present an implementation of the multiple models and switch-

ing framework to the realtime parameter estimation in automotive vehicles.

Among the estimated parameters, the center of gravity position is of primary

importance, which directly affects the handling of the vehicle in extreme driv-

ing situations, and which can not be measured directly. The online estimation

method utilizes well-known linear vehicle models for lateral and roll dynam-

ics, and assumes the availability of standard automotive sensors. We illustrate

the technique with numerical simulations as well as with off-line sensor data

from a test vehicle; we also give comparisons to traditional estimation tech-

niques. The chapter concludes with a brief theoretical analysis of the multiple

model estimation algorithm, based on which we suggest a novel refinement of

the estimation method in the form of adapting model spaces.
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2.1 Chapter contributions

The scientific contribution of this chapter over the state of the art is twofold. Firstly, we suc-

cessfully applied the multiple model switching framework for realtime parameter estimation

in automotive vehicles. We showed through numerical simulations that the methodprovides

fast and accurate estimations of unknown vehicle parameters. We also suggested a number

of automotive applications for the suggested estimation technique. The second contribution

of the chapter is a theoretical analysis of the MMST cost function (switchingcriteria) uti-

lized in conjunction with the multiple model estimation algorithm. We proved that under

certain conditions (e.g. a coarse model space), the algorithm can lead to wrong estimations.

As a remedy and as a further contribution, we suggested a simple method for adapting the

model space in conjunction with the multiple model estimation algorithm, while making

use of the same cost function. We showed the benefits of this approach through numerical

simulations.

The work in this chapter has culminated in the following publications:

(i) Solmaz S., Akar M., Shorten R., “Method for Determining the Center of Gravity

for an Automotive Vehicle”, Irish Patent Ref: (S2006/0162), March 2006. (PCT

application filed in March 2007).

(ii) Solmaz S., Akar M., Shorten R., “Online Center of Gravity Estimation in Automotive

Vehicles using Multiple Models and Switching”, 9th IEEE International Conference

on Control, Automation, Robotics and Vision, Singapore, Dec 5-8, 2006.

(iii) Solmaz S., Akar M., Shorten R., Kalkkuhl J. “Realtime Multiple-Model Estimation

of Center of Gravity Position in Automotive Vehicles”, Vehicle System Dynamics

Journal. Accepted for publication, 2007.
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2.2 Introduction

Vehicle center of gravity (CG) position and inertial properties are of primalimportance in

the assessment of vehicle handling and performance characteristics as well as its accident

behavior. Although automotive manufacturers often provide the measurement of these pa-

rameters, such information often pertains to an empty vehicle with known load distribution.

Considering the fact that passenger, and/or load distribution in road vehicles can vary sig-

nificantly, and sometimes even dangerously, it is difficult to overlook the change in the CG

position and its consequences. While the importance of this is known on the handling be-

havior, automotive manufacturers usually employ robust active road-handling control strate-

gies to account for the unknown and changing CG position; they simply design for the worst

case scenario. Another common approach in the case of Sport Utility Vehicles (SUVs) is

to intentionally design the vehicle heavier than usual by adding ballast in the undercarriage,

which aims to lower the CG position while reducing the percent margin of the load vari-

ation and thus constraining the variation of the CG location. While such approaches are

successful up to certain extent, they also come with obvious drawbacks; performance loss

under normal driving conditions and reduced efficiency due to added weight.

Analysis of recent car accident data indicates that vehicles with a high center of gravity

such as vans, trucks and SUVs are more prone to rollover accidents thanothers [1]. More-

over it is known that rollover accidents alone constitute only a small percentage of all car

accidents, while they cause disproportionately high rates of fatalities [38].According to [1]

rollover occurred in only 2.6% of all vehicle crashes during 2004 in the USA, while it was

responsible for a massive 20.5% fatality rate, rendering it to be the most dangerous type

of accident. Again according to the same data, light trucks (pickups, vans, SUVs) were

involved in nearly 70% of all the rollover accidents, with SUVs alone responsible for al-

most 35% of this total. It has been also reported in the literature based on similarstatistics,

that rollover was involved in about 90% of the first harmful events of non-collision fatal

accidents [25]. Considering the fact that the composition of the current automotive fleet
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consists of nearly 36% light trucks, minivans and SUVs [22] along with the recent increase

in the popularity of SUVs worldwide, makes the rollover an important safety problem. As

CG height is the most prominent factor in un-tripped rollover occurrence,this problem can

greatly benefit from real-time CG position estimation capabilities. Such estimators can be

used as a warning system to the driver or can conveniently be integrated into active road

handling or rollover prevention controllers thus improving the overall vehicle and passen-

ger safety.

With this background in mind, and inspired by the success of Multiple Model Switching &

Tuning (MMST) methodology suggested initially by Narendra et al. to improve the transient

performance of adaptive controllers as described in [84, 78, 14], wepresent in this chapter

multiple model and switching estimation approach based on simple linearized vehiclemod-

els and employing only standard stock automotive sensors [122]. The choice of the multiple

model approach over the conventional methods (such as the least squares), is motivated by

the fact that the method does not require the linearity of the parametric uncertainty. Also the

method is ideally suited for automotive applications, where a rapid estimation of unknown

parameters is required. Moreover, use of Kalman filter based methods forautomotive pa-

rameter and state estimation applications are quite limited due to robustness limitations as

well as computational resource requirements of such methods. Motivated by these consid-

erations, we considered simplified linear vehicle models such as the single track model (i.e.,

linear bicycle model) and the second order roll plane model in conjunction withthe mul-

tiple model switching framework. These models can only represent the respective vehicle

behavior in a limited range of maneuvers and speeds, but it is possible to usea multitude

of these simplistic models and switch between them in an intelligent way in real time, to

track the vehicle behavior accurately over the complete operating conditions. Moreover,

proper parametrization of these models gives way to the rapid estimation of unknown and

time-varying vehicle parameters through the selected models. Using the described multi-

model approach in conjunction with linear roll plane models, one can estimate parameters
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such as the CG height and linear suspension parameters in relation to the rollover preven-

tion problem. Through a similar implementation of multiple single track models one can

also estimate parameters relevant to lateral dynamics control, such as the longitudinal CG

position and linear tire stiffnesses. One of the benefits of this realtime estimation method

is the fact that it is immune to the nonlinear dependance of unknown vehicle parameters in

the models as shall be apparent in the Section 2.3. During the application of themethod in

Section 2.4 we make no assumptions about the parameter vector having a lineardependance

on the states.

Recent publications related to automotive CG position measurement and estimationinclude

that of Mango [62], where he described a method for accurately calculating the CG location

based on portable wheel scales. His method requires external measurement equipment and

is not intended for online measurement during regular driving conditions as it requires the

vehicle to be stationary. In another recent article, Allen et al. [8] made a statistical anal-

ysis of vehicle inertial properties and CG positions as a function of weight, width, length

and the height of the vehicle using the data for several existing stock cars. Although their

analysis is useful in demonstrating the relationship between several physical parameters and

vehicle’s handling characteristics, their method can not be employed for realtime estimation

purposes. There has been a number of recent publications about realtime estimation of ve-

hicle parameters including the CG position. Vahidi et al. suggested a recursive linear least

squares estimator with multiple forgetting factors in [131], for simultaneous estimation of

the road grade and the vehicle mass in real time. Their algorithm took into account the

different rates of change in both unknown parameters and incorporated different forgetting

factors1 into the cost function of the recursive least squares algorithm. Their results are

promising as demonstrated with both numerical and measured data. However this method

assumes that vehicle model is linear in the unknown parameters, which is not the case for

1The concept of forgetting implies that older measurement data is gradually discarded in favor of

more recent sensor information [131].
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the approach presented in the current chapter as shall be clear in the sequel. In a recent the-

sis [7], a model based estimation method for road bank angle and CG height was suggested

using extended Kalman filters. The presented results showed slow convergence rates in the

estimations and the accuracy was questionable. In a recent European patent EP 0918003B1

[55] an alternative method for estimating the height of the CG in real-time was described.

The method utilizes an estimated drive/brake slip of at least one wheel using the wheel

speed sensors, which is then used to compute the instantaneous radius of the corresponding

wheel. Using this information, the angle of the corresponding wheel axle withrespect to the

ground is computed and then used in an equation related to the lateral dynamicsof the car

to compute the CG height. Since there are no other publications other then the cited patent,

the details and the limitations of this method is not known to the authors. It should be

noted that all the rollover prevention methods suggested to date assume known CG height

[38, 25, 4, 88, 137, 138, 107, 22, 48]. However as we have explained, it is particularly

unrealistic to assume the CG height to be known, and this parameter can vary significantly

with changing passenger and loading conditions especially in large passenger vehicles such

as SUVs.

2.3 Vehicle modelling

In this section we present three different models for the lateral motion and the roll plane

dynamics of a car. While we use a 4-state vehicle model with a combined roll andlateral

dynamics to represent the real vehicle behavior in our numerical simulations, we utilize

two linear second-order models (i.e., the single track model, and the roll planemodel) in

conjunction with the multiple model switched parameter estimation algorithm that shall be

introduced in the following section. We use the second-order linear models tosimplify the

implementation of the algorithm as well as to keep the required sensory information at a

minimum level. All the models introduced here assume small angles and are valid when the
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steering input is small. Also, in the second order linear single track model described below,

a weak relationship between the lateral and the roll dynamics is assumed, which is the case

when the steering angle is small [104]. Note that the choice of the models hereis a trade

off between complexity and sensitivity to different operating conditions. The assumption

of linear models and small angles in the following discussion is indeed a restrictive argu-

ment as the linear models are not dependable during extreme driving situations, where the

knowledge of the unknown vehicle parameters is required most (e.g., for the deployment

of a suitable control action). However, the method described in the sequelis intended for

estimating the unknown parameters during normal driving conditions and longbefore such

extreme driving conditions occur.

Notation and definitions of the model parameters and variables are given in Table 2.1. In

what follows we give three different dynamical equations of the motion of the car. For a

through coverage of the derivations see [50], and [104]. Note that for simplicity, we assume

in the following equations that, relative to the ground the sprung mass of the vehicle rolls

about a horizontal axis along the centerline of the body.

2.3.1 Single track model

This two state linear model represents the lateral dynamics of a car in the horizontal plane.

It is also referred to as “the 2-state single track model" or “the linear bicyclemodel" in the

literature and is commonly used in automotive applications (see [132] for a good application

example for vehicle lateral control).

For linearization, the model assumes that the motion of the vehicle is constrainedto the

horizontal plane at a constant speed such that the effects of heave, roll and pitch motions

are all ignored [2]. It is also assumed that only the front tire is used for steering the vehicle,

and the steering angle is small. Moreover, vehicle sideslip angle and the tire slipangles

are assumed to be small as well. In the model, other sources of nonlinearities such as
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Table 2.1: Model parameters and definitions

Parameter Description Unit

m Vehicle mass [kg]

g Gravitational constant [m/s2]

vx Vehicle longitudinal speed [m/s]

δ Steering angle [rad]

Jxx Roll moment of inertia of the sprung mass measured at the CG[kg·m2]

Jzz Yaw moment of inertia of the chassis measured at the CG [kg·m2]

L Axle separation, such thatL = lv + lh [m]

T Track width [m]

lv longitudinal CG position measured w.r.t. the front axle [m]

lh longitudinal CG position measured w.r.t. the rear axle [m]

h CG height measured over the ground [m]

c suspension damping coefficient [kg·m2/s]

k suspension spring stiffness [kg·m2/s2]

Cv linear tire stiffness coefficient for the front tire [N/rad]

Ch linear tire stiffness coefficient for the rear tire [N/rad]

β Sideslip angle at vehicle CG [rad]

αv Sideslip angles at the front tire [rad]

αh Sideslip angles at the rear tire [rad]

φ Roll angle measured at the roll center [rad]

φ̇ Roll rate measured at the roll center [rad]
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aerodynamic forces, tire nonlinearities and non-smooth road disturbances are all assumed

to be negligible. See Figure 2.1 for the representation and notation of the model. Notice

that in this model we lump left and right tires into a single one at the axle centerline, hence

the name “Bicycle Model" or “Single Track Model".

Figure 2.1: Linear bicycle model.

We represent the horizontal dynamics in terms of the state variablesβ andψ̇. The lateral

tire forcesSv,Sh for front and rear tires respectively, are represented as linear functions of

the tire slip angles such thatSv = Cvαv, andSh = Chαh, where for small angles tire slip

angles are given as follows

αv = δ −β − lv
vx

ψ̇ (2.1)

αh = −β +
lh
vx

ψ̇. (2.2)

Also notice that since we assume small angles and constant longitudinal velocity, sideslip

angleβ satisfies the following;

β ≈ vy

vx
, β̇ ≈ v̇y

vx
. (2.3)
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Using the above relations and Newton’s 2nd law of motion, one can get the following state

space representation of the horizontal dynamics of the vehicle
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where the auxiliary parametersσ ,ρ, andκ are defined as follows

σ , Cv +Ch

ρ , Chlh−Cvlv (2.5)

κ , Cvl
2
v +Chl2

h.

For further details on the derivation of this model see [104] and [50].

We make use of this model mainly for the multiple model switched estimation of the un-

certain tire stiffness parameters (i.e.,Cv andCh), and the uncertain longitudinal position of

CG (i.e., lv). Note that although (2.4) is linear in the state variables, it is nonlinear with

respect to unknown parameter variations ofCv, Ch andlv; this is a factor limiting the use of

traditional recursive estimation methods such as the linear least squares for the estimation

of unknown parameters, as shall be demonstrated in Section 2.4.3.

Comment: In the version of the linear second-order single track model introduced here,

the effect of the variations in longitudinal CG position on the variations in the effective yaw

moment of inertiaJzz were ignored on the grounds that such changes are insignificant for

small vehicles, where loading options are limited and the resulting changes in theinertia are

quite small. For the sake of simplicity, parameters for a compact class vehicle were used

in the simulations in this chapter, and therefore this assumption makes sense. However

for larger vehicles such as busses and trucks the changes in yaw momentof inertia with

changing longitudinal CG position can be quite significant and thus can not be ignored in

the analysis.

Comment: It is important to note here also that the single track model assumes a weak cou-

pling from the vertical (i.e., roll) dynamics onto the lateral (see [2] for a thorough analysis
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of the interactions between lateral and vertical vehicle dynamics). Therefore, there are no

terms in (2.4) that reflect the effect of vertical dynamics, which is reasonable when the ve-

hicle is operating in the linear regime at low levels of lateral acceleration [3]. However, the

reverse argument is not true for the roll dynamics even under the small angles assumption,

since the roll motion is heavily influenced by the lateral dynamics via lateral acceleration,

as shall be clear in the next subsection.

2.3.2 Roll plane model

We use the 2-state roll plane model described here for the realtime estimation ofCG heighth

as well as the parameters of the suspension systemk,c based on the multiple model switch-

ing method. This is the simplest model that captures the roll dynamics of the car and it is

free from the effects of uncertainties originating from unknown tire stiffness parameters,

which in turn makes it suitable for the estimation task.

Assuming all vehicle mass is sprung, effective linear torques exerted by the suspension

system about the roll center are defined as follows

Tspring = k φ , (2.6)

Tdamper = c φ̇ , (2.7)

wherek, c denote the linear spring stiffness and damping coefficients respectively.Using

these one can then apply a torque balance in the roll plane of the vehicle in terms of the

effective suspension torques (see Figure 2.2 for the notation of the rollplane model), and

obtain the following relationship

Jxeqφ̈ +cφ̇ +kφ = mh(aycosφ +gsinφ). (2.8)

Note that for simplicity, it is assumed that, relative to the ground, the sprung mass rolls

about a fixed horizontal roll axis which is along the centerline of the body and at ground

level. In the last equationJxeq denotes the equivalent roll moment of inertia derived using the
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Figure 2.2: Second order roll plane model.

parallel axis theorem of mechanics taking into account the CG height variation as described

below

Jxeq , Jxx+mh2. (2.9)

For smallφ , we can approximate the nonlinear terms in equation (2.8) ascosφ ≈ 1,sinφ ≈ φ

and represent this equation as in the following state space form








φ̇

φ̈









=









0 1

− k−mgh
Jxeq

− c
Jxeq









·









φ

φ̇









+









0

mh
Jxeq









ay. (2.10)

Note that at steady state one can calculate the CG height using a single model from the

relationship

h =
kφ

m(gφ +ay)
, (2.11)

given that the roll angleφ , and the lateral accelerationay measurements as well as an ac-

curate knowledge of the spring stiffnessk are available. While the former can be measured
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using suitable sensors, the spring stiffnessk is unknown, which needs to be calculated de-

pending on the specific maneuver and loading conditions; it is also affectedby various other

factors2. As will be explained in Section 2.4, using the multiple model switching method

we neither need the exact knowledge of the suspension parameters, norsteady state type

excitation to get an accurate estimation of the CG height. As a final remark we emphasize

that although (2.10) is linear in the state variables, it is nonlinear with respectto unknown

parameter variations ofk,c andh.

Figure 2.3: Linear bicycle model with roll degree of freedom.

2.3.3 Single track model with roll degree of freedom

While we utilize the previous two models for the estimation task of the unknown vehicle

parameters, we employ the linear bicycle model with roll degree of freedom described here

to generate the reference vehicle behavior. We shall also utilize variants of this model with

different actuators for controller design in later chapters. The model asillustrated in Figure

2Aerodynamic forces, vertical tire loads, and variations inthe roll center as a result of changes in

the suspension geometry can affect the instantaneous valueof k.
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2.3 is the simplest model with coupled lateral and roll dynamics, which assumes thatδ ,φ ,β

are small and that all the vehicle mass is sprung. We can write the equations ofmotion for

the single track model with the extended roll degree of freedom as follows

ẋ =
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
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δ , (2.12)

wherex =
[

β ψ̇ φ̇ φ
]T

is the state vector. Representative state responses of this model

to a step steering input are shown in Figure 2.4 below, where the steering magnitude was 30◦

with a steering ratio of 1 : 18, and the vehicle velocity during the simulation wasvx = 30m/s.
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Figure 2.4: State responses of the single track model with roll degree offreedom to a step steering

input (vx = 30m/s, δ = 30
18

◦
.)

2.3.4 Load transfer ratio, LTR

In order to show the relationship between the roll dynamics and the vehicle CGheight, we

here define the lateral load transfer ratio (LTR) parameter based on a torque balance in the
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roll plane of the vehicle model. Although this parameter is not utilized directly withinthe

current chapter for the analysis, it is instrumental in understanding the dynamics of rollover.

In later chapters we shall utilize this background to develop controllers to mitigate rollover.

LTRappeared previously in the literature, most notably in [88] and [48] in order to assess

the rollover threat.

TheLTRcan be defined simply as follows

LTR=
Load on Right Tires-Load on Left Tires

Total Load on All Tires
. (2.13)

It is evident that this parameter varies in the interval[−1,1], and during straight driving for

a perfectly symmetric car it is 0. The extremum is reached in the case of a wheel lift-off of

one side of the vehicle, in which case it becomes 1 or−1. Therefore, a direct measurement

or an estimation of this parameter can be used as a rollover warning, or as a switch for

a rollover controller. Indeed Kamnik et al. in [48] used wheel speeds measurements and

Kalman filters to estimateLTR as a rollover controller activation switch for use in heavy

trucks.

In Figure 2.3, the left and right wheel loads are shown withFL andFR respectively. Noticing

thatFL +FR = mg, we can express (2.13) as follows

LTR=
FR−FL

FL +FR
=

2FR−mg
mg

. (2.14)

We can obtain a simple steady state approximation ofLTRin terms ofay, andh as described

in [88], which is given below

LTR≈ 2ay

g
h
T

. (2.15)

From this approximation the dependence ofLTR, thus the rollover threat, to the vehicle pa-

rametersay/g andh/T is clearly visible. Note thatay is measurable via acceleration sensors

whereash is an unknown vehicle parameter that can not be measured directly. As apparent

from this analysis, CG height is a prominent factor affecting rollover tendency of a vehicle,

yet it is not measurable. Therefore any rollover mitigation controller can greatly benefit
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from the estimation of this specific parameter by tuning of the control parameters based on

the estimated CG height. This in turn can significantly improve the lateral and cornering

performance of the vehicle in extreme driving situations without sacrificing vehicle safety

and handling capability. In Chapter 3 we will utilize a dynamic version of theLTRin robust

feedback control design for the rollover prevention problem, which we shall later in Chap-

ter 4 integrate with the CG position estimation algorithm that we describe in the following

sections.

2.3.5 Sensors and vehicle parameters

In this subsection we describe the configuration of sensors assumed in theautomotive ve-

hicle for use in conjunction with the multiple-model switching parameter estimation algo-

rithm. Also we summarize the list of the assumptions on the known and estimated vehicle

parameters that appear in the analysis that follows.

Sensors:

In the estimation algorithm we assume the availability of lateral accelerationay, yaw rate

ψ̇, velocity vx and the steering angleδ measurements, which are available as part of the

standard sensor packs found in modern cars that are commonly utilized forlateral and yaw

dynamics control implementations such as the ESP (Electronic Stability Program) [132],

[133]. Moreover, a measurement or an estimation of the vehicle roll angle isrequired for

the implementation in this chapter, which can be obtained through spring displacement

sensors (displacement transducers) found in vehicles with active suspension systems such

as the ABC (Active Body Control).

Comment: The analysis given here does not necessarily require the use of a particular type

of sensor to obtain the roll angle information: gyroscopic roll rate sensors, or any other

suitable set of sensors can be utilized for computing the roll angle.
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Parameters:

We assume that the vehicle massm is known, which can be estimated as part of the braking

system, yet this is outside scope of this thesis (see for example [131] for a realtime method

for the estimation of vehicle mass). FurthermoreCv,Ch, lv,k,c andh are all assumed to be

unknown parameters of the vehicle and are estimated through the multiple model switching

algorithm. We further assume that these parameters vary within certain closedintervals

Cv ∈ Cv, Ch ∈ Ch, lv ∈ Lv, c∈ C , k∈ K andh∈ H , and these intervals can be found via

accurate numerical simulations as well as field tests. The number of models necessary to

estimate these parameters relates to the size of the interval and the accuracy demand on the

estimation, as shall be explained in the following section.

Comment: It is possible to extend the estimation scheme described in the next section to

include the unknown and time-varying vehicle mass. However, as there arealternative and

dependable methods for estimating the vehicle mass [131], as well as for the ease of expo-

sition of the method described here, we omitted this parameter in the following discussion.

2.4 Vehicle parameter identification through multi-

ple models & switching

While the conventional approach to parameter estimation is to employ a well-established

linear least square type identification technique, such methods are susceptible to loss of

identifiability due to feedback [120], [11] as is the case for the estimation problem described

here. Also, the linear models introduced in Section 2.3 are nonlinear in the unknown ve-

hicle parameters further complicating the formulation of the estimation problem using the

traditional approaches. Although linear regression techniques typically converge quickly,

they require measurement signals that are persistently exciting [120], [74]. For our problem

this would impose some specific maneuver requirements on the driver input such that all
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the modes of excitation are covered and a dependable estimation of the unknown parame-

ters could be made. Such a demand on the driver input would not only be unrealistic but

also unreliable. Thus there is a need for a different approach for the parameter identifica-

tion task, which imposes no restrictions on the driver inputs, has fast convergence rates,

and requires minimum additional output information (sensors). Here we introduce a mul-

tiple model switching algorithm [122] to identify unknown vehicle parameters rapidly in

real-time. The method achieves this, in part, as a result of the fact that the model space

representing the parameter uncertainty is bounded, and includes only the feasible parame-

ters of the vehicle. This restricts infeasible estimations in cases when sensorsignals are not

persistently excited, and where the standard estimation methods such as the recursive linear

least squares are destined to fail. Although we have no theoretical proofthat the multiple

model estimation algorithm is more immune to persistence of excitation issues, our numer-

ical analysis shows that this is the case, at least as compared to the standard recursive least

squares algorithm for this problem.

A natural approach here would be to setup the multiple estimation models using (2.12),

which in this setup would imply that there is no modelling error. However in this case,

the resulting parameter space would be too complex to handle. Instead we takea modular

approach of decoupling the vehicle dynamics into subsystems by assuming a weak relation-

ship from the roll dynamics onto the lateral. In the following two subsections wepresent our

methodology and give numerical simulation results corresponding to the decoupled identi-

fication algorithms, which are then compared to recursive least squares based estimations.

Remark 2.4.1 As an alternative approach, the Extended Kalman Filter (EKF) can be uti-

lized to tackle the nonlinear parameter estimation problem described in this chapter. We

do not cover the EKF approach in the current thesis as the assumptions ofthe method are

too restrictive, and there are known robustness issues of the algorithm due to linearization

of the models, which can cause diverging estimations. While the EKF works well under

certain conditions (e.g. process corrupted by white noise only, small nonlinearity, etc.), we
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found the EKF to be difficult to tune and computationally complex to operate; a factor that

prevents its use for automotive control applications. Regardless, a recent Master’s thesis

[7] looks into EKF based estimation of CG height for automotive vehicles. In the thesis an

EKF implementation utilizing the measurements of lateral acceleration (ay), yaw rate (̇ψ),

steering angle (δ ), and roll rate (̇φ ) based on the single track model with roll degree of free-

dom was suggested. Example CG height estimation results from this thesis corresponding

to a step steer input is given in Figure 2.5. As can be observed from theseresults, the CG

(a) (b)

Figure 2.5: CG height estimation results with Extended Kalman Filter (a) without sensor noise, (b)

with gaussian white noise added on to the sensor signals [7] (Courtesy of Technische Universität

Kaiserslautern).

height estimations based on this EKF implementation have large transients and very slow

convergence rates. In the case of simulated sensor noise, where gaussian white noise is

added on to the sensor signals, the estimation results have undesirable oscillatory behavior.

These poor estimation results can be attributed, at large, to the modelling errors introduced

by the single track model with roll degree of freedom. It is known that Kalmanfilters are

sensitive to modelling errors [18]; the single track model utilized in [7] has fixed model

parameters and thus it is only valid for a particular speed and steering input.Since the
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measurement data used in the simulations pertain to real vehicles with a range ofvelocities

and steering inputs, the model is not valid in all these operating conditions, which results in

poor parameter estimations. While we utilize similar models in our multiple model vehicle

parameter estimation technique, as shall be clear in the following sections, we allow for

a finite range of vehicle parameters to be used at any given instant so thata set of single

track (and roll plane) models track the real vehicle states accurately overa wide range of

operating conditions.

2.4.1 Online identification of longitudinal CG location and tire

stiffness parameters

The multiple model switching identification algorithm to estimate longitudinal CG location

lv and tire stiffness parametersCv,Ch makes use of the lateral dynamics model given in (2.4).

The method assumes that each unknown parameter belongs to a closed interval such that

Cv ∈Cv, Ch ∈Ch, andlv ∈Lv. These intervals are divided into certain number of grid points

and they can be represented as{Cv1,Cv2,Cv3, . . . ,Cvp} ⊂ Cv, {Ch1,Ch2,Ch3, . . . ,Chq} ⊂ Ch,

and{lv1, lv2, lv3, . . . , lvr} ⊂ Lv with dimensionsp,q andr respectively.

Comment: There is a trade-off between the choice of the number of grid points in the

parameter space and the numerical complexity, which is a design consideration depending

on the accuracy demand from the estimation and the available computational resources for

the specific problem under consideration.

With these in mind we formn = p× q× r different models corresponding to the cross

combinations of the grid points in the parameter space. Utilizing (2.4), the equations of

motion corresponding to each model can be represented as
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wherei = 1,2, . . . ,n denotes the model number. We assume that all models have zero initial

conditions such thatβi(0) = 0, andψ̇i(0) = 0, for i = 1,2, . . . ,n. Furthermore, each model

is driven by the same inputsδ andvx as depicted in Figure 2.6, measurements of which are

assumed to be provided by a suitable set of sensors.
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Figure 2.6: Multiple model system identification algorithm with singletrack models.

In order to select the model with the correct parametrization we look at the difference be-

tween the model and the plant outputs. The identification errorei corresponding to theith

model is defined as

ei = yplant− (ymodel)i , (2.17)

wherey denotes the model or the plant output. In this implementation of the algorithm the

output to be utilized isy = [ay, ψ̇], and it is further assumed that the measurement of these

variables are available for the vehicle. Thus we can represent the identification error for the

ith model as follows

ei(t) =









ay(t)−ay,i(t)

ψ̇(t)− ψ̇i(t)









, i = 1,2, . . . ,n. (2.18)
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Note here thatay(t) andψ̇(t) are the respective plant lateral acceleration and yaw rate output

measurements obtained from the sensors, whileψ̇i(t) is obtained from the second state of

the ith single track model given in (2.16), and correspondingay,i(t) is calculated using the

following function of the states at every instant

ay,i = vx(ψ̇i + β̇i) = −σi

m
βi +

ρi

mvx
ψ̇i +

(Cv)i

m
δ . (2.19)

By utilizing the identification errors it is possible to switch and choose a model that has

the minimum distance to the plant outputs. Although control design is outside the scope

of the current chapter, using a model that has the closest outputs to thoseof the plant is

likely to yield the best feedback control performance. In other words a small identification

error leads to a small tracking error [14], which, in the sense of adaptive control, is based

on the principle of certainty equivalence from tuning to switching [79]. We will consider

the control design implementation of the multiple model switched parameter estimation

algorithm later in Chapter 4.

Based on empirical observations, the choice of the switching index should include both

instantaneous and steady-state measures in order to reliably determine the identification

models representing the plant at all instants. While there exist many such indices, we uti-

lize the cost functionJi corresponding to theith identification error as given below, which

is inspired by the quadratic cost optimization techniques and was originally suggested by

Narendra et al. in [84, 78, 14] as a switching scheme

Ji(t) = α ||ei(t)||+β
∫ t

0
e−λ (t−τ)||ei(τ)||dτ. (2.20)

Comment: We emphasize that it is possible to choose alternative cost functions as the basis

for model selection. The particular choice of (2.20) as the switching criterion in this thesis

is motivated by the fact that this cost function is well established in the MMST literature.

In the expression for cost function (2.20),α ≥ 0 andβ ≥ 0 are the free design parame-

ters controlling the relative weights given to transient and steady state measures respec-

tively, whereasλ ≥ 0 is the forgetting factor, which controls the rate of discarding the
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past measurements in favor of the new information. As will be demonstrated in the se-

quel, switching based on (2.20) with nonzero combinations ofα ,β gives better results

then using just the transient measures, e.g.Ji(t) = ei(t)2, or the steady-state measures,

e.g.Ji(t) =
∫ t

0 ||ei(τ)||dτ alone. This is illustrated in Figure 2.7, where a comparison of the

switching rule based on transient (α = 1,β = 0), steady-state (α = 0,β = 1) and combined

(α = 0.2,β = 0.8) output error dynamics is presented for the estimation of the longitudinal

position of CG, where the true value of the reference vehicle is 1.2m. It is obvious from the

figure that the switching based on just the transient measures causes an undesirable chat-

tering, while switching based only on the steady state measures has slower response in the

estimations. For the details of the simulation see the following subsection on numerical

analysis.
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Figure 2.7: Comparison of switching based on transient, steady-state and combined output error

dynamics.

Note that it is possible to use other type of cost functions depending on the specific esti-

mation requirements from the problem at hand. Here we selected the model withthe least
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cumulative identification error according to (2.20) using

i⋆ = arg min
i=1,...,n

Ji(t). (2.21)

Within the parameter space described by a finite number of grid points inCv,Ch andLv,

selected modeli⋆ and the corresponding model parametersC⋆
v ,C

⋆
h andl⋆v have the minimum

cumulative distance3 to the parameters of the plant.

Comment: As a rule of thumb based on our numerical experimentation, choosing 0.9 ≤

β ≤ 1 and 0< α ≤ 0.1 for this problem gave the best estimation results in conjunction with

the multiple model switched estimation algorithm. Also, the forgetting factorλ becomes

important if the plant undergoes rapid switches; as this is not the case whenCG position

variation is considered, we setλ = 0 in the following discussion.

Numerical analysis:

In the following figures we present the estimation results for the algorithm based on simu-

lated sensor signals generated by the vehicle model (2.12). The model parameters used are

given in Table 2.2.

The maneuver was conducted at 108km/h, and as seen in Figure 2.8 the maneuver tested

was an obstacle avoidance maneuver commonly known as the elk-test, with a peak mag-

nitude of 30◦ at the steering wheel (the steering ratio is 1/18 between the tires and the

steering wheel). The model space consisted of 140 models in total. The uniformly dis-

tributed parameter spaces were selected asCv = [50000,80000] with intervals of 10000,

Ch = [60000,100000] with intervals of 10000 corresponding to the range of tire stiffness

parameters, andLv = [1,1.6] with intervals of 0.1 corresponding to the space of possible

longitudinal CG positions. For this numerical example the free design parameters for the

3Cumulative distance here refers to the time variation of a measure of the parameter estimation

error that is defined later in equation (2.22).
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Table 2.2: Reference model parameters

parameter value unit

m 1300 [kg]

g 9.81 [m/s2]

vx 30 [m/s]

δpeak 30· 1
18 [deg]

Jxx 400 [kg·m2]

Jzz 1200 [kg·m2]

lv 1.2 [m]

lh 1.3 [m]

L 2.5 [m]

h 0.7 [m]

c 5000 [kg·m2/s]

k 36000 [kg·m2/s2]

Cv 60000 [N/rad]

Ch 90000 [N/rad]

cost function were set asα = 0.05 andβ = 1, while the forgetting factorλ was chosen to

be 0.

In Figure 2.9 the corresponding simulated sensor data and selected model outputs are com-

pared. The discontinuous jumps in the model outputs are the result of the switching be-

tween the models. In Figure 2.10 the longitudinal CG position estimation is presented,

where switching is more obvious. It is observed that based on the simulated measurement

data, the multiple model switching algorithm successfully estimated the longitudinal CG
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Figure 2.8: Steering input.

location to be 1.2m, precisely matching the reference model. Similarly in Figure 2.11 the

estimations for the front and rear tire stiffnesses with exact model match arepresented. The

algorithm successfully estimated the front tire stiffnessCv as 60000 and rear tire stiffness

Ch as 90000, which are the exact parameters of the reference model. Finallyin Figure 2.12

reference model sideslip angleβ is compared with respect to that of the selected model

which shows good agreement. For all practical means, the estimation result presented here

is within sufficient tolerances for use in automotive control applications, particularly for

adaptive lateral dynamics control problem.

Remark 2.4.2 Based on the numerical analysis above and as a motivation for further anal-

ysis, we wish to point a theoretical issue related to switching between the identification

models based on the cost function (2.20). It is difficult to guarantee one-to-one correspon-

dence between the distance (or error) in the output space and the distance in the parameter

space at every instant based on the cost function (2.20) of identificationerrors. This can be

demonstrated by defining a normalized parameter error corresponding to the ith identifica-

tion model as follows

εi =

√

(

1− (lv)i

lv,p

)2

+

(

1− (Cv)i

Cv,p

)2

+

(

1− (Ch)i

Ch,p

)2

, i = 1,2, ...,n, (2.22)

where lv,p,Cv,p, andCh,p, denote the real parameters of the vehicle that we are trying to

estimate. Note that for a given identification model, the normalized parameter error defined
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estimation.
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Figure 2.10: Longitudinal CG position estimation with exact match.
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Figure 2.11: Estimation of the front and rear linear tire stiffness with exact model match.
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Figure 2.12: Comparison of the sideslip anglesβ for the vehicle and the selected models during the

maneuver.
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2.4 Vehicle parameter identification through multiple models & switching

above is constant. At a given time instantt, the relationship betweenεi andJi(t) can be

shown by comparing their variations across the model space (i.e., models corresponding

to all combinations of the parameters). This is given in Figure 2.13 at an instant shortly

after the initiation of the maneuver(t = 5.25sec) for the 140 models used in the numeri-

cal simulation, and the result clearly demonstrates the problem with the lack of one-to-one

correspondence between the output and the parameter spaces at this instant, where transient

dynamics are dominant. In Figure 2.14 however, the time history of the normalized parame-

ter error corresponding to the selected model at each instant during the estimation is shown,

where it is observed that the parameter error goes to zero. This can be attributed to the fact

that as the steady-state dynamics start to dominate, the cost functionsJi(t) corresponding

to models with large parameter errors grow much faster than those with small parameter

errors, yielding the desired estimation result. To the best of our knowledge, determination

of a cost function of the output errors that has a one-to-one correspondence in the parameter

space at every instant, is still an open question in this framework.

Remark 2.4.3 It is relevant here to note also that when the model space does not contain

the exact parameters of the plant, that is when there is no exact model match inthe parameter

space, a small offset is expected due to the unique shape of the selected cost function (2.20)

in the parameter space, which for this simulation is shown in Figure 2.13 (note here that

the cost function is plotted against increasing model indices) shortly after the initiation of

the maneuver. It is obvious from the figure that cost function is non-symmetric about its

minimum point at any given instant and in any given parameter space; this willbe proven

in detail later in Section 2.7.1 for a simpler problem. When the parameter space ofthe

candidate models is too coarse (i.e., when there is insufficient number of gridpoints) about

the minimum of the cost function, the estimation error can be significant. Inclusion of

sufficient number of grid points and/or redistribution (adaptation) of modelspace however,

can alleviate this problem to yield the closest parameter match.
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Figure 2.13: Variation of the cost functionsJi across the model space at an instant(t = 5.25sec)

shortly after the initiation of the maneuver and compared tothe normalized parameter errorεi for

the numerical example.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

t

pa
ra

m
et

er
 e

st
. e

rr
or

, ε
(t

)

Figure 2.14: Time history of the normalized parameter errorε(t) of the selected model during the

simulation.
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2.4 Vehicle parameter identification through multiple models & switching

2.4.2 Online identification of CG height and suspension system

parameters

In this subsection we present the multiple model switching algorithm to estimate CG height

h along with the linear suspension parametersk, c based on the roll-plane model (2.10).

Similarly, we assume that each unknown parameter belongs to a closed interval such that

h ∈ H , k ∈ K , and c ∈ C . These intervals are divided into a finite number of grid

points and they can be represented as{h1,h2,h3, . . . ,hp}⊂H , {k1,k2,k3, . . . ,kq}⊂K , and

{c1,c2,c3, . . . ,cr} ⊂ C with dimensionsp,q andr respectively. We then formn = p×q× r

different models corresponding to the cross combinations of the grid pointsin the param-

eter space. Utilizing (2.10) the equations of motion corresponding to each model can be

represented as

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



φ̇i
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Jxeq,i









ay, (2.23)

wherei = 1,2, . . . ,n denotes the model number. We assume that all models have zero initial

conditions such thatφi(0) = 0, andφ̇i(0) = 0, for i = 1,2, . . . ,n. Similar to what is shown

in Figure 2.15, every model is driven by the same inputay, which is measured.

According to (2.17) we again calculate identification errorsei , however this time the plant

and model outputs to compare are the roll angles, as follows

ei(t) = φ(t)−φi(t), i = 1,2, . . . ,n. (2.24)

Note that one can also include the roll rateφ̇ measurement, if available, in the output vector.

However, for the specific maneuver chosen for the numerical tests, the influence ofφ̇ on

the estimation results for the CG height was relatively insignificant as compared to the roll

angleφ measurements. Thus, the roll rate estimation error was omitted in the identification

error definition (2.24). This is also in accordance with our assumption of noadditional

sensors to the available ones.
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Figure 2.15: Multiple model system identification algorithm with roll plane models.

Now one can compute cost functions (2.20) corresponding to each identification error.

Switching among the models based on (2.21) yields the one with the minimum cumula-

tive identification error and the selectedk⋆,c⋆ andh⋆ represent the plant in the parameter

space described by a finite number of grid points in the intervalsK , C andH respectively.

Numerical analysis:

Here we present the CG height estimation results for the simulated measurementdata de-

scribed in the previous subsection. The model space consisted of 240 models in total. The

uniformly distributed parameter space were selected asK = [30000,40000] with intervals

of 2000,C = [4000,6000] with intervals of 500 corresponding to the parameter space for

suspension parameters, andH = [0.5,0.85] with intervals of 0.05 corresponding to the

range of possible CG heights. For this numerical example the free design parameters for

the cost function were set asα = 0.01 andβ = 1, while the forgetting factorλ was chosen

to be 0.

In Figure 2.16 sensor and the switched model outputs are compared whereas in Figure 2.17
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2.4 Vehicle parameter identification through multiple models & switching

the CG height estimation results are shown. Based on the results, we again observe that

the multiple model switching algorithm successfully estimated the CG height to be 0.7m,

precisely matching the reference vehicle data. Finally in Figure 2.18 the corresponding

estimations of the suspension parameters are presented. The linear torsional spring stiffness

k was estimated as 36000 exactly matching that of the reference vehicle model, while the

roll damping coefficientc was estimated to be 6000 with a 20% estimation error.

Comment: The 20% estimation error in the damping coefficient can be attributed to the

specific expression chosen for the model identification errorsei(t) given in (2.24), which

is based on the roll angle measurements alone. As apparent from the expression for roll

dynamics as described by (2.8), the damping coefficientc relates to the roll rate of the

vehicle. Since we do not consider the roll rate estimation error in (2.24), thisresults in

some expected estimation offset inc.
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Figure 2.16: Sensor and the selected model output comparison for the CG height estimation.
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Figure 2.17: CG height estimation with exact match.

Despite the estimation offset in the roll damping coefficient, the suggested algorithm was

successful in providing a fast and accurate estimation of the CG height, which is the main

concern in this discussion. Therefore, for all practical means, the method described here

is suitable for use in active automotive handling control systems, particularlyin rollover

mitigation control applications.

Remark 2.4.4 For the CG height estimation algorithm, the road bank angle (road superel-

evation) was not considered. When a measurement or an estimation of this parameter is

provided, (where there is vast number of literature on this topic), the analysis presented in

this section can be extended and applied without much modification.

Remark 2.4.5 In the numerical simulations presented in Sections 2.4.1 and 2.4.2, the

parameter setsCv,Ch,L ,K ,C ,H representing the uncertainty in the system were con-

structed such that the grid points include the unknown vehicle parameters ofthe reference

model. When the parameter sets do not contain the exact model parametrization, then the

method can only guarantee that the selected model outputs match the sensor measurements,

yet the selected model may not necessarily have the closest distance in the parameter space

to the plant. It is however possible to include a vast amount of grid points to resolve this
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Figure 2.18: Estimation of the suspension parametersk, andc.

issue, which may be computationally difficult to implement in automotive applications.

Alternatively, parameter adaptation rules or redistribution of the parameter space can be im-

plemented to provide the exact model match with a limited number of models. We describe

such an adaptive variation of the multiple model estimation method in Section 2.7.2 and

implement it to the parameter estimation problem described in the current section.

2.4.3 Estimation of CG position using recursive least squares

In order to compare the quality of estimations described in the preceding subsections thus

far, we now introduce a conventional method for estimating the CG position based on recur-

sive linear least squares method. Although there exist other, perhaps more suitable methods,
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2.4 Vehicle parameter identification through multiple models & switching

we chose this one as it is a convenient benchmark for our application, andit is easier to im-

plement than the alternatives. We first define the estimation method for a generic scalar

system given by

y(t) = ξ T(t)θ + ε(t), (2.25)

wherey(t) is the measurement corrupted by noise,ε(t) is the measurement error,θ =

[θ1,θ2, ...,θN]T is the unknown parameter vector, andξ = [ξ1,ξ2, ...,ξN]T is the known

regression vector. Using this system and denotingθ̂(t) as the estimation of the unknown

parameter vectorθ at timet, we can give the recursive least squares method as follows

κ(t) = P(t −1)ξ (t)[1+ξ (t)TP(t −1)ξ (t)]−1

P(t) = [I −κ(t)ξ (t)T ]P(t −1) (2.26)

θ̂(t) = θ̂(t −1)+κ(t)[y(t)−ξ (t)T θ̂(t −1)],

whereP(t) is error the covariance matrix, andκ(t) is the gain vector. Initial value for

the covariance matrix is selected asP(0) = α I , whereI is the identity matrix andα is a

large scalar constant. Notice that the estimationθ̂(t) is calculated based on the previous

estimationθ̂(t −1) and the current measurements only. For a detailed derivation of these

equations see [11].

We give the implementation of CG height estimation based on this method and making use

of (2.8). In this implementation we assumed availability of the measurements forφ ,φ̇ ,φ̈ as

well asay, where the simulated sensor signals are generated by the single track modelwith

roll degree of freedom given in (2.12). We first denote the measurement vector as follows

ameas
y = aycosφ +gsinφ . (2.27)

As our reference model (2.12) is linear in the states as a result of the small angles assump-

tion, for consistency, we can also express the measurement vectorameas
y using the same

assumption as follows

ameas
y = ay +gφ . (2.28)
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2.4 Vehicle parameter identification through multiple models & switching

Making use of (2.28) therefore, one can express the equation for rolldynamics (2.8) as

y(t) = ameas
y =

1
mh

[Jxeqφ̈ +cφ̇ +kφ ]. (2.29)

Notice here that there is a nonlinear coupling between the measurement variable y(t) and

the state variableṡφ andφ , which is likely to induce errors in estimations as the linearity

assumption of the least squares method does not hold. For this type of coupled estimation

problems more complicated instrumental-variable type methods can be employed [120].

For demonstration purposes however, we proceed with the recursive least squares method

to present the shortcomings of this method as compared to ours. Keeping these in mind, we

further denote the regression and the unknown parameter vectors respectively as follows

ξ =

[

φ̈ φ̇ φ

]T

, (2.30)

θ =

[

θ1 θ2 θ3

]T

, (2.31)

whereθ1 =
Jxeq

mh , θ2 = c
mh, andθ3 = k

mh. One can now use the recursive formulas (2.26)

to computeθ̂ that minimizes the square of the cumulative measurement error. Based on

the estimated parametersθ̂ , the CG height can then be calculated from the roots of the

polynomial below

mh2−mθ1h+Jxx = 0. (2.32)

As there are two roots of this polynomial, it is uncertain which one is closer to thereal

unknown parameter. In order to be conservative we always selected the larger root in the

computations; this choice is motivated by the fact that an underestimation of CG height can

cause an underestimation of the rollover threat. As the vehicle’s safety is more important

than its performance, a conservative estimation of the CG height can only cause loss of

vehicle’s performance in the context of rollover mitigation systems. We shall study these

concepts in detail later in Chapters 3 and 4.

The CG height estimation results using the recursive least squares algorithm, and employ-

ing the reference vehicle data introduced in the preceding section, is given in Figure 2.19
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2.4 Vehicle parameter identification through multiple models & switching

as compared to the multiple model based estimation. As it is apparent from the figure,

even though least squares method utilized a vast amount of sensory information (some of

which are unmeasurable using the standard vehicle sensor equipment), thecorresponding

estimation has an undesirable bias and its convergence rate is slower than themulti-model

based estimation. This clearly demonstrates the efficacy of our estimation technique over

the traditional least squares approach for this specific problem. Finally, we note that there

are more sophisticated, and perhaps more suitable, recursive estimation methods such as the

instrumental-variable predictors or the least squares algorithm with multiple resetting as de-

scribed in [131], both of which can be considered for the CG estimation problem described

in the current Chapter. Investigation and comparison of these methods shall be considered

as a future direction.

Comment: One of the advantages of the multiple model based estimation over the recursive

least squares method is due to the fact that the former limits the possible set of solutions

of the estimation problem by using a finite number of models and performs, basically, hy-

pothesis testing. This inherently eliminates infeasible solutions. Also, when using recursive

least squares method, it is possible to get numerical problems due to dynamicsthat are not

stimulated persistently, which result in degraded estimations with large transientoscilla-

tions. For examples of this see [118] Appendix A, where an analysis of robustness of the

standard least squares algorithm with respect to persistency of excitationis reported also.

In the context of automotive parameter estimation, Section 7.2 of [50] containsan example

representing the effects of non-persistent excitations.

Comment: The number of grid points required in the model space of the multiple model

estimator is a function of the type of excitation to the system; in this case the vehicle ma-

neuver. In general, if the sensor signals are persistently exciting one can expect better

performance in terms of speed and accuracy and may not need a large number of models.
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with off-line sensor measurements
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Figure 2.19: CG height estimation based on recursive least squares method as compared to the

multiple model switching approach.

2.5 Preliminary evaluation of the realtime CG posi-

tion estimation algorithm with off-line sensor mea-

surements

In this section we present the results of preliminary tests conducted with sensor measure-

ment data obtained from an industrial partner without disclosing the type andmake of the

test vehicle. The mass and inertia properties of the vehicle were specified as m= 3062kg,

Jzz= 4892kg/m2, andJxx = 1174kg/m2. The velocity and steering angle corresponding to

the measurement are shown in Figure 2.20. It is important to note here that nofeedback

control systems were active during the measurements.

For the estimation of the longitudinal CG position, the parameter space consisted180 mod-

els with the grid points selected as{1.3,1.4,1.425,1.45,1.475,1.5,1.525,1.55,1.6} ⊂ Lv,

{80000,100000,120000,140000}⊂Cv, and{120000,140000,160000,180000,200000}⊂

Ch. For this numerical example the free design parameters for the cost function were set as
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with off-line sensor measurements

α = 0.01 andβ = 0.99, while the forgetting factorλ was chosen to be 0 (we emphasize that

the choice ofλ = 0 is motivated due to the fact that the estimated parameters do not change

during the course of the estimation). Comparison of the measured lateral acceleration and

yaw rate of the vehicle to that of the multiple model algorithm is shown in Figure 2.21. Note

here that there is a noticeable bias in the yaw rate measurement. Corresponding unknown

parameter estimates oflv, Cv andCh are shown in Figure 2.22.
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Figure 2.20: Velocity and steering angle inputs.

The results of the estimation of CG height using multiple roll plane models using the mea-

surement data are shown in Figure 2.23 and Figure 2.24. In this estimation, themodel space

consisted of 275 models in total with parameter grid points set as{190000,195000,200000,

205000,210000} ⊂ K , {3000,4000,5000,6000,7000} ∈ C , and{0.55,0.6,0.65,0.675,

0.7,0.725,0.75, 0.775,0.8,0.825,0.85} ⊂ H . For this numerical example the free design

parameters for the cost function were set asα = 0.01 andβ = 0.99, while the forgetting fac-

tor λ was chosen to be 0. In this measurement data, the roll angle was obtained from spring

displacement sensors, which measure the vertical travel of the suspensions. Despite the

significant offset in roll angle measurement as noticeable from Figure 2.23, the estimation

results were successful.
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Figure 2.21: Comparison of the estimated and measured lateral acceleration and yaw rate.

Comment: It is important to note here that the specific problem at hand is about the estima-

tion of unknown vehicle parameters in real-time rather than the control of specific vehicle

states. Therefore, the abrupt switching between models and the corresponding “chattering"

behavior in the estimations during the transient phase of the maneuvers is acceptable.

2.6 Application example: load condition estimator

In this section we introduce a problem related to rollover prevention for implementing our

estimation technique. The problem originates from a particular robust rollover controller

design in an SUV class vehicle such that when the vehicle is empty excluding theweight

of driver, there is no risk of un-tripped rollover. In this case, a possible intervention of the
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Figure 2.22: Estimations of longitudinal CG position and the linear tirestifnesses.
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Figure 2.23: Roll angle measurement compared to the corresponding multiple model output.
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Figure 2.24: Estimations of CG height and the suspension parameters.

controller results in a loss of performance and must be avoided. In what follows, we give a

version of the multiple model & switching algorithm to estimate whether the load condition

of the vehicle is above the threshold weight. The threshold weight here is defined by the

total weight of the empty vehicle and the driver. For this problem we employedthe roll

plane model (2.10) and further assumed the availability of the set of the roll angle (φ ), and

the lateral acceleration (ay) sensors. We also assumed that we know the parameters of the

vehicle corresponding to the threshold loading condition.

For the multiple model switching algorithm we set the known massm, CG heighth, damp-

ing coefficientc, and roll moment of inertiaJxx corresponding to the threshold loading

condition to be the same in every model, where the models are parameterized with different

spring stiffnesses. We assumed that spring stiffness belongs to a closedinterval such that
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2.6 Application example: load condition estimator

k∈K , where the interval is divided inton grid points such that{k1,k2,k3, . . . ,kn} ⊂K . In

other words we haven different models corresponding to the differentk values. The equa-

tions of motion for the models with zero initial conditions can be expressed with (2.23).

While each model is driven by the same inputay, the corresponding identification errorsei

are calculated according to (2.24). Given this setup, one can compute cost functions (2.20)

corresponding to each identification error and switching among the models based on (2.21)

yields the one with the minimum cumulative identification error. The selectedk⋆ represents

the plant in the parameter space described by a finite number of grid points inK , and if it

is different than that of the vehicle with threshold load condition then we can conclude that

there is more load on the vehicle than the threshold value.

Numerical analysis:

In our simulations we chose the parameters given in Table 2.2 to represent the threshold

loading of the vehicle. We also used the same obstacle avoidance maneuver introduced in

the preceding section, at the speed of 108km/h and with a steering profile as shown in Figure

2.8. We tested 9 different loading scenarios as described in Table 2.3, where the first case

corresponds to the threshold loading condition. The model space consisted of 11 models in

total, where the uniformly distributed parameter space was chosen asK = [30000,40000]

with intervals of 1000. Based on the described algorithm, only the first casewas recognized

as the threshold loading condition, and the recognition took less then 1.5 seconds into the

maneuver in all the cases.

Based on the results, we conclude that this version of the multiple model & switching algo-

rithm can be used to rapidly recognize a specific loading condition of a vehicle, based on

the dynamics of the car alone, and utilizing only a small number of models.
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2.7 Analysis of the switching criteria & adaptation

Table 2.3: Loading scenarios

Case Weight [kg] CG height [m] Threshold Loading?

1 1300 0.70 yes

2 1350 0.70 no

3 1400 0.70 no

4 1450 0.70 no

5 1500 0.70 no

6 1300 0.75 no

7 1300 0.80 no

8 1300 0.85 no

9 1300 0.90 no

2.7 Analysis of the switching criteria & adaptation

In this section we give a brief analysis of the cost function (2.20) of the multiple model

switching algorithm described in the preceding section by utilizing a simple estimation

problem. The addition of a multiple estimator structure, in compliance with the MMST

framework, into a feedback control loop introduces the problem of switching stability. It

is therefore important that the criteria used for switching between the identification models

do not introduce unwanted instabilities to the controlled system. As we described in the

previous section, the switching is performed based on the minimization of a costfunction

of the identification errors. The output (i.e., identification) error is definedasei(t) = yplant−

(ymodel)i , whereyplant denotes the plant output while(ymodel)i is the corresponding output

of the ith identification model. In [78], motivated by quadratic optimal control techniques

Narendra and Balakrishnan rather intuitively suggested the following cost function as the
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switching criterion between the models;

Ji(t) = αe2
i (t)+β

∫ t

0
e2

i (τ)dτ, i = 1,2, ...,n (2.33)

whereα ≥ 0 andβ ≥ 0 are scalar design parameters controlling the weights on the transient

and steady state error dynamics, respectively. Note here that this cost function is in essence

the same as (2.20) without the forgetting factor; as we are interested in the estimation of

slowly varying and/or constant parameters we assumed the forgetting factor to be 0, thus

resulting in the cost function (2.33). In MMST framework this cost functionis computed

for each model and the one minimizing it is selected at every instant. In what follows we

present an analysis of this cost function candidate using a simple discrete timeplant. We

show analytically and numerically that this selection of the cost function may point to a

wrong model when the exact plant parameter is not in the set of candidate models. This

problem is related to the lack of one-to-one correspondence between theparameter space

of the models and the output identification errors, which implies that the model withthe

smallest parameter error may not necessarily have the smallest cost. This is mainly due to

the fact that the cost function (2.33) in any given parameter space is non-symmetric about its

minimum point, and in some cases it is even non-convex. As a remedy to this problem, we

suggest a simple adaptation algorithm, which modifies the distribution of models, yet uses

equation (2.33) to minimize the cost. The suggested adaptation method helps to achieve

better estimation accuracy while still using a small number of identification models.

2.7.1 An analysis of the MMST cost function

Here we introduce a simple estimation problem in conjunction with the multiple model

estimation algorithm and obtain an analytic expression for the cost function given with

(2.33). In order to simplify the analysis, we chose the following simple first order discrete

time system for the estimation problem

x(k+1) = bx(k), (2.34)
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wherek is the discrete time instant, andb represents an unknown positive scalar constant

in the unit circle such that the plant is stable. We want to findb using the multiple model

estimation approach and utilizing a finite number of models. Also we are interestedin the

behavior of the estimation algorithm when the parameter set of the identification models

does not contain the exact plant parameter. Ideally, we expect the algorithm to choose the

closest parameter from the set to that of the plant. We assume that we have afinite number

of identification models of the form below

x̂i(k+1) = ai x̂(k), ai ∈ {a1, . . . ,aN}. (2.35)

Note here that we assumed no modelling error for the sake of simplicity. Also, without

loss of generality, we further assume that 0< a1 < a2 < .. . < aN. We can express the

identification error corresponding to each model as follows

ei(k) = x(k)− x̂i(k), f or i ∈ {1, . . . ,N}. (2.36)

Also, since we assumed a discrete time system, we can express the discrete time analog of

the cost function (2.33), which is given below

Ji(k) = αe2
i (k)+β

k

∑
τ=0

e2
i (τ)△t, f or i ∈ {1, . . . ,N}, (2.37)

where△t is the discrete time step (which can be fixed or variable) andα ,β ≥ 0 are non-

negative scalars. Now we have the following theorem that gives the main result of this

subsection.

Theorem 2.7.1 Suppose that the discrete time system (2.34) and N identification models

described in (2.35) are given such that they all have identical initial conditions x0. Also

assume that b6= ai for all i ∈ {1, . . . ,N}, and that0 < a1 < a2 < .. . < aN. Further, we

denoteξ as the index for which (2.37) is minimum at the time instant k, i.e.,

ξ = arg min
i=1,...,N

Ji(k). (2.38)

Then the cost function (2.37) has the following properties:
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(a) For each k, (2.37) is a monotonically decreasing function in[a1,aξ ], and a monotonically

increasing function in[aξ ,aN].

(b) For each k, (2.37) is non-symmetric about its minimum point Jξ (k), and thus there is no

one-to-one correspondence between the parameter error and the identification error.

(c) For some fixed k, (2.37) is non-convex on the interval[a1,aN].

Proof of Theorem 2.7.1:For identical initial conditionsx0 for the plant andN identification

models, we can express the corresponding plant and model trajectories as follows

x(k) = bkx0, and x̂i(k) = ak
i x0 f or i ∈ {1, . . . ,N}. (2.39)

Utilizing these relations the cost function (2.37) can be expressed as below

J(k,ai) = α(bk−ak
i )

2x2
0 +β

k

∑
τ=0

(bτ −aτ
i )

2x2
0△t, (2.40)

for eachi ∈ {1, . . . ,N}. Arranging and factoring the like-terms in the equation yields

J(k,ai) = x2
0△t[β (b−ai)

2 +β (b2−a2
i )

2 + . . .+β (bk−1−ak−1
i )2 +(β +

α
△t

)(bk−ak
i )

2]

We can further arrange this expression by noting that

(b−ai)
2 = (b−ai)

2,

(b2−a2
i )

2 = (b−ai)
2(b+ai)

2,

(b3−a3
i )

2 = (b−ai)
2(b2 +bai +b2)2,

...

(bk−ak
i )

2 = (b−ai)
2(bk−1 +bk−2ai + . . .+bak−2

i +ak−1
i )2.

and substituting these relations back in the last expression results in the following function

J(k,ai) = x2
0△t(b−ai)

2[β +β (b+ai)
2 +β (b2 +bai +a2

i )
2 + . . .

+ β (bk−2 +bk−3ai + . . .+bak−3
i +ak−2

i )2 (2.41)

+ (β +
α
△t

)(bk−1 +bk−2ai + . . .+bak−2
i +ak−1

i )2],
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wherei ∈ {1, . . . ,N}. Based on equation (2.41) we can draw some conclusions about this

cost function. But before we do so, we give the following definition of monotonic functions

that is useful in proving the property(a).

Definition 2.7.1 [101] Let f(·) be a real valued function on the interval[ y,y ]. Then f(·)

is said to be monotonically increasing on[ y,y ] if y < y1 < y2 < y implies f(y1)≤ f (y2). If

instead it implies f(y1)≥ f (y2), then f(·) is said to be a monotonically decreasing function.

Now for a givenk discrete time instant, there existξ ∈ {1, . . . ,N} satisfying (2.38) such

that J(k,aξ ) < J(k,ai) for all i 6= ξ , that isJ(k,aξ ) = min{J(k,a1), . . . ,J(k,aN)}. Recall

the assumption thata1 < .. . < aN are an ordered set of scalars all of which have the same

(positive) sign as the plant parameterb. Then based on equation (2.41) and the definition

of monotonicity given above, it is straightforward to show thatJ(k,ai) is a monotonically

increasing function for varyingai within the interval[aξ ,aN]; this follows from the fact that

for a given pairay1 < ay2 with ay1,ay2 ∈ [aξ ,aN] results inJ(k,ay1) < J(k,ay2) in this interval.

However, based on the expression (2.41) for the cost function, it is not straightforward to

show thatJ(k,ai) is monotonically decreasing for eachai ∈ [aξ ,aξ+1, . . . ,aN]. In order to

do so we will express the cost function as a continuous function in the parameter space. We

denoteη as the independent variable of the function such thatη ∈ [a1,aN], and based on

(2.40) the cost function can be expressed as

J(k,η) = α(bk−ηk)2x2
0 +β

k

∑
τ=0

(bτ −ητ)2x2
0△t. (2.42)

Note that at a given discrete time stepk, the global minimum of this non-negative function is

at η = b, with J(k,b) = 0. It is sufficient to show thatJ(k,η) decreases for allη ∈ [a1,aξ ].

To do so, we look at the first derivative ofJ(k,η) with respect toη , which is

dJ(k,η)

dη
= −2αx2

0k(bk−ηk)ηk−1−2βx2
0△t

k

∑
τ=0

(bτ −ητ)ηk−1. (2.43)

Obviously, for eachη < b, the above expression is negative, which implies that for a given

pair ay3 < ay4 with ay3,ay4 ∈ [a1,aξ ] results inJ(k,ay3) > J(k,ay4) in this interval, which
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concludes the proof of the property(a). We note that (2.43) can also be used to show

increasing monotonicity ofJ(k,η) for all η ∈ [aξ ,aN], which is in agreement with the result

based on (2.41).

Another obvious conclusion based on (2.41) is that this function is not symmetric in the

parameter space for changingai . In order to understand this, we consider three adjacent and

equidistant nodes with a separation distanced in the parameter space, which is depicted

schematically in Figure 2.25. We denote these adjacent nodes asaξ−1,aξ ,aξ+1 such that

Figure 2.25: Three equidistant nodes in the parameter space.

aξ−1,aξ ,aξ+1 ∈ {a1, . . . ,aN}. We assume without loss of generality that these parameters

all have the same sign asb. Further suppose that the cost function is minimum for the center

nodeaξ at a particular discrete time instantk, i.e.,

J(k,aξ ) < J(k,ai), i = 1,2, ...,N, i 6= ξ (2.44)

At this instant one would expect to find the two neighboring, equidistant nodesaξ−1 and

aξ+1 to have the same cost values. However if we look at the equation (2.41) moreclosely,

we observe that while the first term is the same for both neighboring nodes i.e., (b−

aξ−1)
2 = (b− aξ+1)

2 = d2, the term in the square brackets is smaller for the nodeaξ−1

(remember the assumption that 0< aξ−1 < aξ+1). We conclude that the cost functions

Jξ−1(k) andJξ+1(k) for the two respective equidistant neighboring nodesaξ−1 andaξ+1

have the property that

J(k,aξ−1) < J(k,aξ+1). (2.45)
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Having proved the property(b), this result clearly indicates that even for the simple discrete

system (2.34), there is no one-to-one correspondence between the parameter error and the

identification error based on the cost function (2.37).

A final observation based on (2.41) is is related to convexity. In order for a real valued

function f (·) to be convex, which is defined over a convex subsetC of a linear vector space,

it needs satisfy

f (γy1 +(1− γ)y2) 6 γ f (y1)+(1− γ) f (y2) (2.46)

for all y1,y2 ∈ C and all γ, where 0< γ < 1. However, it is not straightforward to do

this check on the cost function given with (2.41). Instead, one can alternatively check a

necessary condition for convexity, which requires that there should beno inflection points

to have strict convexity, that isd
2 f (y)
dy2 > 0 for all y∈C. To test this we observe from (2.41)

that for k=2 the cost function is

J(2,ai) = x2
0△t[β (b−ai)

2 +(β +
α
△t

)(b2−a2
i )

2]. (2.47)

Taking the second derivative ofJ(2,ai) with respect toai then yields

J2(2,ai)

da2
i

= −2x2
0△t[−β +2(β +

α
△t

)(b2−a2
i )−4(β +

α
△t

)a2
i ]. (2.48)

It is possible choose a set of numbersai ,b andα ,β ,△t to make the last equation negative,

which would make the cost function a non-convex function for the time instantk = 2. Thus

for somek, J(k,ai) can be non-convex, which proves the property(c).

Q.E.D.

The result of the Theorem 2.7.1 can be verified numerically as well. Variationof the cost

function in the parameter space is not symmetric as shown in Figure 2.26 for a numerical

example. This curve shows the variation of the cost function given in equation (2.37) with

respect to models distributed evenly at 0.05 intervals within [-1,1]. The plant dynamics are

governed by the equationxp(k+1) = 0.5251xp(k). As claimed the shape of the function is
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Figure 2.26: Cost function variation in parameter space.

not symmetric, and due to this reason if one is not careful about choosingthe location of the

models, the algorithm may end up choosing a model that is not the closest in the parameter

space. This problem is depicted in Figure 2.26 by the two vertical dashed lines, which

represent two hypothetical models with the same cost function values. As can be easily

seen from the figure, if there are no models in between these two, the algorithm may end

up choosing the wrong model. In order to prevent this one needs to have adense number

of models, which may come with a computational overhead for complex estimation and

control problems.

Comment: A final observation based on the equation (2.37) is that whenb /∈ {a1, . . . ,aN},

the interval containing the unknown parameterb in the parameter space is ambiguous. Theo-

rem 2.7.1 verifies that the minimum cost function may not always point to the closest model

in the parameter space, which necessitates the analysis of the variation of thecost function

in the neighborhood of the selected minimum pointJ(k,ξ ). This problem is illustrated in

Figure 2.27, whereb can be contained in either of the intervals[aξ−1,aξ ] and[aξ ,aξ+1]. In

Section 2.7.2 we will address this problem with an adaptive estimation algorithm that does

not require a dense multiple model structure.
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Figure 2.27: Ambiguity in the interval containing the minimum point.

Remark 2.7.1 (Comments on extension to finite dimensional systems) The results we

obtained so far are based on a scalar discrete time system, and the implications of these

results for higher dimensional dynamical systems is unclear. While it is, at present, difficult

to directly generalize these analytical results to generic finite dimensional systems, under

certain conditions this can be achieved. In analogy to Theorem 2.7.1, it is possible to extend

the conclusions for the MMST cost function

Ji(k) = α ||ei(k)||+β
k

∑
τ=0

||ei(τ)||△t, f or i ∈ {1, . . . ,N}, (2.49)

to certain classes of finite dimensional discrete time systems. The following comment gives

a trivial extension to a class of finite dimensional systems, which follows directly from

Theorem 2.7.1.

Comment: Suppose that a discrete-time linear system inR
m with a diagonal system matrix

is given as below

x(k+1) = Bx(k) with B= diag(b1,b2, . . . ,bm), (2.50)

wherediag(b1,b2, . . . ,bm) denotes the matrix inRm×m with scalarsb1,b2, . . . ,bm as the

diagonal elements. Suppose further that we haveN identification models that are given as

x̂(k+1) = Ai x̂(k) with Ai = diag(ai ,b2, . . . ,bm), (2.51)
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wherei ∈ {1,2, . . . ,N}. We assume that the plant (2.50) and the identification models (2.51)

have identical initial conditionsx0 ∈ R
m.

We are interested in estimatingb1 with the N candidate models. We assume thatb1 6= ai for

all i ∈ {1, . . . ,N}, and also that 0< a1 < a2 < .. . < aN. Further, we denoteξ as the index

for which the cost function (2.49) is minimum at the time instantk, i.e.,

ξ = arg min
i=1,...,N

Ji(k).

Then the cost function (2.49) with the identification errorei(k) = [x(k)− x̂(k)] for i ∈

{1, . . . ,N}, has the following properties:

(a) For eachk, (2.49) is a monotonically decreasing function in[a1,aξ ], and a monotonically

increasing function in[aξ ,aN].

(b) For eachk, (2.49) is non-symmetric about its minimum pointJξ (k), and thus there is no

one-to-one correspondence between the parameter error and the identification error.

(c) For somek, (2.49) is non-convex in the parameter space[a1,a2 . . . ,aN].

The proof of properties(a), (b), and (c) directly follow from Theorem 2.7.1. The last

comment achieves a trivial extension for the conclusions about the MMST cost function to

finite dimensional systems with a diagonal system matrix and with uncertainty in the first

element. It is trivial to show that the results also extend to the case when thereis uncertainty

in multiple elements of the diagonal system matrixB given in (2.50). In this case, it can

be shown based on the last comment that the cost function (2.49) becomes amulti-variable

function of, at most,m uncertain parameters, i.e.,J(k,ai ,bi , . . . ,mi), and that this function

can be written as a summation ofmdecoupled functions

J(k,ai ,bi , . . . ,mi) = J1(k,ai)+J1(k,ai)+ . . .+JN(k,mi) (2.52)

where each of the decoupled functionsJ1(k,ai),J1(k,ai), . . . ,JN(k,mi) are of the form (2.40),

and each are non-convex and non-symmetric in their respective bounded parameter spaces

{a1, . . . ,aN},{b1, . . . ,bN}, . . . ,{m1, . . . ,mN}.
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Comment: While it is difficult to analyze the properties of the cost function (2.49) for

generic finite dimensional systems analytically, a similar conclusion obtained in Theorem

2.7.1 can be conjectured numerically for such systems. Here we give a simpleexample of

this, where we estimate 2 unknown parametersa,b of a second order plant with a com-

panion system matrix, in conjunction with the multiple model switching framework. We

emphasize that the choice of second order companion systems in this numerical example is

motivated by the ease of exposition. Suppose that the plant and the identification models

with companion systems matrices are specified as follows

x(k+1) =









0 1

a b









x(k), x̂(k+1) =









0 1

ai bi









x̂(k),

The parameter space of the identification models are chosen such thatai ∈ {−1,−0.95, . . . ,

0.95,1} andbi ∈ {−1,−0.95, . . . ,0.95,1}. We want to estimate the scalarsa,b using the

measurements of the statex(k) alone, and based on the MMST approach. For this example

we assume the initial conditions for the plant and the identification models to bexT
0 = [5 20].

The variation of the cost function (2.49) in the parameter space is shown in Figure 2.28

as a 3D surface at a randomly selected time instant oft = 1 second, where the reference

plant parameters were selected to bea = 0.9 andb = −0.2. In the figure, the vertical axis

represents the value of the cost function corresponding to all possible combinations of the

grid points of the parameter space in the horizontal plane (the plot on the right is the top

view). As observed from the figure, the cost function is monotonic aboutits minimum

point J(1,0.9,−0.2). Furthermore, a further observation is that for any given fixed values

of bi ∈ [−1,1] the cost function is not symmetric in the parameter spaceai ∈ [−1,1], and

for any given fixed values ofai ∈ [−1,1] the cost function is not symmetric in the parameter

spacebi ∈ [−1,1].

In Figure 2.29, the result of the numerical simulation for a different reference plant with

parametersa = −0.5, b = 0.1 is shown. Again, based on the plots we can draw the same

conclusion as above regarding the MMST cost function.
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Figure 2.28: Cost function variation in parameter space for a second order estimation problem with

plant parametersa = 0.9, b = −0.2.

The above numerical examples support the claim that the shape of the costfunction is not

symmetric for higher dimensional systems also, which necessitates a carefulselection and

structuring of the model space for any given multiple model switched estimation problem

based on fixed models. We emphasize that a rigorous theoretical analysis of the properties

of the MMST cost function for finite dimensional systems will be part of the future work

based on this section.

The analysis given in this subsection using a simple discrete time system (2.34) inconjunc-

tion with the cost function (2.37) reveals the two undesirable characteristicsof the function,

which are the lack of one-to-one correspondence between the output and parameter spaces,

and the non-convexity. Also, we have showed hypothetically that when theidentification

models do not contain the exact plant parametrization, there is an ambiguity in theminimum

point of the cost function, as it can be contained in the either side of the current selected

minimum point. Finally, we gave an extension of these conclusions for a class of finite di-

mensional discrete-time dynamical systems with a diagonal structure. In whatfollows, we
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Figure 2.29: Cost function variation in parameter space for a second order estimation problem with

plant parametersa = −0.5, b = 0.1.

describe a model space adaptation method that can alleviate the problems described thus far

without using a dense number of models, and still utilizing (2.33) as the cost function.

2.7.2 An adaptive model distribution algorithm

In this subsection we introduce a model distribution scheme to improve the accuracy of es-

timation in conjunction with the multiple model estimation algorithm, with a sparse number

of models and making use of the cost function (2.33). As mentioned before,it is difficult to

find a general form of a cost function that would provide a one-to-onecorrespondence be-

tween parameter error and identification error spaces. However, the modification suggested

here makes use of (2.33) and refines the distribution of the models within the interval that

is likely to contain the minimum point of the function.

In order to explain how the modified algorithm works, we refer to the Figure 2.30. The

multiple model estimation algorithm is initiated with a small number of grid points, and
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Figure 2.30: Model re-distribution algorithm.

based on (2.33) the minimum is selected, which as explained in the preceding section, is

not guaranteed to give the smallest parameter estimation error. As a remedy,we suggest a

re-distribution of the models in the parameter space over the immediate neighborhood of the

selected minimum model after a finite time horizon. After the new parameterizations and

the corresponding models are defined, we run the estimation algorithm again on the same

data. Assuming thatai is selected as the model minimizing the cost function after a finite

time horizon, bothai−1 andai+1 needs to be included in the redistributed model space due to

the ambiguity in the interval containing the minimum, explained earlier. In the hypothetical

example depicted in Figure 2.30, 4th model minimizes the cost function although the real

parameter is closer to the 5th model. Therefore, it is possible to capture the minimum point

in this example by redistributing the models between parameter grid pointsa3 anda5 of

the original parameter space, by the suggested algorithm. It is noted here again that it is a

design choice between accuracy and numerical complexity to decide how many models to

have in the initial models space and how many to include in the redistribution.

Next we give numerical example of how the algorithm works. It is the same multiple model
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estimation problem we described earlier, i.e., where the plant dynamics are governed with

xp(k+1) = 0.5251xp(k). (2.53)

Estimation models are of the same form of (2.53) with the models located at 0.05 intervals

within [−1,1] with a total of 41 models. Estimation results based on the standard multiple

model estimation scheme is shown in Figure 2.31, where it can be observed that although

the closest model is at 0.55 in the parameter space, the algorithm converged to 0.5.
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Figure 2.31: Standard multiple model estimation results with fixed modelspace.

When we implemented the described adaptive estimation algorithm with a single step re-

finement (i.e., models redistributed once), we obtained the result shown in Figure 2.32.

Initial parameter space consisted of a very coarse grid with 0.25 intervals between[−1,1],

resulting in a total 9 identification models. In the redistribution step we used 20 models and

repeated the standard multiple model estimation algorithm on the same data. In total we

employed 29 models after a single iteration of the model space, and as observed from the

Figure 2.32 we obtained the parameter estimation result ofa = 0.525. In the same figure

we also show the variation of the cost functionJ(ai) in the parameter space before and after

the model redistribution step , where the effect of iteration is clearly seen. Numerical sim-

ulation results show the efficacy of the suggested adapted algorithm, which achieves better
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accuracy using a smaller number of models as compared to the multiple model estimation

with fixed models. Even better accuracy can be obtained with more redistributions (i.e.,

more iterations) and/or including more number of models in the iteration steps.
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Figure 2.32: Multiple model estimation results with an adaptive model distribution.

In this subsection we introduced an adaptation scheme in order to improve the estimation

accuracy of the standard multiple model estimation algorithm with fixed models, without

increasing its numerical complexity. The suggested adaptive model distribution algorithm

employs the same cost function as the original scheme, yet it iterates on the distribution of

the models in the parameter space. Our numerical results with the adaptive algorithm show

that one can obtain more accurate estimations using less number of models as compared

to the standard multiple model estimation with only fixed models, achieving the goal set
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forth at the start of the subsection. The only drawback of this simple adaptive estimation

scheme is the fact that the iterative distribution of models can not be done in real time, and

the algorithm has to run on stored data. Therefore this adaptive scheme is more suitable for

applications, where the need for accuracy in estimation is more important than the real time

performance. Next we look into the extension of the adaptive model distribution algorithm

for the estimation of switching system parameters.

2.7.3 Adaptive multiple model estimation of switching unknown

parameters

In Section 2.7.1 we made an analysis of the cost function of the multiple model switch-

ing algorithm and showed that the identification models need to distributed carefully in the

parameter space as the cost function (2.33) can lead to a wrong model selection. We em-

phasize that this problem is related to the lack of one-to-one correspondence between the

parameter space of the models and the output identification errors, which is avery impor-

tant observation. Consequently the closest model in the parameter space may not always be

chosen due to the non-convex or non-symmetric properties of the cost function. As a rem-

edy we suggested an adaptive algorithm in the preceding subsection, which addresses this

problem by iterating on the distribution of models, while still choosing the best model based

on the minimization of the cost function (2.33). In this subsection we look at an extension

of this adaptive algorithm for estimating switching and unknown parameters ofdynamical

systems.

In the literature, an analysis of the estimation of rapidly switching parameters in conjunction

with the multiple model switching framework was made in a recent paper by Narendra et al.

[80] as well as in the PhD thesis by Feiler [32]. In this recent thesis the algorithm was named

as self-organization method. It was suggested in these publications that, a set of candidate

models with arbitrary locations in the parameter space are adapted simultaneously based
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on a time varying gain (that is a function of identification errors of each model)and with

respect to the plant operating point in existence. The convergence logicthey employed for

parameter adaptation resembles to that of winner-takes-all methods. They assumed for the

effective operation of the self-organization algorithm that the set of all operating points to

be in existence (and in some cases periodic) in a finite time interval such that allcandidate

models converge to the set of operating points. Furthermore, the number ofswitches in

the system parameters were assumed to be precisely known. In order to relax some of

the restrictions of the self-organization method, we describe an alternativeapproach in the

sequel for the estimation of rapidly switching system parameters, which is based on the

adaptive model distribution method developed in the preceding subsection. We first start

with the formal statement of the problem.

Problem Definition

Let the parameter vectorθ(t) of a dynamical system to be switching randomly (not nec-

essarily slowly) between a set of operating points denoted byS = {θ1,θ2, ...,θN}, where

θ j , j ∈ {1,2, ...,N} are unknown. This is depicted hypothetically in Figure 2.33. Also, the

instants of switching is assumed to be unknown. Furthermore, the total numberof possible

operating pointsN is assumed known, but this requirement can be relaxed. We would like to

have minimum number of candidate models in conjunction with the multiple model estima-

tion framework, to estimate the unknown operating pointsθ j , j ∈ {1,2, ...,N} quickly and

with sufficient accuracy, where the dynamical system is subject to changes in the operating

conditions.

In order to motivate the need to study this problem, we can give real-life examples where

such problems arise naturally. In general, any engineering system that operates in a multi-

tude of environments such as cars and airplanes have suitable applicationsin the scope of

this problem. A good application example to such a problem is the adaptive cruise control

in cars, where sudden gear shifts of the car can be represented as a new operating condition
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Figure 2.33: Switching operating conditions (or parameters) of the plant.

θ . The speed controller needs to incorporate the engaged gear informationfor high per-

formance, i.e. for tracking the desired speed smoothly, quickly and with minimumerror.

Another automotive related problem is the shifting of loads in large road vehicles such as

trucks or vans, which can happen as result of inertial forces acting onthe vehicle during high

speed cornering maneuvers. Naturally, active safety control systems should take the change

in CG position into account, as this change may affect the vehicle response significantly.

Next we describe our adaptive estimation method.

Adaptive Estimation Algorithm

The adaptive estimation method given here is an extension of the adaptive model distribution

method given in Section 2.7.2. The algorithm uses the same model distribution scheme,

however the adaptation is restarted every time a (detectable) change in the dynamics, or

the operating condition occurs. Information on the change of the operatingcondition can

be explicitly available, as in the case of the adaptive cruise control problem,where the

information of gear position is known at all times. However, in general, if such information

is not explicitly available it needs to be inferred. For the sake of simplicity, we assume that

the instant of change in the plant parameters is known.

In order to explain how the algorithm works, we refer to figure 2.34, whichdepicts a hypo-
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2.7 Analysis of the switching criteria & adaptation

Figure 2.34: Switching parameters and candidate models.

thetical plant operating on the parameter spaceSand switches between two operating points

represented with the two parameterizationsθ1 andθ2. The parameterizationsp1, p2, ..., p6

correspond to the 6 different candidate models for use in conjunction with the adaptive

model distribution algorithm. Suppose that the plant operates at the point denoted withθ1

initially. In order to get an estimate of this parameter we can use the model distribution al-

gorithm described in Section 2.7.2. As shown in Figure 2.35 the algorithm will choose the

neighborhood ofp1 as the place where the parameter is most likely to be present. Accord-

ingly new models will be placed around the close vicinity ofp1 and the model minimizing

the cost function will be selected. This adaptation step can be repeated multipletimes to get

a very good estimateθ ∗
1 of the unknown parameterθ1. So far the problem was the estimation

of the unknown plant parameterθ1. Now suppose that there happens to be a switch in the

plant parameters toθ2 as depicted on the right-hand side of Figure 2.35. When the switch

is detected, the identification models are re-initialized with the parameter setsp1, p2, ..., p6.

Consequently the same model distribution algorithm is employed to estimate the unknown

parameterθ2, which will distribute the new models aroundp6 until the desired accuracy is

achieved and a suitable modelθ ∗
2 is selected. We emphasize that the algorithm does not

explicitly make use the information on the number of switches (i.e., parameterizations) and

it can easily be generalized to plants with high number of switches; this can be accommo-
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Figure 2.35: Schematic representation of the adaptive estimation method.

dated by changing the initial candidate model space. In what follows, we implement this

algorithm to a simple estimation problem and give the corresponding numerical results.
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Numerical Analysis

For the sake of exposition we consider the following simple discrete time system as the

plant model

x(k+1) = θ(k)x(k), θ(k) ∈ {θ1,θ2} (2.54)

whereθ1, andθ2 represent distinct unknown scalar constants in the unit circle such that

the plant dynamics corresponding to either parameter is stable. Furthermorethe parameter

θ(k) is assumed to switch at an unknown instant during the evolution of the dynamicsof

the plant (2.54). We want to estimate the parametersθ1 andθ2 with sufficient accuracy, and

using only a small number of models. We assume that the distinct identification models are

of the following form

x̂i(k+1) = pi x̂(k), (2.55)

which are parameterized atN grid points in the parameter space wherei = 1,2, ...,N. Notice

here that we assumed neither modelling errors nor process noise. Further assuming identi-

cal initial conditionsx0 for the plant and all the identification models, we can express the

corresponding trajectory of the plant and the identification models as follows

x(k) = θ k(k)x0, (2.56)

x̂i(k) = pk
i x0, (2.57)

wherei = 1,2, ...,N are the model indices. Also, the discrete time version of the cost func-

tion (2.33) that is to be used for this problem and is given as

Ji(k) = αe2
i (k)+β

k

∑
τ=0

e2
i (τ)△t, (2.58)

where△t is the discrete time step (which can be fixed or variable).

For the numerical simulations we used the following plant parameters and the switching

instant

θ ∈ [0.9251,0.2615], tswitch= 2.2 sec..
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Also, the initial candidate models were chosen to be symmetrically distributed between

[−1,1] with 0.1 intervals. i.e.,

pi = −1+0.1∗ (i−1), i = 1,2, ...,21 (2.59)

with a total of 21 models. Further, the initial conditions for the plant (2.54), and all of the

models (2.55) were chosen to bex0 = 10. The parameter switching sequence and corre-

sponding plant trajectory fort ∈ [0,5] is shown in figure 2.36.
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Figure 2.36: Plant trajectory for the example.

For the redistribution of the models we chose to insert 40 equidistant models in asingle

iteration step around the neighborhood of the selected initial candidate modelfor each de-

tected operating point. Notice that processing the same data and applying further adaptation

steps, a better accuracy can be achieved. Also note that in the statement ofthe problem we
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assumed no explicit knowledge of the the switching instant, which necessitatesa separate

estimation of the switching in the dynamics. For this simple problem, an ad hoc solution

to detect the switching position was achieved by looking at the left-hand and right-hand

derivatives of the trajectory at each instant; the point where there is a drastic gradient was

classified as a switching point. In other words, the check for the switching of the piecewise

continuous trajectoryx(t) was made using the following binary criterion

switch=



















Yes , if |ẋ+(k)− ẋ−(k)| > κT ,

No , if |ẋ+(k)− ẋ−(k)| ≤ κT

, (2.60)

whereẋ+(k) andẋ−(k) are the left hand and right hand derivatives atkth instant. Also,κT

is a positive scalar, which defines the maximum difference allowed between the left and

right hand derivatives of the plant trajectoryx(k). Note that since this is a discrete time

plant κT is nonzero, whereas for a continuous time version of this problem the switching

criterion would be the same as (2.60) but withκT = 0 imposing identical left and right hand

derivatives for no switching. For our simulations we set theκT = 5 as the threshold slope

difference. Next we present our estimation results for this problem.

The suggested algorithm used 21 initial candidate models, both before and after the switch-

ing instant. Once the algorithm is started, 40 models were used at each of the two adaptation

steps. Therefore, a total 122 models were employed for the overall algorithm, and its ac-

curacy is equivalent to 401 fixed models distributed evenly between[−1,1]. The algorithm

successfully estimatedθ to be switching between the following two parameters

θ ∗ ∈ [0.925,0.26].

Estimated plant parameters are shown in Figure 2.37 before (left hand side) and after (right

hand side) the switching, where the dashed lines correspond to the roughestimates by the

initial candidate models, while the solid lines were obtained by adaptation based on the

model distribution technique.

In Figure 2.38 the plant and the selected model trajectories obtained during the estimation
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Figure 2.37: Estimated plant parameters.

are presented, both before (left hand side) and after (right hand side) the switching. The
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Figure 2.38: Comparison of the plant trajectory with respect to the selected candidate models.

corresponding variation of the cost functions in the parameter space, before and after the

switch is shown in Figure 2.39, where the dashed line corresponds to the initial candidate

models and the solid line represents variation after the distribution of models around the

selected minimum candidate model. Insets are provided to show the effectiveness and detail
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Figure 2.39: Variation of the cost function in the parameter space beforeand after the switching.

obtained as a result of the adaptation algorithm for this specific problem.

2.7.4 Adaptive multiple model estimation of CG position

In this subsection we present the implementation of the adaptive multiple model estimation

method described in Section 2.7.2 to the problem of CG height estimation. In doingso,

the main goal of this exercise is to reduce the model space used for the estimation with the

multiple model framework, and obtain comparable estimation accuracy to that of Section

2.4.2, where we used a dense number of grid points to get a good estimation ofthe CG

height. Note here that we are concerned with the estimation of the unknown parameters

related to the roll dynamics of a vehicle, which are assumed to stay constant ina short

time horizon (as opposed to the preceding subsection where the parameterscould switch

instantaneously).
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The multiple model switching algorithm described here is the same as in Section 2.4.2

for the most part, except for a single adaptation step of the model space. The algorithm

estimates the CG heighth along with the linear suspension parametersk, andc based on

the roll-plane model (2.10). We assume that each unknown parameter belongs to a closed

interval such thath ∈ H , k ∈ K , andc ∈ C , which are divided into a small number of

initial candidate grid points such that{h1,h2,h3, . . . ,hp}⊂H , {k1,k2,k3, . . . ,kq}⊂K , and

{c1,c2,c3, . . . ,cr} ⊂ C with dimensionsp,q andr respectively. We then formn = p×q× r

different models corresponding to the cross combinations of the grid pointsin the parameter

space. The equations of motion corresponding to each of then models (with zero initial

conditions) can be represented with (2.23). Also as shown in Figure 2.15,every model is

driven by the same inputay, which is measured. According to (2.24) identification errorsei

are calculated for each model and then corresponding cost functions (2.20) are computed.

Switching among the models based on (2.21) yields the one with the minimum cumulative

identification error, and the selectedki∗ ,c j∗ andhl∗ represent the plant in the parameter space

described by a finite number of grid points inK , C andH respectively. Note here that the

indicesi∗, j∗, l∗ satisfyi∗ ∈ {1,2, ..., p}, j∗ ∈ {1,2, ...,q} andl∗ ∈ {1,2, ..., r}.

Adaptation is achieved by re-distributing models in the immediate neighborhood ofthe

selected initial grid pointski∗ ,c j∗ and hl∗ as a result of the initial iteration. That is, for

the adaptation step, the grid points are chosen such that{hl∗−1, ...,hl∗ , ...,hl∗+1} ⊂ H ∗,

{ki∗−1, ...,ki∗ , ...,ki∗+1} ⊂ K ∗, and{c j∗−1, ...,c j∗ , ...,c j∗+1} ⊂ C ∗ with dimensionsp∗,q∗

andr∗ respectively. Then the same multiple model estimation procedure described above

is repeated forn∗ = p∗×q∗× r∗ number of models, and switching among these based on

(2.21) yields a new estimate that minimizes the cost function (2.20). The corresponding

parameters of the selected model, that isk⋆,c⋆ andh⋆ represent the plant in the parameter

space described byK ∗, C ∗ andH ∗ respectively. Note that, the total number of models

utilized after a single adaptation step isn+n∗. Next we present the results of a numerical

implementation of this adaptive estimation method.

96



2.7 Analysis of the switching criteria & adaptation

Numerical Analysis

Here we present the CG height estimation results for the simulated measurementdata de-

scribed in Subsection 2.4.1. The initial candidate model space consisted of 24 models,

where grid points belong to the sets{32000,36500,38000} ⊂ K , {4500,5500} ⊂ C , and

{0.56,0.64, 0.72,0.8} ⊂ H . Note that the exact plant parametershplant = 0.7, cplant =

5000, andkplant = 36000 are not part of the initial grid points. For this numerical example

the free design parameters for the cost function were set asα = 0.1 andβ = 0.9, while

the forgetting factorλ was chosen to be 0. For the adaptation step we chose to insert 6,4,

and 3 models in the immediate neighborhood the selected minimum of the initial parameter

space, which yielded adapted model grid points given below

{ 0.8, 0.768, 0.736, 0.704 0.672, ,0.64} ⊂ H
∗

{ 32000, 34000, 36000, 38000} ⊂ K
∗

{ 4500, 5000, 5500} ⊂ C
∗

As a result of the single adaptation step, 72 new models have been utilized, which eventually

caused the total number of models utilized to be 96 during the course of the estimation.

In Figure 2.40 the resulting sensor and the switched model outputs of the plant, initial mod-

els, and the adapted models are compared whereas in Figure 2.41 the CG height estimation

results are shown for the initial grid and the adapted models. Based on the estimation re-

sults, we observe that the multiple model switching algorithm successfully estimated the CG

height to be 0.704m. Also in Figure 2.42 the corresponding estimations of the suspension

parameters are presented. Linear torsional spring stiffnessk was estimated as 36000 exactly

matching that of reference vehicle model, while roll damping coefficientc was estimated to

be 5500 slightly different then that of the reference vehicle model which was 5000.

We observe from the numerical results that the adaptive estimation achievedsimilar estima-

tions to that of Section 2.4.2 while utilizing only 96 models (as opposed to 240 modelsused

there). Thus this adaptation scheme can be employed when large number of models can not
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Figure 2.40: Sensor and the selected model output comparison for the adaptive CG height estima-

tion.

be utilized due to computational constraints.

2.8 Conclusions and possible future directions

In this chapter we have presented a realtime parameter estimation algorithm usinga multi-

ple model switching approach incorporating simple linear models. Based on thesimulation

results, we demonstrated the accuracy of the suggested technique as compared to the tra-

ditional least squares identification approach, which shows significant benefits. We also

presented preliminary tests of the algorithm with off-line measurement data taken from an

undisclosed test vehicle, and results were promising. The results showedthat the algorithm

can also work in cases where the signals are corrupted by noise and bias. Moreover, the load
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Figure 2.41: Adaptive CG height estimation.

condition estimator example demonstrated that a simple version of the suggested algorithm

can easily be integrated into current rollover or lateral dynamics controllers to enhance their

performance. In the last part of the chapter we conducted an analysis of the cost function,

and also introduced a simple adaptation scheme to improve estimations based on multiple

model estimation method. With simple numerical examples we showed that the suggested

adaptation method can provide good estimation results while utilizing a smaller numberof

identification models as compared to estimations with fixed models alone. One important

observation in our analysis was that the multiple model algorithm employing only fixed

models required too many models to produce the desired estimation accuracy and perfor-

mance (as apparent from numerical simulations, where we had 240 models for CG height

estimation based on roll dynamics). Our adaptation scheme can be used to circumvent this

problem, which employs only a small number of models initially and are updated andre-

parameterized in fixed time intervals. In our numerical simulations we managed to get a

good CG height estimation using only 96 models in conjunction with the adaptive estima-

tion method, which shows efficacy of the suggested algorithm.
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Figure 2.42: Adaptive estimation of the suspension parametersk, andc.
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Chapter 3

A Methodology for the Design of

Robust Rollover Prevention

Controllers for Automotive Vehicles

In this chapter we present a robust controller design methodology for vehicle

rollover prevention utilizing active steering and differential braking actuators.

Control design is based on keeping the magnitude of the vehicle performance

outputs, including load transfer ratio (LTR), below a certain level in the pres-

ence of driver steering inputs; we also develop an exact expression forcal-

culating LTR. The proposed controllers have a proportional-integral structure

whose gain matrices are obtained by solving a set of LMIs, which provide

controllers to robustly guarantee that the peak magnitudes of the performance

outputs do not exceed certain values. We show that using the design method

the controllers can be designed to be robust with respect to unknown vehicle

parameters such as speed and center of gravity height. We also providea

switching rule for controller activation based on the potential for rollover.
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3.1 Chapter contributions

The scientific contribution of this chapter over the literature is mainly in the area of vehicle

dynamics control; particularly in the area of automotive rollover prevention.Our control

design was formulated as a bounded input bounded output (BIBO) disturbance rejection

problem. We viewed the automotive vehicle as an uncertain dynamical system with dis-

turbance inputs, and our controllers guarantee that the performance outputs of the system

relevant to rollover are bounded. In doing so, we suggested using a dynamic version of the

load transfer ratio (LTR) as a criterion for rollover occurrence. Our suggested robust control

design method is unique in the sense that it gives way to a quantification of robustness of the

controllers. We also considered vehicle parameter uncertainty in our control designs given

that the uncertainty satisfies certain conditions.

The work contained in this chapter has resulted in the following publications:

(i) Solmaz S., Corless M., Shorten R., “A methodology for the design of robust rollover

prevention controllers for automotive vehicles: Part 1-Differential Braking”, 45th

IEEE Conference on Decision and Control, San Diego, Dec 13-15, 2006.

(ii) Solmaz S., Corless M., Shorten R., “A methodology for the design of robust rollover

prevention controllers for automotive vehicles: Part 2-Active steering”, HYCON-

CEMaCS Joint Workshop on Automotive Systems & Control, Lund, June 1-2, 2006.

(iii) Solmaz S., Corless M., Shorten R., “A methodology for the design of robust rollover

prevention controllers for automotive vehicles: Part 2-Active steering”, American

Control Conference, New York, July 11-13, 2007.

(iv) Solmaz S., Corless M., Shorten R., “A methodology for the design of robust rollover

prevention controllers for automotive vehicles with active steering”, International

Journal of Control, Special Issue on Automotive Systems and Control, Vol. 80, No.

11, pages 1763-1779, November 2007.
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3.2 Introduction

It should be clear from the preceding chapter that the vehicle center of gravity position

directly affects vehicle accident behavior. Particularly, it is well known that vehicles with

a high center of gravity such as vans, trucks and the highly popular SUVs(Sport Utility

Vehicles) are more prone to rollover accidents, which are, by far, the most dangerous type

of accidents. As evident from to the 2004 accident data [1] compiled in the USA, light

trucks (pickups, vans and SUVs) were involved in nearly 70% of all the rollover accidents,

with SUVs alone responsible for almost 35% of this total. The fact that the composition

of the current automotive fleet in the U.S. consists of nearly 36% pickups,vans and SUVs

[22], along with the recent increase in the popularity of SUVs worldwide, makes rollover

an important vehicle safety problem.

There are two distinct types of vehicle rollover: tripped and un-tripped. Tripped rollover

is usually caused by impact of the vehicle with something else (e.g. obstacles, curb etc.)

resulting in the rollover incident. For example, a tripped rollover commonly occurs when a

vehicle slides sideways and digs its tires into soft soil or strikes an object such as a curb or

guardrail. Driver induced un-tripped rollover can occur during typical driving situations and

poses a real threat for top-heavy vehicles. Examples are excessivespeed during cornering,

obstacle avoidance and severe lane change maneuvers, where rollover occurs as a direct

result of the wheel forces induced during these maneuvers. In recent years, rollover has

been the subject of intensive research, especially by the major automobile manufacturers;

see, for example, [28, 27]. That research is geared towards the development of rollover

prediction schemes and occupant protection devices. It is however, possible to prevent such

a rollover incident by monitoring the car dynamics and applying appropriate control effort

ahead of time. Therefore there is a need to develop driver assistance technologies which

would be transparent to the driver during normal driving conditions, but which act when

needed to recover handling of the vehicle during extreme maneuvers [22].
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In this chapter we present a robust rollover prevention controller design methodology, which

represents the first of the two available approaches (i.e., robust and adaptive) towards the

feedback design for systems with parameter uncertainties. Although most ofthe controller

designs for automotive applications are in this category, our robust design method is unique

in the sense that, unlike the traditional approaches, it quantifies the robustness of the atten-

uation from the actuator inputs to the performance outputs, which can be used as structured

way of tuning the controllers. The robust controller design described in the sequel is based

on two separate type of actuators: active steering and differential braking. Also, as an ac-

curate indicator of performance related to rollover, we consider the vehicle Load Transfer

Ratio (LTR) in the feedback design. This measure of performance is related to tire lift-off

and it can be considered as an early indicator of impending vehicle rollover. Vehicle wheel

lift off occurs when the magnitude of this variable reaches one. We develop an exact ex-

pression for this variable taking the vehicle roll dynamics fully into account. To distinguish

our expression from previous (static) approximations of LTR in the literature, we denote it

by LTRd. We emphasize that although vehicle rollover is a dynamical process, the static

approximations of LTR ignore the roll dynamics; thus, they are not fully capable of deter-

mining the onset of rollover.

Our proposed controllers based on differential braking have a P (proportional) structure

with a fixed gain matrixKP, while active steering based controllers have a PI (proportional-

integral) structure with two fixed gain matricesKP andKI . By utilizing the integral action in

the latter, we ensure that the steady state steering response of the vehicle isas expected by

the driver. The gain matrices are chosen to reduce the magnitude ofLTRd during transient

behavior.

The design of the controller gain matrices is based on recent results in [92]where they

consider uncertain systems with performance outputs and subject to a bounded disturbance

input. For each performance outputzj they introduce a performance measureγ j which

guarantees that the magnitude of the output is less than or equal toγ j times the peak value of
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the magnitude of the disturbance. They present a controller design procedure which can be

used to minimize the performance level for one main output while keeping the performance

levels for the other outputs below some prespecified levels. In addition, the controllers in

[92] are robust in the sense that they ensure performance in the presence of any allowable

uncertainty which was taken into account in the control design. In applyingthese results

to rollover problem, we consider the driver steering input as a disturbance input. Since we

wish to keep the magnitude ofLTRd less than one, we view this as the main performance

output. To limit the amount of control effort and to accommodate actuator constraints, we

choose the control input as an additional performance output in the feedback design. We

note that many robust control designs in the literature are based on keeping the root mean

square (or Euclidian norm1) of a performance output (i.e.,‖zj(t)‖2) small. However, for

this problem we consider it to be more important to utilize a controller which is designed to

keep the peak magnitude (infinity norm or maximum norm2) of outputs (i.e.,‖zj(t)‖∞) to

be small rather than their rms value; this choice is motivated by the fact that‖LTRd‖ ≥ 1

implies rollover, whereLTRd is the main performance output for this problem.

We initially consider control design for fixed vehicle parameters and illustratethe efficacy

of our approach with some numerical simulations using typical data for a compact car.

We then design a fixed robust controller which is effective for a range of vehicle speeds

and vehicle CG (center of gravity) heights. The efficacy of this controlleris illustrated

by simulating the vehicle with different CG heights and with varying speeds. Finally, we

propose a modification to our controllers so that they only activate when the potential for

rollover is significant. This modification prevents the controllers from activating in non-

critical situations and possibly annoying the driver.

1for a vectory∈R
n with y= (y1, . . . ,yn)

T , the Euclidian norm is given by‖y‖2 =
√

y2
1 + . . .+y2

n.
2for a vectory∈ R

n, the infinity (or maximum) norm is given by‖y‖∞ = max{|y1|, . . . , |yn|}.
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3.3 Related work

Rollover prevention is a topical area of research in the automotive industryand several

studies have recently been published. Relevant publications include that of Palkovics et

al. [107], where they proposed the ROP (Roll-Over Prevention) systemfor use in com-

mercial trucks making use of lateral acceleration measurement as well as thewheel slip

difference on the two sides of the axles to predict tire lift-off prior to rollover. They utilized

full braking action through EBS (Electronic Brake System) in the event thattire lift-off is

detected, which in turn reduces vehicle speed to eliminate the rollover threat. In a similar

implementation, Wielenga [137] suggested the ARB (Anti Roll Braking) systemutilizing

braking of the individual front wheel outside the turn or the full front axle instead of the

full braking action. The suggested control system is based on lateral acceleration thresholds

and/or tire lift-off sensors in the form of simple contact switches. Again making use of

differential braking actuators, Chen et al. in [25] suggested utilization ofan estimated TTR

(Time To Rollover) metric as an early indicator for the rollover threat. When TTR is less

than a certain preset threshold value for the particular vehicle under interest, they utilized

differential breaking to prevent rollover. Ackermann et al. and Odenthal et al. [4], and [88]

proposed a robust active steering controller, as well as a combination ofactive steering and

emergency braking controllers. They utilized an active steering controllerbased on roll rate

measurement. They also suggested the use of a static Load Transfer Ratio (LTRs) which

is based on lateral acceleration measurement; this was utilized as a criterion to activate the

emergency steering and braking controllers. In [22] Carlson et al. madeuse of sideslip,

yaw rate, roll angle and roll rate measurements based on GPS aided INS (Inertial Naviga-

tion System) along with steer by wire and differential braking actuators to limit excessive

roll angle during dangerous maneuvers. They based their controller design on MPC (Model

Predictive Control).
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3.4 Vehicle modelling andLTRd

In this section we introduce the models that we use for controller design. We also define the

rollover detection criterionLTRd and present the assumptions on the sensors and actuators

used in the design.

3.4.1 Vehicle model

In order to capture the salient features of vehicle rollover and for controller design purposes,

we utilize the well known linearized vehicle model commonly referred as the single-track

model (or bicycle model) with roll degree of freedom, which was introducedin the pre-

ceding chapter; this is illustrated in Figure 3.1 for convenience. This specific model or its

variations are widely used in vehicle dynamics control applications (see forexample [22],

[128], [4], [88], [25], [38], [50]). In this linear model the steeringangleδ , the roll angleφ ,

and the vehicle sideslip angleβ are all assumed to be small. We further assume that all the

vehicle mass is sprung, which implies insignificant wheel and suspension weights. Also the

Figure 3.1: Single track model with roll degree of freedom.
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lateral forces on the front and rear tires, denoted bySv andSh, respectively, are represented

as linear functions of the tire slip anglesαv andαh, that is,Sv = Cvαv andSh = Chαh, where

Cv andCh are the front and rear tire stiffness parameters respectively. The assumptions of

small angles and linear tire forces provide a good balance between capturing the salient fea-

tures of vehicle behavior while keeping the complexity at a manageable level. We further

define the following auxiliary variables

σ , Cv +Ch ,

ρ , Chlh−Cvlv , (3.1)

κ , Cvl
2
v +Chl2

h ,

where the lengthslv andlh are defined in Figure 3.1. It is assumed that the sprung mass rolls

about a horizontal roll axis which is along the centerline of the track and atground level.

Using the parallel axis theorem , the moment of inertia of the vehicle about the assumed roll

axis, denotedJxeq, is given by

Jxeq = Jxx+mh2, (3.2)

whereh is the distance between the center of gravity (CG) and the assumed roll axis andJxx

is the moment of inertia of the vehicle about the roll axis through the CG.

Single track model with active steering input

For use with the control design based on the active steering actuator we introduce the state

vectorξ =
[

vy ψ̇ φ̇ φ
]T

, where

vy : lateral velocity of the vehicle,

ψ̇ : yaw rate of the undercarriage,

φ̇ : roll rate of the sprung mass about the roll axis,

φ : roll angle of the sprung mass about the roll axis.
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Then the linearized equations of motion corresponding to this model are as follows

ξ̇ = Ãξ + B̃δ + B̃u with (3.3)

Ã =























−σJxeq

mvJxx

ρJxeq

mvJxx
−v − hc

Jxx

h(mgh−k)
Jxx

ρ
Jzzv

− κ
Jzzv

0 0

− hσ
vJxx

hρ
vJxx

− c
Jxx

mgh−k
Jxx

0 0 1 0























, B̃ =























CvJxeq

mJxx

Cvlv
Jzz

hCv
Jxx

0























, (3.4)

whereδ is the driver steering command, which we will view as the disturbance input for

the control design, andu is the steering command from the actuator; these are illustrated in

Figure 3.2 below. Further definitions of the parameters appearing in (3.4) are given in Table

3.1.

Figure 3.2: Active steering as control input.

Single track model with differential braking input

For use with the control design based on the active differential braking actuator we intro-

duce the statex =
[

β ψ̇ φ̇ φ
]T

, whereβ is the sideslip angle of the vehicle. Then the
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linearized equations of motion corresponding to this model are as follows

ẋ = Ax+Bδ δ +Buu with (3.5)

A =























−σJxeq

mJxxv
ρJxeq

mJxxv2 −1 − hc
Jxxv

h(mgh−k)
Jxxv

ρ
Jzz

− κ
Jzzv

0 0

−hσ
Jxx

hρ
Jxxv

− c
Jxx

mgh−k
Jxx

0 0 1 0























, (3.6)

Bδ =

[

CvJxeq

mJxxv
Cvlv
Jzz

hCv
Jxx

0

]T

, Bu =

[

0 − T
2Jzz

0 0

]T

, (3.7)

whereu represents the differential braking force on the wheels; it is positive if braking is

on the right wheels and negative if braking is on the left wheels. Differential braking force

as the control input is depicted in Figure 3.3 below. Note that we can brake either front,

rear or both of the wheels on each side of the vehicle depending on the maneuver andu is

the total effective braking force acting on either side as illustrated in the Figure 3.3. Further

Figure 3.3: Differential braking force as control input.

definitions for all the parameters in (3.6) and (3.7) are given in Table 3.1. Also see [50] for

a detailed derivation of these vehicle models.

In order to model the change in the vehicle speedv as a simple function of the braking force,

we assume in this version of the model that the longitudinal wheel forces generated by the

engine counteract the rolling resistance and the aerodynamic drag at all times. Under this

110



3.4 Vehicle modelling andLTRd

Table 3.1: Model Parameters and their definitions

Parameter Description Unit

m vehicle mass [kg]

v vehicle speed [m/s]

δ steering angle [rad]

Jxx roll moment of inertia of the sprung mass measured at the CG[kg·m2]

Jzz yaw moment of inertia of the chassis measured at the CG [kg·m2]

lv longitudinal CG position measured w.r.t. the front axle [m]

lh longitudinal CG position measured w.r.t. the rear axle [m]

h CG height measured over the ground [m]

c suspension damping coefficient [kg·m2/s]

k suspension spring stiffness [kg·m2/s2]

Cv linear tire stiffness coefficient for the front tire [N/rad]

Ch linear tire stiffness coefficient for the rear tire [N/rad]

assumption, the vehicle speed is approximately governed by

v̇ = −|u|
m

. (3.8)

In the following subsection we give the description of the dynamic LTR that weutilize in

the robust control design.

3.4.2 The dynamic load transfer ratio,LTRd

Traditionally, as discussed in the related work section, some estimate of the vehicle load

transfer ratio has been used as a basis for the design of rollover prevention systems. The

111



3.4 Vehicle modelling andLTRd

load transfer ratio [88, 48] can be simply defined as the load (i.e., vertical force) difference

between the right and left wheels of the vehicle, normalized by the total load (i.e., the weight

of the car). In other words,

Load transfer ratio=
Load on right tires – Load on left tires

Total weight
. (3.9)

Clearly, this quantity varies between−1 and 1, and for a perfectly symmetric vehicle that is

driving in a straight line, it is zero. The extrema are reached in the case ofa wheel lift-off on

one side of the vehicle, in which case the load transfer ratio is 1 or−1 depending on the side

that lifts off. If roll dynamics are ignored, it is easily shown in [88] that thecorresponding

load transfer ratio (which we denote byLTRs) is approximated by

LTRs =
2ayh
gT

, (3.10)

whereay is the lateral acceleration of the CG andT is the vehicle track width.

Note that rollover estimation based upon (3.10) is not sufficient to detect thetransient phase

of rollover (due to the fact that it is derived ignoring roll dynamics). Here we obtain an exact

expression for the vehicle load transfer ratio which does not ignore rolldynamics; we denote

this byLTRd. This was initially suggested by us in [124], and to aid exposition we repeat

the derivation here. Recall that we assumed the unsprung mass weight to be insignificant

and the main body of the vehicle rolls about an axis along the centerline of the track at the

ground level. We can write a torque balance for the unsprung mass aboutthe assumed roll

axis in terms of the suspension torques and the vertical wheel forces as follows:

−FR
T
2

+FL
T
2

+kφ +cφ̇ = 0. (3.11)

Now substituting the definition of load transfer from (3.9) and rearrangingyields the fol-

lowing expression forLTRd:

LTRd =
2

mgT

(

cφ̇ +kφ
)

. (3.12)
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In terms of the state,LTRd can be represented by the following relationship

LTRd = C̃ξ where C̃ =

[

0 0 2c
mgT

2k
mgT

]

. (3.13)

We now provide a brief description of the actuators to be used in implementing our pro-

posed controllers based on active steering and differential braking. In what follows, we also

give the assumptions regarding the known and unknown vehicle parameters, as well as the

sensory information that we utilize in our controller design.

3.4.3 Actuators, sensors and parameters

We are interested in control design based on two type of actuators: activedifferential brak-

ing and active steering actuators. Active braking actuators are alreadyfound in many stock

production cars that are equipped with active safety systems such as ABS(Anti-lock Brak-

ing System) and EBS (Electronic Brake System) or similar such systems, which are capable

of selectively braking each of the wheels. These systems are becoming more popular and

have been accepted as an industry standard in most of the vehicle segments. Using these

actuators, a yaw moment can be induced during a turn by braking combinationof the four

wheels, which can impose increased oversteer or understeer depending on the application.

In the context of rollover prevention, the active braking can be used, for example, to reduce

the lateral acceleration or any other suitable measure of rollover potential such as theLTRd.

Braking actuators also have the side effect of reducing the forward velocity, which has pos-

itive influence on the rollover threat. The fact that control designs usingthese actuators

can be commissioned without much financial overhead makes them the preferred actuator

candidates in the literature. Therefore, in one of the implementations of the robust design

methodology explained in this chapter, we assume active differential braking actuators with

access to full state information.

As an alternative to the active differential braking, we are also interestedin robust control

design based on active steering actuators. There are two types of active steering meth-
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ods: full steer-by-wire and mechatronic-angle-superposition types. Steer-by-wire actua-

tors do not contain a physical steering column between the steering wheel and the wheels;

the steering torque is generated by a servo motor based on the driver steering command.

This enables steer-by-wire actuators to be flexible and suitable for various vehicle dynam-

ics control applications. However, stringent safety requirements on such systems prevent

them from entering today’s series-production vehicles. Mechatronic-angle-superposition

type active steering actuators however have been recently introduced tothe market. They

contain a physical steering column and act cooperatively with the driver,while they permit

various functions such as speed dependent steering ratio modification, and active response

to mild environmental disturbances. It is plausible that active steering actuators will be-

come an industry standard in the near future, due to their capability of directlyand most

efficiently (in the sense that they do not cause any speed loss) affectingthe lateral dynamics

of the car. Active steering based lateral control methods can be perfectly transparent to the

driver and they are likely to cause the least interference with the driver intent unlike the

control approaches based on differential braking and active suspension. Moreover, the use

of active steering actuators do not result in a significant velocity loss, therefore they are

likely to enter the market initially for the high performance vehicle segment. Therefore as

an alternative implementation of the design methodology we describe in this chapter, we

utilize mechatronic-angle-superposition type steering actuators with accessto full state in-

formation. Although such active steering actuators require torque inputs from the driver,

initially we assume no internal actuator dynamics or delays that might arise fromdriver in-

teractions. It is however possible to account for the effects of these in the controller design.

Also, our results can easily be extended to the case of steer-by-wire actuators where driver

interactions are of less importance.

In the discussion that follows, we assume that all the model parametersm,Jxx,Jzz, lv, lh,

Cv,Ch,k,h, andc are known to demonstrate the method. However, our control design is

easily extended to account for uncertainty in these parameters, which we demonstrate by
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3.5 State feedback controllers for robust disturbance attenuation

designing our controllers to be robust with respect to uncertainties in vehicle speedv and

center of gravity heighth. As a side note, although we assumed all the vehicle model pa-

rameters to be known, it is possible to estimate some of these that are fixed (butunknown)

using the sensor information available for the control design suggested here; we have an-

alyzed this in detail in the preceding chapter and examples of it can also be found in the

literature [122], [131].

3.5 State feedback controllers for robust disturbance

attenuation

We are interested in designing a controller to prevent rollover that is robust with respect

to parameter uncertainty, and in doing so we consider the vehicle models both of the form

(3.5), and (3.3). Our starting point is in results obtained by Pancake, Corless and Brockman

in [92, 91] for uncertain systems of the form

ẋ = A(θ)x+B(θ)ω +Bu(θ)u (3.14)

zj = Cj(θ)x+D j(θ)ω +D ju(θ)u, j = 1, . . . , r , (3.15)

whereθ is some parameter vector that captures the plant nonlinearity/uncertainty, which can

depend ont,x,ω andu. The vectorx(t) ∈ R
n is the state at timet ∈ [0,∞) andω(t) ∈ R

m

is a bounded disturbance input. Alsou(t) ∈ R
um is the control input andzj(t) ∈ R

p j are the

performance outputs. We wish to synthesize a stabilizing controller which prevents the peak

values of the performance outputs exceeding certain values. In doing so, for each output

zj we introduce a measure of performanceγ j which guarantees that the magnitude of that

output is less than or equal toγ j times the peak value of the magnitude of the disturbance.

We describe here a controller design strategy which can be used to minimize theperfor-

mance level for one main output while keeping the performance levels for theother outputs

below some prespecified levels. In addition the controllers are robust in thesense that they
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ensure performance in the presence of any allowable uncertainty which was taken into ac-

count in the control design. In other words, our feedback controllersguarantee a bounded

performance output given a bounded uncertain disturbance, that is,||ω(t)|| ≤ ωmax.

We consider linear state feedback controllers of the form

u = Kx, (3.16)

whereK is a constant state feedback gain matrix. This results in a closed loop system

described by

ẋ = [A(θ)+Bu(θ)K]x+B(θ)ω (3.17)

zj = [Cj(θ)+D ju(θ)K]x+D j(θ)ω , j = 1, . . . , r . (3.18)

The uncertainty in the plant is required to satisfy the following condition.

Assumption 3.5.1 For eachθ and j= 1, . . . , r, the matrix

[

A(θ) B(θ) Bu(θ) Cj(θ) D j(θ) D ju(θ)

]

(3.19)

can be written as a convex combination of a finite number of matrices (calledvertex matri-

ces)

[

A1 B1 Bu1 Cj1 D j1 D ju1

]

, . . . ,

[

AN BN BuN CjN D jN D juN

]

.

Remark 3.5.1 Suppose that each of the matricesA(θ), B(θ), Bu(θ), Cj(θ), D j(θ), D ju(θ)

depend in a multi-affine fashion on the components of theM-vectorθ and each element of

θ is bounded, that is,

θ k ≤ θk ≤ θ k for k = 1, . . . ,M .

Then, for allθ , the matrix in (3.19) can be expressed as a convex combination of the 2M

matrices corresponding to the extreme values of the components ofθ ; these vertex matrices
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are given by

[A(θ) B(θ) Bu(θ) Cj(θ) D j(θ) D ju(θ)] where θk = θ k or θ k (3.20)

for k = 1, . . . ,M.

Remark 3.5.2 One can easily show that when the uncertain system (3.14)-(3.15) satisfies

Assumption 3.5.1 then, for eachθ , and j = 1, . . . , r, the matrix quadruple

(Acl(θ), B(θ), Ccl(θ), D(θ))

can be written as a convex combination of the matrix quadruples

(Acl1, B1, Ccl1, D1), . . . , (AclN , BN, CclN , DN),

where

Acli = Ai +Bui K and Ccli = Cj i +D jui K , f or i = 1, . . . ,N. (3.21)

The following result from [92, 91] is useful in designing our rollover prevention controllers.

Theorem 3.5.1 Consider a nonlinear/uncertain system described by (3.14)-(3.15) andsat-

isfying Assumption 3.5.1. Suppose that there exist a matrix S= ST > 0, a matrix L and

scalarsβ1, . . .βN > 0 and µ0,µ1 j ,µ2 j ≥ 0, j = 1, . . . , r, such that the following matrix in-

equalities hold








βi(SAT
i +AiS+LTBT

ui
+Bui L)+S βiBi

βiBT
i −µ0I









≤ 0, (3.22)

















−µ1 jS 0 SCT
j i +LTDT

jui

0 −µ2 j I DT
j i

Cj i S+D jui L D j i −I

















≤ 0, (3.23)
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for all i = 1, . . . ,N and j= 1, . . . , r. Then the controller

u = Kx with K = LS−1 (3.24)

results in a closed loop nonlinear/uncertain system which has the following properties.

(a) The undisturbed system (ω = 0) is globally exponentially stable, that is, all state trajec-

tories decay exponentially.

(b) If the disturbance input is bounded, that is,‖ω(t)‖ ≤ ρω for all t then, for zero initial

state, the performance outputs z1, . . . ,zr of the closed loop system are bounded and satisfy

‖zj(t)‖ ≤ γ jρω (3.25)

for all t where

γ j =
√

µ0µ1 j + µ2 j . (3.26)

The scalarsγ1, . . . .γr are calledlevels of performanceand can be regarded as measures

of the ability of the closed loop system to attenuate the effect of the disturbance input on

the performance outputs; a smallerγ j means better performance in the sense of increased

attenuation. For a proof of the theorem, see Appendix A.

Comment: In Appendix B we give an iterative LMI solution algorithm to find control

gains that satisfy the hypotheses of Theorem 3.5.1 for the rollover control design problem.

This numerical algorithm attempts to minimizeγ1 for the specified values ofγ2 (where we

consider only two performance outputs) in every iterative solution step. Unfortunately, our

solution method does not permit external specification of both performancelevelsγ1,γ2, but

rather we specify one of them and then try to minimize the other. In future extensions we

shall investigate convergence and feasibility conditions to determine the existence of control

gains guaranteeing pre-specified performance levelsγ j .
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Remark 3.5.3 It is straightforward to show that the inequality (3.22) can be expressed as

follows








AiS+SAT
i +BuiL+LTBT

ui+αiS Bi

BT
i −αi I









≤ 0, (3.27)

for i = 1, . . . ,N, whereα1, . . . ,αN > 0 are scalars.

Remark 3.5.4 Consider the situation in which the matricesD j1, . . . ,D jN are all zero for

some performance outputzj . Then, for eachi, inequality (3.23) is satisfied for someµ2j ≥ 0

if and only if it is satisfied withµ2j = 0. Hence, ifD j1, . . . ,D jN are all zero, inequality (3.23)

can be replaced with








−µ1jS SCT
j i +LTDT

jui

Cj i S+D jui L −I









≤ 0. (3.28)

In this case,

γ j =
√µ0µ1j . (3.29)

Also, using Schur complements, one can show that the above inequality is equivalent to the

following inequality which is linear in the variablesSandµ1 j .








−S SCT
j i +LTDT

jui

Cj i S+D jui L −µ1j I









≤ 0. (3.30)

Remark 3.5.5 Consider the closed loop system subject to a fixed bounded disturbanceω

which satisfies‖ω(t)‖ ≤ ρω . Let

V(x) = xTPx (3.31)

and consider the bounded ellipsoid in state space defined by

E (ρω) =
{

x∈ R
n : V(x) ≤ µ0ρ2

ω
}

. (3.32)

The inequalities in (3.22) guarantee that whenever a state trajectory is outside of the ellip-

soid the time rate change of the Lyapunov functionV is negative. From this one can show
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that the ellipsoid is both invariant and attractive. Attractive means that all statetrajectories

converge to the ellipsoid with increasing time. Invariance means that if a state trajectory

starts in the ellipsoid, it remains there forever; in particular, if a trajectory starts at the ori-

gin, it will always be contained in the ellipsoid.

The inequalities in (3.23) guarantee that each performance outputzj satisfies

‖zj(t)‖2 ≤ µ1 jV(x(t))+ µ2 jω(t)2 . (3.33)

Hence, if a trajectory starts within the ellipsoid, it must satisfy‖zj(t)‖ ≤ γ j ρω for all t.

Otherwise,‖zj(t)‖ is “eventually bounded” byγ j ρω .

3.5.1 Rollover prevention controllers with differential braking

Here we use the above results to obtain rollover prevention controllers using differential

braking as the sole control input. The vehicle model utilized is the single track model given

in (3.5) along with systems matrices (3.6), and (3.7). We consider the driver’s steering

wheel angle in degrees as the disturbance inputω ; this is related to the steering angleδ by

δ =
π

180λ
ω (3.34)

whereλ is the steering ratio between the steering wheel and the wheels and is taken to be

18.

For reasons discussed earlier, we choosez1 = LTRd given by (3.12) as one performance

output; we want to keep‖z1‖ ≤ 1 for the largest possible steering inputs. We consider the

magnitude of the braking forceu to be limited by the weightmgof the vehicle; so we choose

z2 = u as a second performance output. The resulting system with two performance outputs

can be described by

ẋ = Ax+Bω +Buu

z1 = C1x (3.35)

z2 = u,
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3.5 State feedback controllers for robust disturbance attenuation

where

B =
π

180λ
Bδ . (3.36)

The parameters of the above model were tuned against the dynamics of a compact passenger

vehicle such that there is a close match between the model and the measured vehicle states.

The tuning was performed atv = 40m/s and with a step steering input of magnitude 30◦.

The corresponding tuned vehicle parameters are given in Table 3.2.

First we obtain a control design which is based on the model (3.5) with a fixedspeed; we

call this the fixed model controller. We then consider the effect of varyingspeed in our

control design and we obtain a control design assuming that the speed varies over some

prespecified range; we call this the robust controller.

(a) Controller Based on Fixed Speed

Here we base controller design on model (3.35) in which all matrices are constant and

correspond to a fixed vehicle speed ofv = 40m/s. To obtain a state feedback controller,

we applied Theorem 3.5.1. Since we desire that‖z1‖ ≤ 1 and‖z2‖ ≤ mg for the largest

possible steering inputs, we consideredγ2 = mgγ1. We used a simplified version of the

iterative solution algorithm described in Appendix B withN = 1, and utilized with it the

alternative form of the inequalities given in (3.27) and (3.30). By performing a linear line

search with respect to the scalarα1 we obtained a minimum value of 0.0089 forγ1. The

corresponding control gain matrix is

K = mg· [ −7.1287 0.9842 0.3271 −0.0944 ] .

Remark 3.5.6 Consider the constant speed model subject to the above control gain ma-

trix. According to (3.25), the constraints on the outputs will not be violated forthis constant

speed closed loop system if the maximum magnitudeωmaxof the driver steering disturbance

input satisfiesωmax≤ 1/γ1 ≈ 112.97◦. However application of the braking controller re-
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3.5 State feedback controllers for robust disturbance attenuation

Table 3.2: Fixed model parameters

parameter value unit

m 1224.1 [kg]

Jxx 362 [kg·m2]

Jzz 1279 [kg·m2]

lv 1.102 [m]

lh 1.254 [m]

T 1.51 [m]

h 0.375 [m]

c 4000 [kg·m2/s]

k 36075 [kg·m2/s2]

Cv 90240 [N/rad]

Ch 180000 [N/rad]

duces vehicle speed. As the vehicle speed reduces, its tendency to rollover decreases and

the vehicle can actually tolerate disturbances inputs with magnitude considerably larger

than1/γ1. In simulations where the speed varies according to (3.8), the above controller

gain matrix was able to maintain|LTRd| ≤ 1 and‖u‖ ≤ mg for steering input magnitudes

up toωmax= 130◦.

For numerical simulations we chose a driver steering input corresponding to an obstacle

avoidance maneuver that is known as the elk-test; we chose an initial speedof v = 40m/s

and a peak steering magnitude ofωmax = 130◦. The steering profile corresponding to this

maneuver and a comparison of speed histories for the controlled and uncontrolled vehicles

are shown in Figure 3.4. Notice that, the dramatic speed drop of the controlledvehicle is a

direct consequence of the braking action. In Figure 3.5 we further observe that|LTRd| > 1
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Figure 3.4: Steering and speed histories.

for the uncontrolled vehicle throughout the manoeuver indicating possible rollover, whereas

the vehicle with the proposed controller satisfies|LTRd| < 1 achieving the intended design

goal and demonstrating the effectiveness of the proposed controller. Also for this maneuver,

the peak value of the control force generated was about 80% of the totalweight of the

vehicle (i.e.,|u| < mg), thus achieving the other design goal.

In the next subsection we demonstrate how our control design method can be extended to

account for varying parameter uncertainties.

(b) Controller Based on Variable Speed Model

Here we present a rollover controller design which takes into account varying vehicle speed;

it assumes constant model parameters given in Table 3.2. We assume that thespeed is

bounded above and below byv andv, respectively, that is,v≤ v≤ v. In order to represent

typical freeway driving conditions for a compact passenger vehicle wechosev= 25m/s, and

v = 40m/s as the extremum design speeds. Again, we used the model (3.35) for controller

design, where the matricesA,B,Bu andC1 are given in equations (3.6), (3.7) and (3.12).

System matricesBu andC1 are independent of speed. The matricesA andB can be expressed
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Figure 3.5: Comparison ofLTRd for the uncontrolled vehicle and the controlled vehicle with the

fixed model.

as affine linear functions of the time-varying parametersθ1 := 1/v andθ2 := 1/v2. These

parameters are bounded as follows:

θ 1 ≤ θ1 ≤ θ 1 , θ 2 ≤ θ2 ≤ θ 2 (3.37)

where

θ 1 =
1
v

, θ 1 =
1
v

, θ 2 =
1

v2 , θ 2 =
1
v2 .

Hence our system description satisfies Assumption 3.5.1 with the following vertex matrices

A1 = θ 1Y1 +θ 2Y2 +Y3 , A2 = θ 1Y1 +θ 2Y2 +Y3 ,

A3 = θ 1Y1 +θ 2Y2 +Y3 , A4 = θ 1Y1 +θ 2Y2 +Y3 ,

B1 = B2 =
π

180λ

[

CvJxeq

mJxx
θ 1

Cvlv
Jzz

hCv
Jxx

0

]T

,

B3 = B4 =
π

180λ

[

CvJxeq

mJxx
θ 1

Cvlv
Jzz

hCv
Jxx

0

]T

,
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where

Y1 =























−σJxeq

mJxx
0 − hc

Jxx

h(mgh−k)
Jxx

0 − κ
Jzz

0 0

0 hρ
Jxx

0 0

0 0 0 0























, Y2 =























0
ρJxeq

mJxx
0 0

0 0 0 0

0 0 0 0

0 0 0 0























,

Y3 =























0 −1 0 0

ρ
Jzz

0 0 0

−hσ
Jxx

0 − c
Jxx

mgh−k
Jxx

0 0 1 0























.

We used Theorem 3.5.1 to design a controller which guarantees performance levelsγ1 and

γ2 = mgγ1, in presence of the any variations in speed satisfyingv≤ v≤ v. We again used the

iterative solution algorithm described in Appendix B withN = 4, and in conjunction with the

inequalities (3.27) and (3.30). As a results, we achievedγ1 = 0.009, and the corresponding

control gain matrix

K = mg· [ −7.5858 1.1995 0.3508 −0.1478 ] .

Note that, according to (3.25) the maximum theoretical driver steering disturbance input

permitted is,ωmax= 1/γ1 ≈ 111.36◦. In our simulations however, for the reasons explained

in Remark 3.5.6, the robust controller was able to keep|LTRd| ≤ 1 for driver steering inputs

with magnitudes up toωmax= 136.5◦.

For numerical simulations, we used the same obstacle avoidance (elk test) scenario as be-

fore, however with a peak driver steering input of magnitudeωmax= 136.5◦ and an initial

speed ofv = 40m/s. The steering profile corresponding to this maneuver and a comparison

of speed histories for the uncontrolled vehicle as well as the controlled vehicles with the

two suggested control designs are shown in Figure 3.6. Notice here againthat, the dramatic

speed drop in the controlled vehicles is a direct consequence of the braking action. Also
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3.5 State feedback controllers for robust disturbance attenuation

we observe that the speed loss due to the robust controller is slightly more than that due to

the fixed-model controller. Further results are presented in Figures 3.7 and 3.8, where we

compare the performances of both the robust and the fixed-model controller designs. We

observe in Figure 3.7 that, theLTRd due to the fixed-model controller slightly exceeds the

lower boundary−1 at the initiation of the steering maneuver, while the robust controller

results in|LTRd| ≤ 1 throughout the maneuver. In Figure 3.8 we compare the normalized

control force histories for both of the controllers and observe that theyare close and both

result in|u| ≤ mgas desired.

It is of particular interest for us to see how the suggested controllers affect the vehicle path.

To do this, we note that the coordinates(x, y) of the vehicle CG relative to the road satisfy

ẋ = vcos(β +ψ) , (3.38)

ẏ = vsin(β +ψ) , (3.39)

where we choose the initial coordinates(x(0), y(0)) to be zero. In Figure 3.9 the CG tra-

jectories of the controlled and the uncontrolled vehicles are compared. Notice here that the

shorter paths of the controlled vehicles are due to slowing down as a resultof braking. We

observe in Figure 3.9 that both controllers cause a small divergence from the intended ve-

hicle path during the first half of the maneuver; in a real driving situation, the driver would

time the second half of the maneuver based on the speed and location of the vehicle. Hence

the second part of the maneuver would occur later for the controlled vehicles.

Comment : From the simulation results for the fixed model and the robust controllers, we

observe that both controllers are effective in reducing the vehicle load transfer ratioLTRd,

and thus preventing rollover.

Comment : Our design is easily extended to incorporate other sources of parameter uncer-

tainty such as the vehicle parameters, mass and center of gravity height.

In this subsection we have presented a methodology for the design of vehicle rollover pre-

vention systems using differential braking. Next we consider the design method in conjunc-
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Figure 3.6: Steering profile and a comparison of speed histories.

tion with the active steering actuators.

3.5.2 Rollover prevention controllers with active steering

As an alternative to the rollover control design described in the precedingsubsection, here

we apply the control design methodology discussed earlier for the design of rollover pre-

vention controllers utilizing active steering actuators. We first present a design under the

assumption that the plant parameters are known and fixed (Part a). We then extend our

design to cope with plant parameter uncertainties (Part b). Finally, we further refine our

design to incorporate a mode switch to deactivate the controller in situations when there is

no rollover danger (Part c).

(a) Active steering PI controller with known plant parameters

Our objective here is to superimpose an active steering control inputu = δc on the driver

steering inputδd to prevent rollover. Thus, the total steering inputδ to the vehicle consists
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Figure 3.7: Comparison ofLTRd for the uncontrolled and controlled vehicles with differential brak-

ing.

of two parts and is given by

δ = δd +u. (3.40)

The driver inputδd will be regarded as a disturbance inputω . Recalling model (3.3), our

system is now described by

ξ̇ = Ãξ + B̃ω + B̃u, (3.41)

whereξ (t) ∈ R
4 is the state at timet ∈ R, u(t) is a scalar control input andω(t) is a scalar

disturbance input. The matricesÃ andB̃ are fixed and are as described as in (3.4).

We propose a proportional-integral (PI) type state feedback controllerof the form

u = KPξ +KI ξI , (3.42)

where the integrator stateξI is the integral of the yaw rate tracking error:

ξ̇I = ψ̇ − ψ̇d , ξI (0) = 0. (3.43)
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Figure 3.8: Normalized control history comparisons for vehicles with differential braking.

The reference yaw ratėψd is given by

ψ̇d = αδd, (3.44)

for a constant gainα . Although this is a major simplification of the reference driver intent,

we chose this linear expression for the sake of simplicity. The resulting control structure is

depicted in Figure 3.10 below.

Comment : The purpose of utilizing the integral action in the controller is to guarantee

that when driver inputδd is constant, the corresponding steady state yaw rate is given by

ψ̇ = ψ̇d = αδd. This yaw rate will be large for largeδd and will result in a large steady state

value ofLTRd. To avoid this one could saturatėψd at a certain value such that, in steady

state,||LTR|| stays below 1, regardless of the driver input.

We want the controller to keep the magnitude ofLTRd small during transients with reason-

able control effort. In view of this, we introduce the following two performance outputs:

z1 = LTRd = C̃ξ (3.45)

z2 = u, (3.46)
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Figure 3.9: Comparison of CG trajectories for the uncontrolled and controlled vehicles with differ-

ential braking.

whereC̃ is given in (3.12). Augmenting the vehicle dynamics with the integrator dynamics

and introducing the augmented statex = [ξ T ξI ]
T results in the following system descrip-

tion:

ẋ = Ax+Bω +Buu

z1 = C1x (3.47)

z2 = D2uu,

where

A =









Ã 0

cψ̇ 0









, B =









B̃

−α









, Bu =









B̃

0









, C1 =

[

C̃ 0

]

, D2u = 1 (3.48)

andcψ̇ = [ 0 1 0 0 ].

Also, a proposed controller (3.42) can be described byu = Kx where

K =

[

KP KI

]

. (3.49)
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Figure 3.10: Flow diagram of the PI active steering controller.

In view of our original control objectives, we will use the results of Theorem 3.5.1 to obtain

a gain matrixK which minimizes the level of performanceγ1 for z1 while keeping the level

of performanceγ2 for z2 below some prespecified levelγ2.

Simulations

The model parameters used here are given in Table 3.2. They are typicalfor a compact

car. The steering ratio was assumed to be 1:18. In using Theorem 3.5.1 to obtain a gain

matrix K which minimizes the level of performanceγ1 for z1 subject to a specified level

of performanceγ2 for z2, we used a simplified version of the iterative solution algorithm

described in Appendix B withN = 1.

In the numerical simulations presented here, we again simulated an obstacle avoidance ma-

neuver that is commonly known as the elk-test. The maneuver takes place at aspeed of

v = 140 km/h and with a peak steering magnitude of 100◦. The results of the simulations

are presented in Figure 3.11, which demonstrates the effectiveness of the controller in pre-

venting rollover in this dangerous maneuver by keeping the magnitude ofLTRd less than

one. Notice that driver intervention of the controller as measured by the difference in roll

angles of the controlled and uncontrolled vehicles show a slight difference, implying that

the control action would probably be undiscernible by the driver, which isfavorable and
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was one of our aims.
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Figure 3.11: Comparison of the uncontrolled and controlled vehicles with active steering (fixed

model).

It is interesting to see how the suggested controllers affect the vehicle path. To do this, we

note that the coordinates(x, y) of the vehicle CG relative to the road satisfy the equations

(3.38) and (3.39), where the initial coordinates(x(0), y(0)) are assumed to be zero. In

Figure 3.12 the CG trajectories of the controlled and the uncontrolled vehiclesare compared

along with the remaining states. We observe from trajectory plots that controlaction causes

a small divergence from the uncontrolled vehicle path during the first halfof the maneuver

while preventing rollover; in a real driving situation, the driver would time thesecond half

of the maneuver based on the speed and location of the vehicle. Also similar to the roll

angle variation, the remaining state plots of the controlled vehicle are close to those of the
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uncontrolled vehicle during the maneuver.
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Figure 3.12: Comparison of the states and trajectories of the uncontrolled and the controlled vehicles

with active steering (fixed model).

(b) Robust control design

We now extend the suggested design based on active steering to cope with parameter un-

certainty. Specifically, we now redesign the controller to take into account the parameter

uncertainties resulting from bounded vehicle speed variations as well as CG height uncer-

tainties by utilizing Assumption 3.5.1 and using Theorem 3.5.1.

In what follows we shall assume that the vehicle speedv is bounded, that is,v ≤ v ≤ v,

wherev andv denote the lower and upper bounds on the speed, respectively. In order to
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represent typical freeway driving conditions we chose the speed extrema as v= 20m/s and

v= 40m/s in the numerical simulations below. We further assume that uncertain CG height

h belongs to the interval[h,h], whereh= 0.2[m], andh= 0.5[m] denote the lower and upper

bounds of the uncertain CG height, respectively.

We proceed as in the previous subsection, where we used (3.41) as the vehicle model for

our control design and the matricesÃ andB̃ are described in (3.4). Note that these matrices

depend in a multi-affine fashion on the parameters

θ1 := 1/v, θ2 := v, θ3 := h, θ4 := h2 . (3.50)

Hence, as our model for robust control design, we consider

ξ̇ = Ã(θ)ξ + B̃(θ)ω + B̃(θ)u (3.51)

where

Ã(θ) =























−σ
mθ1− σ

Jxx
θ1θ4

ρ
mθ1 + ρ

Jxx
θ1θ4−θ2 − c

Jxx
θ3 − k

Jxx
θ3 + mg

Jxx
θ4

ρ
Jzz

θ1 − κ
Jzz

θ1 0 0

− σ
Jxx

θ1θ3
ρ
Jxx

θ1θ3 − c
Jxx

− k
Jxx

+ mg
Jxx

θ3

0 0 1 0























,(3.52)

B̃(θ) =

[

Cv
m + Cv

Jxx
θ4

Cvlv
Jzz

Cv
Jxx

θ3 0

]T

(3.53)

and

1
v
≤ θ1 ≤

1
v

, v≤ θ2 ≤ v, h≤ θ3 ≤ h, h2 ≤ θ4 ≤ h
2
. (3.54)

As before, we consider PI controllers of the form

u = KPξ +KI ξI , (3.55)

ξ̇I = ψ̇ −αδd ξI (0) = 0.
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Recall the performance outputsz1 andz2 described in (3.45) and (3.46). Again, we are

interested in synthesizing a stabilizing controller which minimizes the level of performance

γ1 for z1 while keeping the level of performanceγ2 for z2 below some prespecified level

γ2. With the augmented statex = [ξ T ξI ]
T , the proposed controller structure can be simply

described byu = Kx where

K =

[

KP KI

]

, (3.56)

and the behavior ofx and the performance outputs can be described by

ẋ = A(θ)x+B(θ)ω +Bu(θ)u

z1 = C1x (3.57)

z2 = D2uu,

with matrices

A(θ) =









Ã(θ) 0

cψ̇ 0









, B(θ) =









B̃(θ)

−α









, Bu(θ) =









B̃(θ)

0









, C1 =

[

C̃ 0

]

,(3.58)

wherecψ̇ = [ 0 1 0 0], andD2u = 1. Since the matricesA(θ), B(θ), Bu(θ) depend in a

multi-affine fashion onθ and each component ofθ is bounded, it follows that the matrix

[A(θ) B(θ) Bu(θ)] can always be expressed as a convex combination of the following 16

matrices
[

A(θ) B(θ) Bu(θ)

]

where θk = θ k or θ k (3.59)

that isθk equals its minimum or maximum value fork = 1, . . . ,4. Note here thatθk denotes

thekth element of the 4-vectorθ . Hence the augmented plant satisfies Assumption 3.5.1.

Now one can use Theorem 3.5.1 to design a controller which guarantees desirable output

performance which is robust with respect to variations of speed and CG height which satisfy

v≤ v≤ v andh≤ h≤ h. In using Theorem 3.5.1 to obtain a controller which minimizes the

level of performanceγ1 for z1 subject to a specified level of performanceγ2 for z2, we used

an iterative solution algorithm similar to the one described in Appendix B.
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Simulations

Here we present three sets of numerical simulations. The first one is the identical obstacle

avoidance (elk test) scenario as in the fixed parameter case. Thus, the peak value of the

driver steering input wasδp = 100◦ and constant speed was set to bev = 140km/h. The

results are presented in Figures 3.13 and 3.14, which demonstrate the effectiveness of the

controller.
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Figure 3.13: Comparison of the robustly controlled (with active steering) and the uncontrolled

vehicles (v = 140km/h, δpeak= 100◦, andh = 0.375m).

Comment : From the simulation results of the fixed and the robust controllers for the same

maneuver, we observe that both methods are effective in reducing the load transfer ratio

LTRd, and thus preventing rollover. However the robust controller performance is far less
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Figure 3.14: Comparison of the trajectories and states of robustly controlled (with active steering)

and the uncontrolled vehicles (v = 140km/h, δpeak= 100◦, andh = 0.375m).

conservative. Also notice that driver intervention of the controller by any chosen measure

is practically undiscernible by the driver, which is favorable and was oneof our aims.

In the second set of numerical simulations, we again tested a similar obstacle avoidance

maneuver (elk test) however, this time we set the peak value of the driver steering input

asδp = 150◦ and constant speed was fixed asv = 70km/h. Moreover the CG height was

selected ash = 0.45m. The corresponding simulation results are presented in Figures 3.15

and 3.16, which demonstrate the effectiveness of the controller for varying CG height.

In the third set of numerical simulations, we performed an obstacle avoidance maneuver

with a peak driver steering input ofδp = 120◦. Also this time we implemented a rapid
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Figure 3.15: Comparison of the robustly controlled (with active steering) and the uncontrolled

vehicles (v = 70km/h, δpeak= 150◦, andh = 0.45m).

change in velocity from the initial value ofv = 140km/h, which simulates braking action

during the maneuver. In this simulation CG height was fixed to beh = 0.375m. The corre-

sponding simulation results are presented in Figure 3.17 and Figure 3.18 demonstrating the

effectiveness of the controller design for varying CG height and speed.

Comment : In all the simulation examples we observe that the robust controller is quite

effective in reducing the load transfer ratioLTRd below the safety limits while keeping the

controlled states to be sufficiently close to the reference vehicle states. Alsonotice that

driver intervention of the controller is insignificant, which was one of the intended design

goals.
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Figure 3.16: Comparison of trajectories and states for robustly controlled (with active steering) and

uncontrolled vehicles (v = 70km/h, δpeak= 150◦, h = 0.45m).

3.5.3 Controller mode switch

A basic problem with the aforementioned controllers is that they are always active. That is,

they are always attempting to limit the LTR, even in non-critical situations, thus potentially

interfering with, and annoying the vehicle driver. It therefore makes sense only to activate

the controller in situations where the potential for rollover is significant. Herewe introduce

one such criterion for controller activation.

The switching method introduced here is based on the Lyapunov functionV(x) = xTPx,

where the positive definite symmetric matrixP is given byP = S−1 andS is obtained when

solving the LMIs in the controller design. Ideally, the controller is only activated when
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Figure 3.17: Comparison of the robustly controlled (with active steering) and the uncontrolled

vehicles (v0 = 140km/h, δpeak= 120◦, andh = 0.375m).

V(x) reaches some critical valueVcrit . The critical value is chosen so that|LTRd| < 1 when

V(x) ≤Vcrit . In particular, we regulate the controller input according to

u =















0 if V(x) ≤Vcrit − ε

Kx if V(x) ≥Vcrit

with Vcrit chosen to guarantee that theLTRd is close to one when the controller is activated.

The reasoning behind the above strategy is as follows. Recall from Remark 3.5.5 that our

original controller design guarantees thatV̇, the time rate of change ofV along a solution, is

negative outside the ellipsoidE (ρω) defined in (3.32) whereρω is a bound on the magnitude

of the disturbance input. Suppose now that the controller is not activated until V(x) > Vcrit .
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Figure 3.18: Comparison of trajectories and states for robustly controlled (with active steering) and

uncontrolled vehicles (v0 = 140km/h, δpeak= 120◦,h = 0.375m).

Then for driver inputsω which satisfyµ0‖ω(t)‖2 ≤ Vcrit , the switching controller will

guarantee thaṫV is negative outside the ellipsoid

Ecrit := {x∈ R
n : V(x) ≤Vcrit} . (3.60)

This in turn guarantees that the ellipsoid is invariant and attractive. In particular, if a state

trajectory starts at zero andµ0‖ω(t)‖2 ≤Vcrit then, the state trajectory remains within this

ellipsoid. Recall also that‖z1‖≤ µ11V(x) andz1 = LTRd; hence, whenever a state trajectory

starts at zero andµ0‖ω(t)‖2 ≤Vcrit , we have that|LTRd| ≤ µ11Vcrit . By choosing

Vcrit < 1/µ11, (3.61)

we guarantee that the controller turns on before|LTRd| reaches one, but, the controller does
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3.5 State feedback controllers for robust disturbance attenuation

not switch on for small driver steering inputs. In accordance with standard practice we

propose the following continuous switching-type controller to avoid chattering action:

u = ζ (V(x))Kx where V(x) = xTS−1x (3.62)

and

ζ (V) =
1
2

+
1
2

sat

[

2
ε
(V −Vcrit )+1

]

; (3.63)

heresatdenotes the saturation function andε is a small positive number. The graph ofζ is

depicted in Figure 3.19.

Figure 3.19: Graph of the functionζ .

We demonstrate the performance of the above switching controller with further simulations

whose results are illustrated in Figure 3.20. These correspond to an obstacle avoidance

maneuver where the peak value of the driver steering input isδp = 50◦ and the vehicle speed

was fixed atv = 140km/h. Notice that although there is no rollover threat in this maneuver,

the original linear robust controller was trying to compensate by a very smallamount as seen

from the actuator input plot. Whereas the robust controller with the suggested switching

produces no input and theLTRd corresponding to the switching controller is identical to

that of the uncontrolled vehicle, demonstrating the efficacy of the suggested method.
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Figure 3.20: Comparison of continuous and switched robust controllers with active steering at a non

critical maneuver (v = 140km/h, δpeak= 50◦, andh = 0.375m).

3.6 Conclusions and possible future directions

In this chapter, we have presented a methodology for the design of robust vehicle rollover

prevention systems using differential braking and active steering actuators. By introducing

the load transfer ratioLTRd, we obtained a system performance output whose value pro-

vides an accurate measure for determining the onset of rollover. Our rollover prevention

controllers are robust in the sense that they guarantee the peak values of the performance

outputs of an uncertain system do not exceed certain values. Simulation results demon-

strate the benefits of the proposed approach in a real-life problem. In the case of control

design based on differential braking actuators, the results can easily betested and imple-

mented without much financial overhead, since these actuators already exist in most stock

passenger vehicles.

Future work will proceed in several directions. We shall extend the methodology to include

active suspension and combinations thereof to refine our rollover prevention strategy, and

analyze the resulting control allocation problem. We shall also examine the efficacy of our

controllers in the presence of conditions which can result in a tripped rollover. Also, we are
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looking into extending these ideas to railroad vehicles. Applications of control strategies

with several actuators is not only limited to road and railroad vehicle roll stabilization, but

can also be used to make the dynamics of a vehicle emulate those of another vehicle (e.g.

having an SUV behave like a sports car), which shall be future direction for this research.

Another strand of work will investigate refinement of the synthesis procedure. In particular,

we shall also investigate a gain scheduled control approach based on locally valid fixed

models and LMI based controllers as described in this chapter. We shall also investigate

whether convergence and feasibility conditions can be developed to determine the existence

of control gains to achieve certain pre-specified performance parameters γ j .

On the practical side of this work, we have scheduled with our industrial partners an evalu-

ation of our control design in real production vehicles.

Comment : A straightforward refinement of the rollover controller synthesis procedure

introduced in this chapter can be obtained by utilizing more complex vehicle modelssuch

as the 2-track (i.e., 4 wheel) vehicle model [50] and/or nonlinear tire models (e.g., HSRI

[22]) in conjunction with the LMI algorithm. We shall consider this extension in the near

future.
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Chapter 4

A Methodology for Adaptive

Rollover Prevention Control Design

for Automotive Vehicles

In an attempt to refine the rollover prevention systems introduced in the last

chapter, we suggest here an adaptive controller synthesis procedurebased on

multiple models and switching. We utilize the estimation techniques developed

in Chapter 2 to infer the unknown CG height and suspension parameters ofthe

vehicle, which is then used to switch among a paired set of robust controllers.

Controller adaptation is a byproduct of the switching action, and it results

in higher performance as compared to fixed controllers. Our controllersare

based on differential braking, and each one is designed to be robust withre-

spect to varying velocity.
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4.1 Chapter contributions

The contribution of this chapter is in implementing the rollover mitigation methodology

given in the preceding chapter in conjunction with the MMST framework. Thiswas achieved

by combining the vehicle parameter estimation technique introduced Chapter 2, and the ro-

bust rollover mitigation methodology introduced in the preceding chapter with a switched

estimator-corrector structure. To do this, we formulated the rollover mitigation problem

as a bounded input bounded output (BIBO) disturbance rejection problem with switched

matrices. In doing so, we viewed the automotive vehicle as an uncertain dynamical system

with disturbance inputs, and our controllers guarantee that the performance outputs of the

system relevant to rollover are bounded regardless of the parametric switching. As was the

case in the preceding chapter, our suggested robust control design method allows vehicle

parameter uncertainty to be taken into account in our designs, given that the uncertainty

belongs to convex hull.

The work contained in this chapter has resulted in the following publication:

(i) Solmaz S., Akar M., Shorten R., “Adaptive Rollover Prevention for Automotive Vehi-

cles with Differential Braking”, Under review for 17th IFAC World Congress, Seoul

Korea, 2008.

4.2 Introduction

It has been emphasized several times in the preceding chapters that the vehicle CG position

plays an important role for the vehicle dynamics and the vehicle road handlingbehavior.

Therefore, the effects of changes in the CG position, or the uncertainty inthe knowledge

of it, have to be considered for analyzing vehicle dynamics, and must be accounted for in

designing active control systems for accident mitigation. However, the difficulty is that this
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unknown parameter is not directly measurable and it can vary significantly with changing

passenger and loading configurations; such changes are the most severe in large passenger

vehicles such as SUVs, which statistically have the highest rate of rollover accidents. With

these in mind, we suggested in Chapter 2 a method inspired by the MMST paradigm, for

estimating the unknown and unmeasurable parameters of the vehicle including the CG posi-

tion, and then in Chapter 3, we proposed a robust controller synthesis method that accounts

for the parametric uncertainties for the specific problem of automotive rollover prevention.

In order to further refine the control design methodology developed in thepreceding chap-

ter, we fuse in the current chapter the parameter estimation technique of Chapter 2, and the

locally robust rollover prevention design method of the last chapter in a unified switched

feedback control implementation for the rollover prevention problem.

As explained in detail in Section 2.3.4, the height of CG along with the lateral accelera-

tion are the most important parameters affecting the rollover propensity of anautomotive

vehicle; while the vehicle lateral acceleration can be measured directly by sensors, the CG

height can not be measured and it needs to be estimated indirectly. One suchmethod for

inferring CG height was suggested in Chapter 2. Therefore, we utilize thisresult for the

control strategy advocated in the current chapter with the aim to improve the performance

of our active rollover mitigation systems. Specifically, we use multiple identificationmod-

els for inferring the unknown vehicle CG height developed in Chapter 2, which is then

used to switch among a paired set of locally robust rollover prevention controllers that are

designed based on the results of Chapter 3. Due to this structure of multiple indirect es-

timation models and the paired controllers, the suggested feedback implementationis an

adaptive control approach for the problem of mitigation of rollover, whichinvolves inherent

parametric uncertainties due to the unknown or time varying vehicle parameters.

Our motivation for considering an adaptive controller implementation for the rollover mit-

igation problem is twofold. Firstly, adaptive controllers are the alternative option to the

robust ones and they can potentially provide higher performance. As wehave seen in the ro-
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bust rollover controller implementation example in the preceding chapter, robust controllers

have fixed gains that are chosen considering the worst-case that the plant undergoes; for the

rollover problem the worst operating condition translates to operating the vehicle with the

highest possible CG position. While choosing the controller gains for the worst-case guar-

antees the performance (i.e., safety) under the designed extreme operating condition, the

feedback performance of the robustly controlled systems under less severe or even normal

operating conditions are suboptimal. This is evident from our robust control implementa-

tions of the last chapter in that, the suggested controllers were still trying to compensate

even when the rollover potential as measured by the “dynamic load transferratio” (LTRd)

was insignificant; this is why we considered the switching rule given in Section3.5.3 to

switch the controllers on and off depending on the Lyapunov functions. Although such an

on-off switch solution was effective in retaining the expected performance of the vehicle

under normal operating conditions (i.e., when the rollover risk is small), the suboptimal

performance of the controllers for varying rollover accident scenarios was still an issue,

which can potentially be addressed by adaptation. The second motivation for considering

the adaptive feedback design for the rollover prevention problem is related to the time con-

stant of rollover accidents, which is on the order of seconds (sometimes even a fraction

of a second) and is usually accepted to be quite small (see for example [25]for a discus-

sion of this). While conventional adaptive controllers are known to have slow convergence

rates and large transient control errors when the initial parameter errors are large [77], [78]

(a factor that renders these control approaches unsuited for use in rollover mitigation ap-

plications), utilization of MMST type algorithms [14] may overcome these problemsand

provide high performance adaptive controllers. Therefore, when improving the controller

performance and speed for the rollover problem is considered, MMST framework becomes

an ideal choice as it can provide a rapid identification of the unknown parameters as part

of the closed loop implementation. In this respect, we consider the vehicle parameter es-

timation methods developed in Chapter 2 in conjunction with a multiple model switched

controller implementation. This way we can rapidly switch to a controller that is optimal
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for the maneuver and the vehicle operating conditions, thus improving the overall safety of

the vehicle without sacrificing its performance.

The robust controller design described in the sequel is based on differential braking actua-

tors only, where each of then proposed switched controllers based on differential braking

actuator has a linear feedback structure with a fixed gain matrixKη , whereη ∈ {1,2, ...,n}.

The choice of the control actuator is motivated by the desire to aid the exposition of the

multiple model switched control implementation, as the resulting controllers are of simple

proportional type. However, the extension of the results of this chapter tothe proportional-

integral type active steering actuator based rollover prevention controller suggested in Chap-

ter 3 as well as other alternative control approaches is a straightforward practice.

Similar to the analysis in Chapter 3, we view the automotive vehicle as an uncertainsystem

with a number of performance outputs and subject to a bounded disturbance input. For

each performance outputzj , a performance measureγη j guarantees that the magnitude of

the output is less than or equal to the maximum ofγη j times the peak value of the magnitude

of the disturbance, for allη ∈ {1,2, ...,n}. For each of the switched controllers we utilize

a controller design procedure, similar to the one introduced in the precedingchapter, to

minimize the performance level for one main output while keeping the performance levels

for the other outputs below some prespecified levels. Each of the switched controllers is

robust in the sense that it ensures performance in the presence of anyallowable uncertainty

which was taken into account in the control design. In applying these results to the rollover

problem, we consider the driver steering input as a disturbance input. Since we wish to keep

the magnitude ofLTRd less than one, we view this as the main performance output. To

limit the amount of control effort and to accommodate actuator constraints, wechoose the

control input as an additional performance output in the feedback design. Also, we design

each of the switched controller gains to be robust with respect to changingvelocity, which is

motivated by the fact that the differential braking actuators reduce the vehicle velocity. This

change should be taken into account in the control design as the vehicle velocity directly
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affects the vehicle dynamics; this is why we consider incorporating a robustness criteria with

respect to changing velocity, which was possible with the aid of the design methodology

developed in Chapter 3. Eventually, our controllers are designed to keepthe peak magnitude

of LTRd less than one, which is the criterion for preventing rollover occurrence as it is

equivalent to preventing one-side wheel lift off. Also, as compared to the control designs

of the preceding chapter we can do this in a less conservative fashion withthe help of the

switching among a set of locally robust controllers, which we demonstrate bya numerical

example.

4.3 Vehicle modelling

For the multiple model switched controller design that shall be described in the following

sections, we utilize two separate vehicle models that we have already developed in the

preceding chapters; these are the second order roll plane model, and the single track model

with roll degree of freedom and with differential brake input. While we usethe roll plane

models for estimating the unknown CG height of the vehicle in real time, we utilize the

single track model with roll degree of freedom for designing switched andlocally robust

control gain matrices for use with the state feedback controllers based on the differential

braking actuator. As both of these models have been described in detail in the preceding

chapters, we just give the resulting models in the following discussion along with references

to earlier sections.

Roll plane model

We use the roll plane model given here and derived in Section 2.3.2 for therealtime estima-

tion of CG height based on the multiple model switching framework, details of which were

described in Chapter 2. The 2-state roll plane model is the simplest model capturing the roll
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dynamics of an automotive vehicle and it is free from the effects of uncertainties originating

from unknown tire stiffness parameters; we emphasize that this a factor that makes the roll

plane model suitable for the real time estimation of unknown CG position.

Under the small angles assumption, and with reference to Figure 2.2, the equations of mo-

tion describing the roll plane dynamics can be expressed in the following 2nd order state

space form

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φ̇
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ay, (4.1)

whereay is the lateral acceleration andg is the gravitational acceleration. As a simplifying

assumption for the derivation of the model, it was assumed that relative to the ground, the

sprung mass rolls about a fixed horizontal roll axis along the centerline ofthe vehicle body

at the ground level. For further description of the parameters appearingin the equation refer

to Table 3.1. Also,Jxeq above denotes the equivalent roll moment of inertia as described in

(2.9).

Single track model with roll degree of freedom and differential brake input

We use this model with the active differential braking input to design locally robust state

feedback controllers. Denotingβ as the sideslip angle of the vehicle, and with reference to

Figure 3.1, the equations of motion corresponding to this model are given asfollows

ẋ = Ax+Bδ δ +Buu with (4.2)
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, (4.3)

Bδ =

[

CvJxeq

mJxxv
Cvlv
Jzz

hCv
Jxx

0

]T

, Bu =

[

0 − T
2Jzz

0 0

]T

, (4.4)
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wherex =
[

β ψ̇ φ̇ φ
]T

is the state, andu represents the total effective differential brak-

ing force acting on the wheels; it is positive if braking is on the right wheels and negative if

braking is on the left wheels. Differential braking force as the control input is depicted in

Figure 3.3. Further notations and parameters appearing in (4.3) and (4.4)are described in

Table 3.1. Also, for further details of the derivation of this model refer to Section 3.4.1.

In order to model the change in the vehicle longitudinal speed as a result ofthe braking

force, we assume that the longitudinal wheel forces generated by the engine counteract the

rolling resistance and the aerodynamic drag at all times. Under this assumption, the vehicle

speed is approximately governed by

v̇ = −|u|
m

. (4.5)

Comment: A detailed discussion of the rationale for using differential braking actuators

for the rollover mitigation problem was given in Section 3.4.3. In the same section, further

assumptions on the known and unknown vehicle parameters appearing in themodels above

have been discussed. Also it has been mentioned earlier that the potential of rollover oc-

currence is measured byLTRd, which was derived and explained in detail in Section 3.4.2.

As it will be utilized in the following discussion, we give here the resultant expression for

LTRd in terms of the states of the single track model with roll degree of freedom, which is

LTRd = Cx where C =

[

0 0 2c
mgT

2k
mgT

]

. (4.6)

4.4 Adaptive rollover control design with multiple mod-

els & switching based on differential braking ac-

tuators

In this section we describe an approach for combining the CG estimation method given in

Chapter 2 with the robust state feedback rollover prevention control design methodology
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developed in Chapter 3. We note that the adaptive control implementation given here is

inspired, at large, by the MMST control framework developed by Narendra et al. in a series

of publications [77, 84, 78, 85, 79, 14]. In the MMST control framework, each identification

model is paired-up with a controller as shown in Figure 1.4, and based on a performance

index of the identification errors a model/controller pair is chosen to control the plant at

every instant. In this chapter we consider a version of this control strategy for obtaining

high performance rollover prevention controllers.

Our LMI based multiple switched controller design methodology is unique in the sense that

it enables us to synthesize locally robust controllers to account for the changing vehicle

speed as described in detail in Section 3.5.1. In doing so, we utilize a variationof the itera-

tive numerical procedure given in Appendix B to guarantee the robustness of the switched

controllers. Also, in order to improve the overall controller performance,we switch among

multiple fixed controllers (where each is locally robust with respect to changing velocity)

based on the real time estimation of the CG height and the suspension parameters. We em-

phasize that in this controller implementation, adaptation is a byproduct of the switching

itself.

4.4.1 Switched state feedback control

We utilize a variation on the LMI based design methodology developed in Chapter 3 to

obtain a set of robust rollover prevention controllers using the differential braking as the

sole control input. In order to explain this in detail, we shall first express our control design

procedure in terms of a generic switching state space system given, whichis parameterized

in terms of a parameter vectorθ

ẋ = Aη(θ)x+Bη(θ)ω +Bu,η(θ)u (4.7)

zj = Cj,η(θ)x+D j,η(θ)ω +D ju,η(θ)u, j = 1, . . . , r , (4.8)
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where the vectorx(t) ∈ R
nx is the state at timet ∈ [0,∞) and ω(t) ∈ R

nω is a bounded

disturbance input. Alsou(t) ∈ R
nu is the control input andzj(t) ∈ R

p j are the performance

outputs. The indexη ∈ {1,2, . . . ,n} represents discrete switches in the system matrices. We

assume that parameter vectorθ captures the plant parametric uncertainty, which can depend

on t,x,ω andu. Moreover, we have the following assumption that is required by the plant

uncertaintyθ to be satisfied.

Assumption 4.4.1 For eachη ∈ {1,2, . . . ,n}, and j∈ {1,2, . . . , r} the matrix sextuple

[

Aη(θ) Bη(θ) Bu,η(θ) Cj,η(θ) D j,η(θ) D ju,η(θ)

]

belongs to the convex hull of a finite number of N matrix sextuples below

[

A1,η B1,η Bu1,η Cj1,η D j1,η D ju1,η

]

, . . .

. . . ,

[

AN,η BN,η BuN,η CjN,η D jN,η D juN,η

]

.

This implies that for eachη ∈ {1,2, . . . ,n}, and j∈ {1,2, . . . , r}, there exists non-negative

scalarsξ1, . . . ,ξN such that∑N
i=1 ξi = 1 and

Aη(θ) = ∑N
i=1 ξiAi,η , Bη(θ) = ∑N

i=1 ξiBi,η , Bu,η(θ) = ∑N
i=1 ξiBui ,η ,

Cj,η(θ) = ∑N
i=1 ξiCj i ,η , D j,η(θ) = ∑N

i=1 ξiD j i ,η , D ju,η(θ) = ∑N
i=1 ξiB jui ,η .

Note that for eachη ∈ {1,2, . . . ,n} this assumption is the analogue of Assumption 3.5.1.

Now, we wish to synthesize stabilizing switching state feedback controllers, which prevent

the peak values of the performance outputs exceeding certain values. Indoing so, for each

outputzj we introduce a measure of performanceγη j , which guarantees that the magnitude

of that output is less than or equal toγη j times the peak value of the magnitude of the

disturbance. In order to achieve this, we base our controller on the following theorem that

is analogous to Theorem 3.5.1 and is the main result of this chapter.
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Theorem 4.4.1 Consider the system described by (4.7)-(4.8) and satisfying Assumption

4.4.1. Suppose that there exist an invertible matrix S= ST > 0 (with P= S−1), matrices Lη ,

scalarsβη1, . . . ,βηN > 0 and µη0,µη1 j ,µη2 j ≥ 0, for all j = 1, . . . , r and η ∈ {1,2, . . . ,n},

such that the following matrix inequalities hold








βηi (SAT
i,η +Ai,ηS+LT

ηBT
ui ,η +Bui ,ηLη)+S βηi Bi,η

βηi B
T
i,η −µη0I









≤ 0, (4.9)

















−µη1 j S 0 SCT
j i ,η +LT

ηDT
jui ,η

0 −µη2 j I DT
j i ,η

Cj i ,ηS+D jui ,ηLη D j i ,η −I

















≤ 0, (4.10)

for all i = 1, . . . ,N, j = 1, . . . , r and η ∈ {1,2, . . . ,n}. Then the switched state feedback

controllers

uη = Kηx with Kη = LηS−1 (4.11)

result in a switched nonlinear/uncertain closed loop system, which has the following prop-

erties.

(a) For eachη ∈ {1,2, . . . ,n}, the undisturbed system (4.7) withω = 0, is globally expo-

nentially stable. That is, all state trajectories decay exponentially.

(b) The undisturbed closed loop switching systemẋ = Aη(θ)x+ Bu,η(θ)u is quadratically

stabilizable with switched controllers u(t) ∈ {u1,u2, . . . ,un}.

(c) If the disturbance input is bounded, that is,‖ω(t)‖ ≤ ρω for all t ≥ 0 then, for zero

initial state, the performance outputs z1, . . . ,zr of the closed loop system are bounded and

satisfy

‖zj(t)‖ ≤
[

arg max
η=1,...,n

γη j

]

ρω (4.12)

for all t ≥ 0 where

γη j =
√

µη0µη1 j + µη2 j , f or η ∈ {1,2, . . . ,n} (4.13)
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which implies the L∞ stability of the closed loop switched system (4.7)-(4.8).

Proof of Theorem 4.4.1:As a first observation, we note that for eachη ∈ {1,2, . . . ,n}

this theorem analogous to Theorem 3.5.1. Thus for the constituent systems the result is

given by Theorem 3.5.1. Accordingly, properties(a) and(c) above, directly follow from

Appendix A. Specifically inequality (4.12) results from the fact that the maximum element

of {γ1 j ,γ2 j , . . . ,γn j} determines the upper bound on the performance outputs‖zj(t)‖ for each

j = 1, . . . , r. Next we show that property(b) holds.

The undisturbed system associated with (4.7) can be expressed by

ẋ = Aη(θ)x+Bu,η(θ)u (4.14)

for eachη ∈ {1,2, . . . ,n}. This undisturbed feedback system is said to be quadratically

stabilizable via linear state feedback [91] if a Lyapunov solution (or Lyapunov matrix)P =

PT > 0 and controlleruη = Kηx exist along with a positive definite and symmetric matrix

Q = QT > 0 such that

2xTP(Aη(θ)+Bu,η(θ)Kη)x≤−xTQx (4.15)

for all t ∈ R, x ∈ R
nx andη ∈ {1,2, . . . ,n}. From Assumption 4.4.1, for eacht ∈ R and

θ we can express each of the matricesAη(θ), andBu,η(θ) as a convex combination ofN

matrices as follows

Aη(θ) =
N

∑
i=1

ξiAi,η , Bu,η(θ) =
N

∑
i=1

ξiBui ,η , (4.16)

whereξ1,ξ2, . . . ,ξN are scalars such thatΣN
i=1ξi = 1. Based on this observation, quadratic

stabilizability condition (4.15) can be expressed as

AT
i,ηP+PAi,η +KT

η BT
ui ,ηP+PBui ,ηKη < 0 f or i = 1,2, . . . ,N (4.17)

whereη ∈{1,2, . . . ,n}. Pre and post multiplying this inequality byS= P−1 and substituting

Lη = KηS then yields the following quadratic stabilizability condition in terms ofSandLη

SAT
i,η +Ai,ηS+LT

ηBT
ui ,η +Bui ,ηLη < 0 f or i = 1,2, . . . ,N (4.18)
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whereη ∈ {1,2, . . . ,n}. We note that this last condition is a necessary condition for in-

equality (4.9) of the theorem. This establishes the quadratic stability of the undisturbed

system (4.14) for eachη ∈ {1,2, . . . ,n}. We emphasize that the quadratic stability of the

undisturbed system (4.14) implies theBounded-Input, Bounded-Output(BIBO) stability of

the system with bounded disturbance inputs [102].

Therefore the nonlinear/uncertain system given with equations (4.7)-(4.8) in compliance

with Assumption 4.4.1 isL∞ stable1 by Theorem A.0.1 of Appendix A.

Q.E.D.

In the sequel we give the implementation of Theorem 4.4.1 to the switched adaptive rollover

controller design based on differential braking actuators.

4.4.2 Adaptive rollover control design

In applying the Theorem 4.4.1 to the rollover prevention problem, we utilize boththe sim-

ple roll plane model and the single track model with roll degree of freedom with differential

brake input, as described in Section 4.3. We consider the driver steeringinput as a distur-

bance input. Also, since we wish to prevent rollover of the vehicle, our switched controllers

are designed to keep the peak magnitude of the load transfer ratio less than one, which im-

plies preventing one-side wheel lift-off, and thus avoiding rollover. Therefore, we view the

dynamic load transfer ratioLTRd given in (4.6) as the main performance output. Also, in

order to limit the amount of control effort as well as to accommodate actuator constraints,

we choose the control input as a secondary performance output in the feedback design.

Moreover, as an integral part of our design, we consider the switchedcontroller gains to be

robust with respect to changing velocity, which is motivated by the fact thatthe differential

1this is similar to the definition of input/output stability (IOS) in [126], with the exception that it

takes into account the initial state. See Appendix A for the precise definition ofL∞ stability.
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braking actuators reduce the vehicle velocity. This change should be taken into account

in the control design as the vehicle velocity directly affects the vehicle dynamics; this is

why we consider incorporating a robustness criterion in the controller design for changing

velocity, which is possible with the aid of the Theorem 4.4.1.

The switched multiple model control structure is schematically shown in Figure 4.1, where

there aren identification models driven by the same plant output, which are paired up with

n locally robust state feedback controllers. In what follows, we first describe the switched

identification algorithm as a control switching criterion, and then give the implementation

of the stable switched adaptive rollover controller design utilizing differential braking actu-

ators and making use of Theorem 4.4.1.

(a) Controller switching criteria

As explained in detail in the preceding chapters, the height of CG along with the lateral

acceleration are the most important parameters affecting the rollover propensity of an auto-

motive vehicle; while the vehicle lateral acceleration can be measured directlyby sensors,

the CG height can not be measured and it needs to be estimated indirectly. Here we use

multiple identification models for inferring the unknown vehicle CG height along with the

relevant suspension parameters in real time, as developed in Chapter 2, which is then used as

a criterion to switch among a paired set of locally robust rollover preventioncontrollers. We

emphasize that due to this structure of multiple indirect estimation models and the paired

controllers, the suggested feedback implementation is an adaptive control approach for the

problem of mitigation of rollover, which involves inherent parametric uncertainties due to

the unknown and/or time varying vehicle parameters.

The identification models are based on the 2nd order roll plane model (4.1) and are mainly

used to determine the unknown CG height of the vehicle. The estimation models are ob-

tained by varying the uncertain model parameters within bounded intervals and at a finite
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Figure 4.1: Multiple model switched adaptive control structure.

number of grid points, where the uncertain parameters are the CG heighth, linear roll spring

stiffnessk, and the roll damping coefficientc. Specifically, each of the unknown parameters

is assumed to belong to a closed uncertainty interval such thath∈ H , k ∈ K , andc∈ C ,

where each interval contains a finite number of grid points so that they can be represented as

{h1,h2,h3, . . . ,hp} ⊂ H , {k1,k2,k3, . . . ,kq} ⊂K , and{c1,c2,c3, . . . ,cd} ⊂ C with dimen-

sionsp,q andd respectively. Thenn = p×q×d different identification models are formed
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corresponding to the cross combinations of the grid points in the parameter space. Utilizing

(4.1) the equations of motion corresponding to each modelIζ can be represented as below

Iζ :









φ̇ζ

φ̈ζ









=









0 1

− kζ−mghζ

Jζ
xeq

− cζ

Jζ
xeq









·









φζ

φ̇ζ









+









0

mhζ

Jζ
xeq









ay, (4.19)

whereζ = 1,2, . . . ,n denotes the identification model number and

Jζ
xeq

= Jxx+mh2
ζ

is the equivalent roll moment of inertia. We assume that all models have zero initial con-

ditions such thatφζ (0) = 0, andφ̇ζ (0) = 0, for ζ = 1,2, . . . ,n. Note that the zero initial

conditions physically correspond to starting the identification algorithm at a straight driving

state, where the roll angleφ , and the roll rateφ̇ of the vehicle are both zero. Also note

that every model is driven by the same inputay (lateral acceleration), which is a measured

sensor quantity of the vehicle.

Since we are interested in designing state feedback controllers, the statex=
[

β ψ̇ φ̇ φ
]T

defined earlier, is assumed to be available at all times. Consequently the roll angle φ of

the vehicle is a measurable quantity. We can then define the identification errorfor the

ζ th roll plane model as the difference between the vehicle’s measured roll angle and the

corresponding model output; we denote this byeζ and compute it from

eζ = φ −φζ , f or ζ = 1,2, . . . ,n. (4.20)

Next we compute the MMST cost function (a function of the identification error for each

model) described in detail in Section 2.4.1, and repeated below

Jζ (t) = α ||eζ (t)||+β
∫ t

0
e−λ f (t−τ)||eζ (τ)||dτ, (4.21)

whereζ = 1,2, . . . ,n andα,β ≥ 0 are scalars controlling the relative weights on instanta-

neous and cumulative identification error measures. Alsoλ f denotes the forgetting factor.
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Switching among the models and choosing the one with the minimum cost based on the

criterion below

η(t) = arg min
ζ=1,...,n

Jζ (t), (4.22)

yields the model with the minimum cumulative error; we denote the minimum cumulative

error byJη(t), and the corresponding selected model parameters bykη ,cη andhη , which

represent the vehicle in the parameter space described byK , C andH , respectively. Based

on the certainty equivalence principle2, the selected model with the estimated CG height

hη , and linear suspension parameterskη ,cη is then used to switch to a paired locally robust

linear state feedback controllerCη ∈ {C1,C2, . . . ,Cn}, where

Cη : uη = Kηx, η ∈ {1,2, . . . ,n}. (4.23)

Having described the controller switching criteria, we next give the procedure for designing

individual robust rollover prevention controllersCη , for the switched controller implemen-

tation shown in Figure 4.1. We utilize a control design methodology based on Theorem

4.4.1 to obtain a switched set of locally robust rollover prevention controllers using the

differential braking as the sole control input.

(b) Adaptive rollover control implementation based on differential braking

The vehicle model utilized is the single track model with roll degree of freedomand with

differential brake input given in (4.2) along with systems matrices (4.3), and (4.4). We

consider the driver’s steering wheel angle in degrees as the disturbance inputω ; this is

related to the steering angleδ by

δ =
π

180λ
ω (4.24)

2in the sense of adaptive control, the principle of certaintyequivalence from tuning to switching

is based on the hypothesis that a small identification error leads to a small tracking error [14],[79].

Therefore using a model that has the closest outputs to thoseof the plant is likely to yield the best

feedback control performance.
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whereλ is the steering ratio between the steering wheel and the wheels. We wish to syn-

thesize a stabilizing controller corresponding to each CG height setting, which prevents the

peak values of the performance outputs exceeding certain values. Our LMI based controller

design strategy is used to minimize the performance level for one main output (LTRd),

while keeping the performance level for another output (control input,u) below some pre-

specified levels. In addition, our controllers are locally robust in the sense that they ensure

performance in the presence of any allowable uncertainty in the vehicle speed, which results

from the differential braking based controller intervention. Thus, we consider the effect of

varying speed in our control design assuming that the speed varies oversome prespecified

range; we call this the locally robust controller corresponding to each combination of CG

height and suspension parameter configurations within the parameter space defined by a

finite number of grid points inK , C , H , and is denoted by the indexη ∈ {1,2, . . . ,n}.

As the load transfer ratio is a metric directly related to rollover occurrence (see Section

3.4.2 for the significance ofLTRd in terms of rollover), we set this parameter as the first

performance output, that isz1 = LTRd, whereLTRd is defined as a function of the vehicle

states in (4.6). We want to keep‖z1‖ ≤ 1 for the largest possible steering inputs (i.e., the

disturbance inputs), which is equivalent to keeping all the 4 wheels in contact with the road

and thus preventing rollover. Also, we consider the magnitude of the braking forceu to

be limited by the weightmgof the vehicle; so we choosez2 = u as a second performance

output. Note that this is a simple approach for imposing hard actuator constraints in the

control design based on differential braking. The resulting system with two performance

outputs can be described as follows

ẋ = Aη(t)x+Bη(t)ω +Buu

z1 = Cηx (4.25)

z2 = u,

where the switching uncertain system matricesAη(t), Bη(t), and switching matrixCη are
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given by

Aη(t) =























−σJη
xeq

mJxxv
ρJη

xeq

mJxxv2 −1 −hη cη
Jxxv

hη (mghη−k)
Jxxv

ρ
Jzz

− κ
Jzzv

0 0

−hη σ
Jxx

hη ρ
Jxxv

− cη
Jxx

mghη−kη
Jxx

0 0 1 0























, Bη(t) =
π

180λ























CvJ
η
xeq

mJxxv

Cvlv
Jzz

hCv
Jxx

0























(4.26)

and

Cη =

[

0 0 2cη
mgT

2kη
mgT

]

, (4.27)

for eachη ∈ {1,2, . . . ,n}. In order to consider uncertainty arising from changing vehicle

velocity in the control design, we assume that the speed is bounded above and below byv

andv, respectively, that is,v≤ v≤ v. Note that the matricesBu andCη are independent of

vehicle speed whereas the system matricesAη(t) andBη(t) can be expressed as affine linear

functions of the time-varying parametersθ1 := 1/v andθ2 := 1/v2. These parameters are

bounded as follows:

θ 1 ≤ θ1 ≤ θ 1 , θ 2 ≤ θ2 ≤ θ 2 (4.28)

where

θ 1 =
1
v

, θ 1 =
1
v

, θ 2 =
1

v2 , θ 2 =
1
v2 . (4.29)

We can also defineθ = [ θ1, θ2 ]T as a 2-vector representing the parameter uncertainty

resulting from changing velocity.

A1,η = θ 1Y1,η +θ 2Y2,η +Y3,η , A2,η = θ 1Y1,η +θ 2Y2,η +Y3,η ,

A3,η = θ 1Y1,η +θ 2Y2,η +Y3,η , A4,η = θ 1Y1,η +θ 2Y2,η +Y3,η ,

(4.30)

B1,η = B2,η = π
180λ

[

CvJ
η
xeq

mJxx
θ 1

Cvlv
Jzz

hηCv

Jxx
0

]T

,

B3,η = B4,η = π
180λ

[

CvJ
η
xeq

mJxx
θ 1

Cvlv
Jzz

hηCv

Jxx
0

]T

,

(4.31)
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where

Y1,η =























−σJη
xeq

mJxx
0 −hη cη

Jxx

hη (mghη−kη )
Jxx

0 − κ
Jzz

0 0

0 hη ρ
Jxx

0 0

0 0 0 0























, Y2,η =























0
ρJη

xeq

mJxx
0 0

0 0 0 0

0 0 0 0

0 0 0 0























,

Y3,η =























0 −1 0 0

ρ
Jzz

0 0 0

−hη σ
Jxx

0 − cη
Jxx
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Jxx

0 0 1 0
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











.

(4.32)

for eachη ∈ {1,2, . . . ,n}. Note that for eachη , it is possible to express both of the uncertain

matricesAη(t) andBη(t) as a convex combination of the 4 distinct vertex matrices defined

above, i.e.,

Aη(t) =
4

∑
i=1

ξiAi,η , Bη(t) =
4

∑
i=1

ξiBi,η ,

whereξ1,ξ2,ξ3,ξ4 are positive scalars such thatΣ4
i=1ξi = 1. Thus our system descrip-

tion satisfies Assumption 4.4.1, and therefore we can employ Theorem 4.4.1 to design the

switched rollover prevention controllers.

Numerical implementation

Here we present the implementation of the adaptive switching rollover controller design as

depicted in Figure 4.1, which takes into account robustness with respect tovarying vehicle

speed as well as the switches in the CG height of the vehicle. We used the model parameters

given in Table 4.1 for the model representing the simulated vehicle dynamics based on the

single track model with roll degree of freedom. For the ease of exposition,we considered

only the switching in the CG height (h) in our simulations, which can occur as a result of

rapid vertical motion of passengers and loads (e.g, loads falling vertically due the inertial

164



4.4 Adaptive rollover control design with multiple models & switching based
on differential braking actuators

forces exerted during a cornering maneuver). Note that we considered the linear suspension

parametersc, andk to be fixed and known parameters in conjunction with the CG height

estimation algorithm (i.e., the controller switching logic). For the controller switching al-

gorithm (CG height estimating algorithm) we considered CG height uncertainty tobe such

that{0.5,0.55, . . . ,0.85} ⊂ H , comprising of 8 possible CG height configurations in total.

Also we set the free design parameters for the cost function (4.21) asα = 0.2 andβ = 0.8,

while the forgetting factorλ f was chosen to be 0. We emphasize that the forgetting factor

becomes important if the plant undergoes rapid switches; this is not the casefor the CG

height uncertainty considered here (where we assume that CG height is unknown and not

changing in a finite time horizon), thus we setλ f = 0 in the following discussion.

For the design of corresponding velocity-robustified controllers, we assumed that the speed

is bounded above and below byv= 20m/s, andv= 40m/s, which represents typical freeway

driving conditions for a compact passenger vehicle. Then we employed Theorem 3.5.1

based on the system description (4.25) along with the vertex matrices (4.30) and (4.32)

to design 8 switched controllers based on switching CG height configurations, denoted by

η ∈ {1,2, . . . ,8}, where each locally robust controller guarantees performance levelsγη1

andγη2 = mgγη1, in the presence of any variations in speed satisfyingv≤ v≤ v.

In order to choose the switched controller gains based on Theorem 3.5.1,we utilized a vari-

ation of the iterative LMI solution algorithm described in Appendix B withN = 4. The

algorithm was modified such that it calculates controller gains for the 8 CG height configu-

rations, all of which conform to Theorem 3.5.1 and also share a common Lyapunov solution

(CLS) P = PT > 0. In order to obtain the commonP matrix, the same LMI algorithm was

used for the worst case CG height (i.e.,hmax = 0.85 [m]) as described in the appendix.

Then obtained Lyapunov solutionP was fixed for the other CG configurations and the iter-

ative LMI algorithm was repeated. As a result we obtained the following 8 controller gain
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Table 4.1: Simulation model parameters

parameter value unit

m 1300 [kg]

g 9.81 [m/s2]

δpeak 150 [deg]

λ 18 non-dimensional

Jxx 400 [kg·m2]

Jzz 1200 [kg·m2]

lv 1.2 [m]

lh 1.3 [m]

L 2.5 [m]

T 1.5 [m]

h 0.5 [m]

c 5000 [kg·m2/s]

k 36000 [kg·m2/s2]

Cv 60000 [N/rad]

Ch 90000 [N/rad]
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matrices

Kh=0.85 = [ −5.9767 0.9345 0.2430 0.4289 ] ·104

Kh=0.80 = [ −6.0000 1.0179 0.2078 0.3171 ] ·104

Kh=0.75 = [ −7.4097 1.1068 0.1630 0.0803 ] ·104

Kh=0.70 = [ −7.6453 1.1675 0.1307 0.0003 ] ·104

Kh=0.65 = [ −7.8537 1.2186 0.1009 −0.0565 ] ·104

Kh=0.60 = [ −8.0653 1.2632 0.0727 −0.0988 ] ·104

Kh=0.55 = [ −8.2826 1.3029 0.0452 −0.1308 ] ·104

Kh=0.50 = [ −8.5039 1.3384 0.0182 −0.1554 ] ·104

In what follows, we present the simulation results corresponding to the switched control

structure shown in Figure 4.1 which utilize the above control gains based onvarying CG

configurations. In our plots we provide a comparisons of the switched adaptive control with

a fixed robust controller, where the robust controller has the fixed gainKh=0.85 assuming the

worst case CG height ofh = 0.85m. We also compare the results with uncontrolled single

track model with roll degree of freedom.

For the numerical simulations, we used the obstacle avoidance maneuver (elktest) scenario

described in Chapter 3 with a peak driver steering input of magnitudeωmax= 150◦ and with

an initial speed ofv = 120km/h. The steering profile corresponding to this maneuver and

the resulting CG height estimation are shown in Figure 4.2. In this figure we notethat the

CG height estimation does not start until the maneuver is initiated att = 5sec, and till this

point (where no maneuver takes place), the worst case CG configuration (i.e., the maximum

CG height,h = 0.85m) is assumed for safety considerations.

In Figure 4.3 we give the comparison of the vehicle speed and the control force histories
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Figure 4.2: Driver steering input and the corresponding real-time estimation of CG height.

corresponding to the switched adaptive controller and the robust controller. Note that the

positive control effort indicates a clockwise effective braking torqueand the negative one

indicates the anti-clockwise, as depicted in Figure 3.3. Also, both the adaptive and the

robust controllers result in|u| ≤ mgas desired as seen in in Figure 4.3. The dramatic speed

drop observed in the controlled vehicles is a direct consequence of the controller braking

action. Also notice in the figure that the resulting control actuation profile forthe adaptive

controller is smaller, which causes a less speed drop of the vehicle compared to the robustly

controlled vehicle; this is an indication of the effectiveness of our adaptive control approach.

The correspondingLTRd plots for both of the robust and the adaptive switched controllers

are presented in Figure 4.4. We observe in the figure that, while both of the controllers

achieve|LTRd| ≤ 1 throughout the maneuver, theLTRd due to the switched adaptive con-

troller is less conservative than the robust one, which indicates higher performance. Note

that this observation is in agreement with the conclusions derived from Figure 4.3. Also

notice in this figure that theLTRd corresponding to the uncontrolled vehicle is close to 2,

which is well above the vehicle rollover limit.
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Figure 4.3: Vehicle speed variation and normalized control force history.

In Figure 4.5 we give a further comparison of all the vehicle states corresponding to uncon-

trolled, robustly controlled and adaptively controlled vehicles.

As a final comparison we look at how the suggested controllers affect thevehicle path. To

do this, we note that the coordinates(x, y) of the vehicle CG relative to the road satisfy

ẋ = vcos(β +ψ) , (4.33)

ẏ = vsin(β +ψ) , (4.34)

where we choose the initial coordinates(x(0), y(0)) to be zero. In Figure 4.6 the CG tra-

jectories over the horizontal plane (representing the road plane) for thecontrolled and the

uncontrolled vehicles are compared. Notice here that the shorter paths ofthe controlled

vehicles are due to slowing down as a result of braking.
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Figure 4.4: Comparison ofLTRd for the controlled and uncontrolled vehicles.

4.5 Conclusions and possible future directions

In this chapter, we have presented a methodology for the design of switched adaptive vehi-

cle rollover prevention control systems using differential braking actuators. We suggested

using real time estimation of CG height as well as suspension parameters as a controller

switching criteria. We designed our rollover prevention controllers to be locally robust in

the sense that they guarantee the peak values of the performance outputsto be bounded in

the presence of parametric uncertainties in the system. We demonstrated our control designs

with numerical simulations and compared them with fixed robust controllers. The results

indicate performance gains with the proposed adaptive switched control approach over the

robust controller alternative. We emphasize that due to the chosen control actuator (i.e.,

differential braking), our suggested control designs can easily be implemented and tested

without much financial overhead, since these actuators already exist in most stock passenger

vehicles.

Future work will proceed in several directions. We shall extend the methodology to include

170



4.5 Conclusions and possible future directions

0 5 10 15 20

−5

0

5

S
id

es
lip

 a
ng

le
, β

 [d
eg

]

 

 

time [sec]
no control

with robust control

with adaptive control

0 5 10 15 20
−50

0

50

Y
aw

 r
at

e,
 d

ψ
/d

t [
de

g]

time [sec]

0 5 10 15 20
−100

−50

0

50

R
ol

l r
at

e,
 d

φ/
dt

 [d
eg

/s
]

time [sec]
0 5 10 15 20

−30

−20

−10

0

10

20

30

R
ol

l a
ng

le
, φ

 [d
eg

]

time [sec]

Figure 4.5: Comparison of the controlled and uncontrolled vehicle states.

active steering, active suspension, and combinations thereof to refine our rollover prevention

strategy, and analyze the resulting control allocation problem. Applications of such a control

strategy with several actuators are not limited to road vehicle stabilization, butit can also

be used to make the dynamics of a vehicle emulate those of another vehicle (e.g.having an

SUV behave like a sports car), which shall be future direction for this research.

On the practical side of this work, we are planning to evaluate the suggestedswitched

controller design in real production vehicles.
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Chapter 5

A Pole Placement Design

Methodology for Switched Discrete

Time Linear Systems with

Applications to Automotive Roll

Dynamics Control

In this chapter we consider the asymptotic stability of a class of discrete-time

switching linear systems, where each of the constituent subsystem is Schur sta-

ble. We first present an example to motivate our study, which illustrates that

the bilinear transform does not preserve the stability of a class of discrete time

switched linear systems. Consequently, continuous time stability results can-

not be transformed to discrete time analogs using this transformation. We then

present a subclass of discrete-time switching systems, that arise frequently in

practical applications, with globally asymptotic origin. We show that global
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attractivity can be established without requiring the existence of a common

quadratic Lyapunov function (CQLF). Utilizing this result we present synthe-

sis procedures to construct switching stabilizing controllers for two separate

problems in automotive control; the first problem is related to the stabiliza-

tion of road vehicle roll dynamics subject to changes in the center of gravity

(CG) height. The second problem concerns the design of PID tracking con-

trollers for emulating reference roll dynamics while guaranteeing transient

free switching as well as stability due to varying CG height. The efficacy of

our designs is demonstrated by numerical simulations.

5.1 Chapter contributions

The scientific contribution of this chapter over the state of the art is threefold. Firstly, we

showed by means of a simple example that the bilinear transform does not preserve the sta-

bility properties of linear time-varying systems. This implies that the asymptotic stability

of certain type of switching discrete time systems does not necessarily follow from the con-

tinuous time systems with this property, and that their stability must be investigated using a

‘first principles approach’. Based on this conclusion, the second contribution of the chapter

is the extension of a recent stability result for a class of continuous time switched systems

to discrete time. We provided a rigorous proof of this using a non-Lyapunov approach and

showed that the conditions for stability of this specific system class do not simply follow

from the existing continuous time results in the literature. The final major contribution of

this chapter is the application of these theoretical results for practical control design laws

for switched systems. In particular, we formulated the motion of the automotive roll dy-

namics as a switched dynamical system, where the switching was assumed to be caused by

changing CG height. Then we utilized active suspension actuators to designcontrollers for

two separate problems for this dynamical system: driver experience enhancement and the
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roll dynamics emulation (i.e., reference trajectory following). We showed that for both of

these problems, our synthesis procedures guarantee that the switched closed loop system is

stable under arbitrary switching.

The work contained in this chapter has resulted in the following publications:

(i) Solmaz S., Shorten R., O’Cairbre F., “A global attractivity result for a class of switch-

ing discrete-time systems”, American Control Conference, July 11-13, 2007.

(ii) Solmaz S., Shorten R., Wulf K., O’Cairbre F., “A design methodology for switched

discrete time linear systems with applications to automotive roll dynamics control”,

Automatica, Accepted for Publication, November 2007.

(iii) Solmaz S., Shorten R., “A discrete time stable switched control design methodology

for automotive roll dynamics tracking based on pole placement”, Under Review for

American Control Conference, Seattle, Washington, 2008.

5.2 Introduction

Many control problems that arise in automotive engineering lead naturally to solutions that

involve switching between a set of stabilizing controllers. Examples include ABS control

[95], speed control systems [118], and robust rollover systems [124], [125]. In this chapter

we consider two such problems, where switching arises naturally due to changes in the

vehicle parameters. Both problems are related to the design of feedback controllers to

regulate the roll degree of freedom of an automotive vehicle making use ofactive suspension

actuators. In one implementation we look into design of robust switched controllers that

prevent instabilities due to abrupt changes in the center of gravity position.In a second

implementation we consider tracking of a reference state related to roll dynamics, and in

doing so we again design our controllers to guarantee that possible changes in center of

gravity position do not cause any instabilities.
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Typically, switched linear controllers are designed using linear matrix inequalities (LMIs);

for example see Chapter 3 as well as [124], and [125] for examples of such designs for

automotive rollover prevention control applications. More often than not, LMI based control

system design is based on quadratic Lyapunov functions, and is iterativein nature, requiring

multiple searches before a controller satisfying certain performance criteria is found, as

should be clear from Chapter 3. It is known that the existence of a common quadratic

Lyapunov function (CQLF) is sufficient, but not necessary, to guarantee the exponential

stability of the linear discrete-time switching system of the form

x(k+1) = Aix(k), Ai ∈ A , (5.1)

whereA , {A1, ....,Am} with Schur stable constituent matricesAi ∈R
n×n for i ∈ {1, ...,m},

and x(k) ∈ R
n. Design methods that are constructive, in the manner of pole placement, say,

for linear systems, are generally not available for the design of switched systems. One

such method was however initially proposed in [112]. Here, for continuous time systems,

the authors prove that sets of system matrices that are Hurwitz stable, for which every

matrix pair is simultaneously triangularizable, and which have real eigenvalues amongst

other conditions, result in linear switched systems that are globally uniformly exponentially

stable.

The basic problem addressed here is to study the discrete time analog of this system class.

To show that this is not a trivial exercise we present the following example.

Example 5.2.1 Consider the following stable LTI systems,

ΣAi : ẋ = Aix, Ai ∈ R
3×3, (5.2)
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with, matrices

A1 =

















−19 0 0

0 −9 0

0 0 −0.25

















, A2 =

















−19 0 0

−10 −9 0

−18.75 0 −0.25

















,

A3 =

















−19 0 18.75

0 −9 8.75

0 0 −0.25

















.

These three matrices all share the same eigenvalues, and they satisfy the conditions of the

Theorem given in [112]. Therefore, one can conclude that the continuous time switched

system (5.2) is stable. Now consider the bilinear mapping [70] (or “Tustin" transform)

below

Ad,i = (Ai − I)−1(Ai + I), i ∈ {1,2,3},

whereI ∈ R
3×3 is the identity matrix. The resulting discrete time matrices are

Ad,1 =

















0.9 0 0

0 0.8 0

0 0 −0.6

















, Ad,2 =

















0.9 0 0

0.1 0.8 0

1.5 0 −0.6

















,

Ad,3 =

















0.9 0 −1.5

0 0.8 −1.4

0 0 −0.6

















.

It is sufficient to show that there exists a switching sequence between the matrices{Ad,1,Ad,2,

Ad,3} such that the resulting system

ΣAd,i : x(k+1) = A(k)x(k) for A(k) ∈ {Ad,1,Ad,2,Ad,3},

has eigenvalues outside the unit circle. We simply consider the incremental switching se-

quenceAd,1 → Ad,2 → Ad,3; then the dynamics of the system evolve according to the matrix
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product

Ad = Ad,1Ad,2Ad,3.

Since the eigenvalues ofAd are{0.512,−0.081,1.944}, then with one eigenvalue outside

the unit circle, this switching sequence is unstable.

Remark 5.2.1 This example shows that, unlike LTI systems, the Bilinear (i.e., Tustin)

transform does not, in general, preserve the stability of linear time-varyingsystems.

This example and the resulting observation has profound implications for control system

design. Traditionally, the approach to relate continuous-time linear time invariant (LTI)

Hurwitz stability results to discrete-time LTI Schur stability counterparts requires the use of

the bilinear transform. However, the above example illustrates that this approach is flawed

for designing switched systems. Our example is consistent with the results reported in a

recent paper [70]. Here, it is known that while quadratic Lyapunov functions are preserved

under the Bilinear transform, other non-quadratic Lyapunov functions are not [70]. Un-

fortunately, the example demonstrates that matters are much worse than reported in this

paper; namely, thatnot only are non-quadratic functions not preserved under Bilinear

mapping, but also that stability need not be either.

Fortunately, it is possible to modify the proof in [111] to place additional discrete time

conditions on the system matrices to guarantee the global attractivity, and hence the ex-

ponential stability [102] of the origin for this system class. This is one of the principal

contributions of this chapter. With this background in mind, and making use of the main

results given in Section 5.4, we give two distinct examples of stabilizing controller design

as applied to aforementioned automotive control problems; this is another majorcontribu-

tion of the current chapter, where we consider switching stability as well astransient free

switching (i.e., bumpless transfer) as a design criteria for problems related toroll dynamics

control. Specifically, the first problem that is the main motivation for the study inthe current

chapter, is related to stabilization of the roll motion in automotive vehicles, which can be
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modelled with discrete-time switching dynamical modes; this is introduced in Section 5.5.

The switching in roll dynamics occurs as a result of changes in the center of gravity (CG)

height during fast cornering maneuvers, which can happen as a result of vertical load shifts

(i.e. loads falling and/or moving vertically). The second problem introducedin Section 5.6

is about reference tracking controller design for the switched roll dynamics problem, which

can be used to emulate the roll behavior of a given reference vehicle whileguaranteeing

switching stability. We give a proportional-integral-derivative (PID) controller synthesis

procedure for this problem. We also give numerical simulations for both of the applications

that demonstrate the efficacy of our controller synthesis procedures.

5.3 Definitions

In this section we give simple concepts and definitions, which are useful in the remainder

of the chapter. Although some of these concepts have been utilized in previous chapters, we

state them here for added convenience.

(i) The switching system: Consider the discrete time linear time-varying system

x(k+1) = A(k)x(k), (5.3)

wherex(k) ∈ R
n, and where the system matrixA(k) is such that it switches between

the matricesAi ∈ R
n×n belonging to the setA = {A1, ...,Am}. We shall refer to this

as the switching system. The time-invariant discrete time linear systemx(k+ 1) =

Aix(k), denotedΣAi is referred to as theith constituent system.

Suppose the dynamics of the discrete-time switched system (5.3) is describedby

theα th constituent linear time invariant system starting at the discrete time stepkα ,

where 1≤α ≤msuch thatx(k+1) = Aαx(k) over the discrete time interval[kα ,kα +

s]. By definition, the next system that we switch to, say theγ th system (1≤ γ ≤ m)

starts at the end ofs number of discrete time steps, that is atkα + s, with initial
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conditions equal to the terminal conditions of theα th system at the discrete time step

kα +s.

(ii) (Uniform) Stability of the origin : The origin of the discrete-time system (5.3) is

an equilibrium state. The equilibrium state (origin) is said to be stable if for every

ε > 0 andk0 ≥ 0, there exists aδ (ε,k0) > 0 such that‖ x0 ‖< δ (ε,k0) implies that

‖ x(k;x0,k0) ‖< ε, ∀ k≥ k0.

(iii) Attractivity of the origin : The equilibrium state (origin) of (5.3) is said to be attrac-

tive if for someρ > 0, and for everyθ > 0 andk0, there exists a numberT(θ ,x0,k0)

such that‖ x0 ‖< ρ implies that‖ x(k;x0,k0) ‖< θ , ∀ k≥ k0 +T.

(iv) Global attractivity of the origin: The equilibrium state (origin) of (5.3) is said to

be globally attractive if limk→∞ x(k;x0,k0) = 0, for all initial conditionsx0 and for all

k0 ≥ 0. Global attractivity of the origin implies that all trajectories starting in any

given neighborhood of the origin will eventually approach the origin.

(v) (Uniform) Asymptotic stability: The equilibrium state of (5.3) is said to be asymp-

totically stable if it is both stable and attractive.

(vi) (Uniform) Exponential stability [102]: The equilibrium state of Equation (5.3) is

said to be exponentially stable if there exists a finite positive constantγ > 1 and a

constant 0≤ λ < 1, such that

‖ x(k;x0,k0) ‖< γλ k−k0 ‖ x0 ‖, (5.4)

for all k≥ k0. Note that “uniformity" here means thatγ andλ are independent ofk0.

In the study of switching systems it is often of interest to establish stability under

arbitrary switching. For this case uniformity requires that the parametersε,δ ,γ,λ

are independent of the switching signal.

A useful technique for establishing the exponential stability of the system (5.3) is to

look for the existence of a Lyapunov function.
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(vii) Common quadratic Lyapunov function (CQLF)[112]: Consider the switching sys-

tem defined in (5.3) where all the elements ofA are Schur stable. The quadratic

function

V(x) = xTPx, P = PT > 0, P∈ R
n×n, (5.5)

is said to be a CQLF for each of the constituent subsystemsΣAi , i ∈ {1, ...,m}, if the

symmetric positive matrixP is a solution for the Stein inequality

AT
i PAi −P < 0. (5.6)

The existence of a common quadratic Lyapunov function implies the exponential

stability of the switching system (5.3).

(viii) Pairwise Triangularizability [112]: We will refer to pairwise triangularizable ma-

trices later in the chapter. Let a switching system described by (5.3) be given.

Suppose that a number of non-singular matricesTi j exist, such that for each pair

of matrices{Ai ,A j} in A , where i, j ∈ {1, ...,m} and i 6= j, the pair of matrices

{Ti j AiT
−1
i j ,Ti j A jT

−1
i j } are upper triangular. Then every distinct pair of matrices{Ai ,A j}

in A are called pairwise triangularizable. In general, pairwise triangularizabilityis

not sufficient for the existence of a CQLF for the switched system (5.3).

(ix) Linear Systems: It is well known for continuous and discrete time linear systems that

global uniform attractivity (GUA) of the origin implies global uniform exponential

stability (GUES) [40]. Thus establishing GUA of the origin is enough to establish

GUES.
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5.4 Stability of a class of discrete-time linear switched

systems

While the ultimate objective of this chapter is to obtain the conditions for the global attrac-

tivity and stability of the origin of a class of systems defined with (5.1) (where any two Ai

matrices can be simultaneously triangularized), for the purpose of exposition we consider a

subclass of such systems, where amongst other conditions, theAi matrices inA are diago-

nalizable, and where any two of theAi matrices share at leastn−1 real linearly independent

eigenvectors. Note here that the assumption of diagonalizability is motivated bythe exam-

ples that we wish to consider in sections 5.5 and 5.6. Under these conditions,the origin of

the switching system is globally attractive as verified in the following theorem.

Theorem 5.4.1 Let V = {v1, . . . ,vn+1} be a set of real vectors, where each vi ∈ R
n for

i = {1,2, ...,n+ 1}. Suppose any choice of n vectors inV are linearly independent. For

each i∈ {1,2, . . . ,n+1}, we construct Mi ∈ R
n×n matrices as follows

Mi =



















[v1,v2, . . . ,vn−1,vn] f or i = 1

[v1, ...,vn+1,vi , ...,vn] f or 2≤ i ≤ n+1

, (5.7)

i.e., Mi is obtained by replacing the(i −1)th column in M1 with the vector vn+1. Suppose

we also have p different diagonal matrices D1,D2, . . . ,Dp in R
n×n with all diagonal entries

in the right half of the unit circle, i.e., for every diagonal entryλh, j of Dh, we can write

0 < λh, j < 1, for 1≤ h≤ p, 1≤ j ≤ n. (5.8)

We now define the matrices Ah,i ∈ R
n×n as follows

Ah,i = MiDhM−1
i , (5.9)

and letA be the set of all Ah,i for h ∈ {1,2, ..., p} and i∈ {1,2, ...,n+ 1}. Then for the

switching system (5.1) with the setA defined as above, the origin is globally attractive.
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Proof of Theorem 5.4.1:As a first observation, we note that the setA with elements as

defined in (5.9) consists ofm different diagonalizable matricesAh,i , wherem= p(n+ 1).

Also note that the eigenvalues ofAh,i ∈ A are the diagonal entries ofDh, which were all

assumed to be in the right half of the unit circle, while the eigenvectors ofAh,i are the

linearly independent columns ofMi ∈ R
n×n. A further observation is thatMi matrices as

defined in (5.7) are formed byn distinct linearly independent elements of the setV , which

consists of a totaln+1 realn-vectors, i.e.,vi ∈ R
n for i ∈ {1,2, ...,n+1}. Then any choice

of two matrices inA will share at leastn−1, and at mostn common linearly independent

real eigenvectors. For ease of exposition we divide the proof that follows into three distinct

steps to arrive at the global attractivity result of the origin for (5.1).

Step-1: In this step we replace then×n matricesM j andAh,i ∈A by (n+1)× (n+1) ma-

tricesM̄ j andĀh,i , respectively. The matrices̄Ah,i ∈ ¯A , {Āh,i : Ah,i ∈ A } are chosen such

that there is at least one common eigenvectorτ , ( 1 0 . . . 0 )T for all the matrices in

¯A , and also such that the properties of the solutions of the dynamic system

x̄(k+1) = Ā(k)x̄(k), Ā(k) ∈ ¯A , (5.10)

will ultimately imply the global attractivity of the origin of the system (5.1), wherex(k) =

(x1(k), ...,xn(k)) andx̄(k) = (xn+1(k),x1(k), ...,xn(k)). In what follows, we first give a tech-

nical lemma which helps us construct the augmented matricesM̄ j ∈ R
(n+1)×(n+1) in the

higher dimensional state space.

Lemma 5.4.1 [112]: Let V = {v1, . . . ,vn+1} be a set of real vectors with each vi ∈ R
n for

i = {1,2, ...,n+ 1}. Suppose any choice of n vectors inV are linearly independent. Then

there exists a positive number “a" such that the set W= {(a,v1),(1,v2),(1,v3), . . . ,(1,vn+1)}

is linearly independent inRn+1. Here(a,v1) is the vector with n+1 coordinates, whose first

coordinate is “a" and remaining n coordinates are the n coordinates of v1.

See [112] for a proof of this lemma. Making use of this lemma we now define matrices

M̄i ∈ R
(n+1)×(n+1) with a special structure such that they embed theMi ∈ R

n×n matrices
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defined in (5.7) as follows

M̄i =







































1 b 1 1 . . . 1

0

0

0 Mi

...

0







































, b =















1 i f i = 2

a i f i 6= 2

, (5.11)

wherei ∈ {1,2, . . . ,n+ 1}, and “a” is a scalar as defined in Lemma 5.4.1. This structure

for M̄i was used to ensure that its columns are linearly independent for eachi. Note that the

change in the value ofb is necessary as the vectorv1 does not appear inMi wheni = 2. Also

notice that the columns of̄Mi , apart from the first column, are the vector elements of the set

W defined in Lemma 5.4.1 and thus they are linearly independent.

We shall useM̄−1
i in the following discussion, and given (5.11) it can be expressed as

M̄−1
i =































1 si,1 si,2 . . . si,n

0

0 M−1
i

...

0































, (5.12)

for some real numberssi,1,si,2, . . . ,si,n that depend oni.

We further define matrices̄Dh ∈ R
(n+1)×(n+1), which embed the diagonal matricesDh ∈

R
n×n satisfying (5.8), to be the following set of matrices

D̄h =

















0 . . . 0

... Dh

0

















. (5.13)
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Making use of these newly defined matrices inn+1 dimensional real vector space, we now

consider an analogue of the expression (5.9) to construct the matricesĀh,i and the set ¯A ,

which are defined as follows

Āh,i ∈ ¯A , {Āh,i : Ah,i ∈ A }, where (5.14)

Āh,i , M̄iD̄hM̄−1
i =































0 chi,1 chi,2 . . . chi,n

0

0 Ah,i

...

0































, (5.15)

for some real numberschi,1,chi,2, . . . ,chi,n that depend onh and i. Note here thatτ =

( 1 0 . . . 0 )T is a common eigenvector for all them= p(n+ 1) number of matrices

Āh,i in ¯A . We can now express the(n+1)th order state space system with the augmented

matricesĀh,i ∈ ¯A as in the following form































xn+1(k+1)

x1(k+1)

x2(k+1)

...

xn(k+1)































= Āh,i































xn+1(k)

x1(k)

x2(k)

...

xn(k)































, (5.16)

which according to the special structure assumed forĀh,i in (5.15), is valid if and only if the

following set of equations hold























x1(k+1)

x2(k+1)

...

xn(k+1)























= Ah,i























x1(k)

x2(k)

...

xn(k)























and xn+1(k+1) =
n

∑
j=1

chi, jx j(k). (5.17)
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It is apparent from this last equation that the higher dimensional switching system withn+1

states explicitly contain the original switching system withn states. We will show in the 3rd

step of the proof below that for any solution ¯x(k) = (xn+1(k),x1(k),x2(k), . . . ,xn(k)) of the

augmented switching system (5.16),

limk→∞(x1(k),x2(k), . . . ,xn(k)) = 0

will be guaranteed for any solutionx(k) = (x1(k),x2(k), . . . ,xn(k)) of the original switched

system (5.1) with the special structure, thus proving global attractivity of the origin.

Step-2: Now for a giveni ∈ {1,2, . . . ,n+ 1} we consider then+ 1 linearly independent

columns ofM̄i . These form ann+ 1 dimensional coordinate system which includesτ as

one of the axes. We consider the projection of the state ¯x(k) onto each coordinate systems

(columns ofM̄i) as the dynamics of the system (5.16) evolve. This projection is given by

the vectors

gi(k) = M̄−1
i x̄(k), i = 1,2, . . . ,n+1, (5.18)

at each discrete time stepk. We denote thej th component ofgi(k) as [gi ] j(k) for each

i = {1,2, . . . ,n+1}. We further defineG(k) as the set consisting of the first components of

n+1 coordinate projections at the discrete time stepk as follows

G(k) =

(

[g1]1(k) [g2]1(k) [g3]1(k) . . . [gn+1]1(k)

)

, (5.19)

where[gi ]1(k) denotes the first component of theith projection vectorgi(k), and it is the

projection ofx̄ ontoτ, that is the first column of̄Mi as seen in (5.11).

Now suppose that the system dynamics of the augmented system (5.16) are described by

the following LTI discrete-time system

x̄(k+1) = Āh,i x̄(k) (5.20)

during some arbitrary discrete time interval[k1,k2], wherek2 = k1 + s for some positive

integers representing the number of discrete time steps. Note that by making use of the
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5.4 Stability of a class of discrete-time linear switched systems

definitions ofĀh,i in (5.15) and the coordinate projectionsgi(k) from (5.18), we can express

the evolution of this LTI system by

gi(k+1) = D̄hgi(k). (5.21)

Now we denoteλh,m as themth diagonal element of then×n diagonal matricesDh for some

m∈ {1,2, . . . ,n} and for someh ∈ {1,2, . . . , p}, wherep is the total number of diagonal

matrices. Notice here that according to the definition (5.13),λh,m is the(m+1)th diagonal

element ofD̄h. Suppose further that each eigenvalueλh,m is on the right half of the unit

circle satisfying (5.8). Under these assumptions, each component of the projection vector

(5.21) has the following dynamic characteristics

[gi ]m(k+1) =















0 f or m= 1

λh,m−1[gi ]m(k) f or m= 2,3, . . . ,n

. (5.22)

Given any fixed interval[k1,k2] the solutions to above dynamical equations can be expressed

as

[gi ]m(k) = (λh,m−1)
k−k1[gi ]m(k1) f or m 6= 1 (5.23)

Note here that[gi ]1(k) is a constant function of the discrete time stepk, while each[gi ]m(k)

for m 6= 1 varies according to dynamic relationship (5.23) above over the discrete interval

[k1,k2]. We will now look at how the first component of the projection vector,[gi ]1(k) varies

over the discrete intervals when the system matricesĀh,i switch.

We denote the first component of the projection vector (which is constant) over the dis-

crete interval[k2,k3] as[g j ]1(k). We further define the “distance"di, j(k) between the first

components of the projection vector for the two switching systems as follows

di, j(k) = |[gi ]1(k)− [g j ]1(k)|. (5.24)

Note that using the following identity

gi(k) = M̄−1
i M̄ jg j(k), (5.25)
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one can conveniently calculate the distancedi, j(k) as the first component of the vector

|(M̄−1
i M̄ j − I)g j(k)|,

whereI is the identity matrix inR(n+1)×(n+1). Looking at the structure of the matrixFi, j =

M̄−1
i M̄ j for i 6= j, we observe that the first-row first-column entry of this matrix is always

unity. Next, we give a lemma which establishes that there is only one other nonzero entry

in the first row ofFi, j matrix.

Lemma 5.4.2 If we exclude the first column of the matrix Fi, j = M̄−1
i M̄ j , for i 6= j, then

there is only one non-zero entry denoted by ci, j,δ in the first row, whereδ is an integer

representing the column index.δ depends on the i, j indexes, and the relationship is given

as

δ =















j when i= 1

i when i= 2,3, . . . ,n

.

Note thatδ is never 1.

See [112] for a proof of this lemma. Using this lemma and the identity (5.25) it is straight-

forward to show that

[gi ]1(k) = [g j ]1(k)+ci, j,δ [g j ]δ (k) f or 1≤ i ≤ n+1, i 6= j, (5.26)

which is valid irrespective of the switched system that we are in at any given discrete inter-

val. Now using this last equation that is valid in any of the switched systems, along with the

dynamic relationships for each component of the projection vector (5.23) that are valid for

a given discrete interval[k1,k2], we obtain

[gi ]1(k)− [g j ]1(k) = ci, j,δ (λh,δ−1)
k−k1[g j ]δ (k1) f or i 6= j. (5.27)

Substituting this relationship indi, j(k), which is the distance as defined in (5.24) yields

di, j(k) = |ci, j,δ |(λh,δ−1)
k−k1[g j ]δ (k1) f or k1 ≤ k≤ k2 and i 6= j. (5.28)
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We will show in the 3rd and the last step below that the distancesdi, j(k) either stay constant

or become smaller after each consequent switching of the correspondingdynamical system

expressed by (5.10).

Step-3 :In this last step we show that limk→∞ |[gi ]1(k)− [g j ]1(k)|= 0, for all i, j ∈ {1, ...,n+

1}. From this fact we will deduce that limk→∞(x1(k), . . . ,xn(k)) = 0, which is sufficient to

demonstrate the global attractivity of the origin of the switching discrete-time system (5.1)

with the setA as defined in the statement of the Theorem.

We first denote the maximum and minimum values of the setG(k) from (5.19), with

max[G(k)]m andmin[G(k)]m respectively, where the subscriptm denotes themth fixed dis-

crete interval spanning[km,km+1]. Now we consider the evolution of largest distancedmax,

among the maximum and minimum values ofG(k) for the first interval[k1,k2], which can

expressed as

1dmax, |max[G(k)]1−min[G(k)]1| , |[gi ]1(k)− [gr ]1(k)|,

for somei, r ∈ {1,2, . . . ,n+1}. Here1dmaxdenotes the largest distance for the first interval.

Also note that for some random elementj of the setG(k) such thatj ∈ {1,2, . . . ,n+1} the

following is true in the interval[k1,k2]

1dmax= |[gi ]1(k)− [g j ]1(k)+ [g j ]1(k)− [gr ]1(k)|.

Using the equation (5.27) one can express this last relationship as follows

1dmax= |ci, j,δ [g j ]δ (k1)(λh,δ−1)
k−k1 +c j,r,ρ [gr ]ρ(k1)(λh,ρ−1)

k−k1|, (5.29)

where integer column indexesδ ,ρ vary as described in Lemma 5.4.2. Note that if[g j ]1(k)

is a maximum or minimum value ofG(k), then the last line above collapses to just one term

instead of two, and in this case the following arguments will also work.

Remembering that all the eigenvalues of the system are on the right half of theunit circle,

we denoteλmax as the largest eigenvalue defined formally as follows

λmax= max{λh, j : 1≤ h≤ p , 1≤ j ≤ n}. (5.30)
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5.4 Stability of a class of discrete-time linear switched systems

Now utilizing this last expression and the subadditivity property of absolute value of real

numbers (i.e., triangle inequality) given as|a+ b| ≤ |a|+ |b|, we can express the largest

distance (5.29) with the following inequality

1dmax ≤ |ci, j,δ ||[g j ]δ (k1)|(λh,δ−1)
k−k1 + |c j,r,ρ ||[gr ]ρ(k1)|(λh,ρ−1)

k−k1

≤
[

|ci, j,δ ||[g j ]δ (k1)|+ |c j,r,ρ ||[gr ]ρ(k1)|
]

λ k−k1
max (5.31)

We emphasize that in this last inequality the expression|ci, j,δ ||[g j ]δ (k1)| denotes the dis-

tance between[gi ]1(k1) and[g j ]1(k1). Similarly, |c j,r,ρ ||[gr ]ρ(k1)| denotes the distance be-

tween[g j ]1(k1) and[gr ]1(k1). Then,

1dmax ≤
[

|ci, j,δ ||[g j ]δ (k1)|+ |c j,r,ρ ||[gr ]ρ(k1)|
]

λ k−k1
max

≤ |max[G(k1)]1−min[G(k1)]1|λ k−k1
max . (5.32)

The last inequality follows from the fact that, over the discrete time interval[k1,k2], [gi ]1(k)

remains on the same side of the constant[g j ]1(k), and[gr ]1(k) remains on the other side of

[g j ]1(k). This is because the right hand side of (5.27) does not change sign as timechanges

in the interval[k1,k2].

Note that at the terminal step of the interval, that isk = k2, we have

|max[G(k)]1−min[G(k)]1| ≤ |max[G(k1)]1−min[G(k1)]1|λ k2−k1
max . (5.33)

Suppose now we switch to the second interval[k2,k3] such that the dynamics now evolve

according to another discrete-time LTI system described by

x̄(k+1) = Āc,wx̄(k), f or all k2 ≤ k≤ k3. (5.34)

We again denote the extremal elements of the setG(k) for this interval withmax[G(k)]2 and

min[G(k)]2, while we define the largest distance2dmax as follows

2dmax, |max[G(k)]2−min[G(k)]2| , |[gi ]1(k)− [gr ]1(k)|,
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for somei, r ∈ {1,2, . . . ,n+1}. Then a similar analysis results in

2dmax= |max[G(k)]2−min[G(k)]2| ≤ |max[G(k2)]2−min[G(k2)]2|λ k−k2
max

Sincek2 is both the terminal step of the interval[k1,k2] and the initial step of[k2,k3] then

we can substitute (5.33) in the last expression, which yields

|max[G(k)]2−min[G(k)]2| ≤ |max[G(k2)]2−min[G(k2)]2|λ k−k2
max

≤ |max[G(k1)]1−min[G(k1)]1|λ k2−k1
max λ k−k2

max .

This last inequality then implies that

2dmax= |max[G(k)]2−min[G(k)]2| ≤ |max[G(k1)]1−min[G(k1)]1|λ k−k1
max . (5.35)

After another switching of the system to the 3rd interval[k3,k4], the procedure can be applied

to arrive at

3dmax= |max[G(k)]3−min[G(k)]3| ≤ |max[G(k1)]1−min[G(k1)]1|λ k−k1
max . (5.36)

For the general situation, when we have switched for themth time, the system is described

by mth discrete-time LTI system ¯x(k+1) = Āz,l x̄(k) over the time interval[km,km+1]. Then

as above we get

mdmax= |max[G(k)]m−min[G(k)]m| ≤ |max[G(k1)]1−min[G(k1)]1|λ k−k1
max . (5.37)

Therefore, as 0< λmax< 1, then we conclude that

lim
k→∞

(max[G(k)]−min [G(k)]) = 0, (5.38)

wheremax[G(k)] andmin[G(k)] denote the maximum and minimum values ofG(k) for any

time stepk≥ k1. Thus,

lim
k→∞

|[gi ]1(k)− [g j ]1(k)| = 0, f or all i , j ∈ {1,2, . . . ,n+1}. (5.39)
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Also substituting (5.27) in the last expression we arrive at the expression

lim
k→∞

|ci, j,δ ||[g j ]δ (k)| = 0, where















δ = j i f i = 1

δ = i i f i 6= 1 and i 6= j

, (5.40)

which then implies

lim
k→∞

|[g j ]δ (k)| = 0, (5.41)

for j ∈ {1,2, . . . ,n+1}, andδ ∈ {2,3, . . . ,n+1}. Note that this last expression follows from

the fact that theci, j,δ values form a finite collection of non-zero numbers wheni 6= j. Also

the equation (5.41) might not hold forδ = 1 because theni = j = 1. Therefore, because

limk→∞ x̄(k) = limk→∞ M̄ jg j(k), then we obtain

lim
k→∞































xn+1(k)

x1(k)

x2(k)

...

xn(k)































= lim
k→∞































1 b 1 . . . 1

0

0 M j

...

0





















































[g j ]1(k)

[g j ]2(k)

...

[g j ]n+1(k)























, (5.42)

which then implies that

lim
k→∞























x1(k)

x2(k)

...

xn(k)























= lim
k→∞























0

0 M j

...

0













































[g j ]1(k)

[g j ]2(k)

...

[g j ]n+1(k)























(5.43)

=























0

0

...

0























. (5.44)
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Thus

lim
t→∞

(x1,x2, . . . ,xn) = 0, (5.45)

which proves the global attractivity of the origin for the switching system (5.1).

Q.E.D.

Remark 5.4.1 The following facts can be deduced for the setA defined in Theorem 5.4.1:

(i) Every matrix inA is Schur stable and diagonalizable.

(ii) Any matrix pair inA share at least(n−1) linearly independent common real eigen-

vectors.

(iii) Every matrix pair inA can simultaneously be triangularized. (See [118] for the

proof of this.)

Remark 5.4.2 We can not simply replace Hurwitz stable matrices for the continuous-time

case in Theorem 3.1 of [112] with Schur stable matrices and arrive at the same conclusions

of global attractivity of the origin. In the discrete-time case we need the condition given in

equation (5.8) on the eigenvalues ofDh for 1≤ h≤ p. Because otherwise, we do not get the

global asymptotic stability of the origin. This is demonstrated in the following example.

Example 5.4.1 Let the setV = {v1,v2,v3,v4} be given as

v1 =

[

1 0 0

]T

, v2 =

[

0 1 0

]T

,

v3 =

[

0 0 1

]T

, v4 =

[

1 1 1

]T

.

Further assume thatMi ∈ R
3×3 matrices are constructed as follows

M1 =

[

v1 v2 v3

]

, M2 =

[

v4 v2 v3

]

,

M3 =

[

v1 v4 v3

]

, M4 =

[

v1 v2 v4

]

.
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Moreover select a 3×3 diagonal Schur stable matrixD as follows

D =

















0.9 0 0

0 0.8 0

0 0 −0.6

















.

Now consider the following Schur stable LTI systems

ΣAi : x(k+1) = Aix(k), Ai ∈ R
3×3, (5.46)

whereAi matrices are constructed from

Ai = MiDM−1
i , i = 1, ..,4. (5.47)

It is sufficient to show that there exists a switching sequence betweenAi ’s such that the

resulting system has eigenvalues outside the unit circle. We simply consider the incremental

switching sequenceA1 →A2 →A3 →A4; then the dynamics of the system evolve according

to the matrix product

A = A1A2A3A4. (5.48)

Since the eigenvalues ofA are{1.1899,0.1058,0.2766}, then with one eigenvalue outside

the unit circle, this switching sequence is unstable. It is also interesting to notethat if

D is chosen such that all of its eigenvalues are on the right half of the unit circle, i.e.,

D = diag{0.9,0.8,0.6}, then theA matrix corresponding to the switching sequence (5.48)

has eigenvalues{0.5861,0.1517,0.3917} and is stable by Theorem 5.4.1.

Remark 5.4.3 For the class of linear discrete time switched systems that satisfy the condi-

tions of Theorem 5.4.1, one does not necessarily require the existence of a CQLF to show

the global attractivity of the origin. In other words, it is possible to find switching systems

that are stable by Theorem 5.4.1, and thatdo not have a CQLF. We emphasize that the class

of such systems (i.e., the subclass of pairwise triangularizable systems) is strictly larger than

the class of simultaneously triangularizable systems. Indeed, Example 5.5.1 introduced in

194



5.5 A stabilizing switched controller synthesis procedurefor configurable
driving experience of automotive vehicles

the next section presents such a switching system, which arises from a practical problem

related to automotive control.

In what follows, we give two separate controller synthesis proceduresfor enhancing auto-

motive roll dynamics based on the main results of this section; we also note that the first

application we introduce was the main motivation for initiating the study on the current

chapter.

5.5 A stabilizing switched controller synthesis proce-

dure for configurable driving experience of auto-

motive vehicles

As an example of the application of the results presented in the previous section we con-

sider the design of an automobile dynamics enhancement system. The aim of thecontrol

design given here is to configure the driving experience based on active suspension actu-

ators alone, and at the same time, to guarantee switching stability in the roll dynamics of

the vehicle subject to sudden changes in the dynamical characteristics. Software config-

urable driving experience enhancement technologies utilizing active control systems is a

topical subject for many luxury car manufactures. In fact, there are already some passen-

ger vehicles on the market that give the drivers the option to select comfort and sporty

driving experience settings with a press of a button, and/or modify the suspension set-

tings as a function of speed. For example the IVDC (Interactive Vehicles Dynamics Con-

trol) technology from Ford (seehttp://www.ford.ie/ie/smax/smax_interior/smax_drive), and

the AirMATIC (Adaptive Intelligent Ride System) technology from Mercedes-Benz (see

http://www3.mercedes-benz.com/techlex/ 2006/main_de.html), both utilize semi-active sus-

pension technologies to achieve these functions. In this section we show how such a strategy
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may be implemented such that stability is guaranteed irrespective of switching1. For illus-

trative purposes, we assume vertical changes in CG position as the only source of switching

in the dynamical characteristic of the vehicle, which can result from passenger and load

movement. Thus, the driving experience enhancement control design described in the se-

quel is based on a simplified roll dynamics model of a car and aims to adjust the suspension

settings as a function of CG position and without introducing any switching instabilities.

We first present the simplified roll plane model of an automobile with a second order lin-

ear parameter varying (LPV) structure. The model presented in the sequel is the simplest

model that captures the roll dynamics of a car and it is free from the effects of uncertainties

originating from unknown tire parameters. Assuming all vehicle mass is sprung, effective

linear torques exerted by the suspension system about the roll center are defined as follows

Tspring = k φ , Tdamper= c φ̇ , (5.49)

wherek, c denote the linear spring stiffness and damping coefficients, respectively. We

further define the roll torque input about the roll center (R.C.) asu, which is assumed to be

provided by suitable active suspension actuators. For the sake of simplicitywe assume no

internal actuator dynamics or constraints. Using these notations and assumptions, we can

apply a torque balance in the roll plane of the vehicle in terms of the effectivesuspension

torques and control torque inputs (see Figure 5.1 and Table 5.1 for further notations of the

roll plane model), and obtain the following 2nd order relationship

Jxeqφ̈ +cφ̇ +kφ = mh(aycosφ +gsinφ)+u. (5.50)

Note that for simplicity, it is assumed in this model that, relative to the ground, the sprung

1Switching in the dynamical characteristic of road vehiclescan occur due to a number reasons

such as sudden changes in the vehicle mass, sudden changes inthe loading configuration (i.e, shifting

CG position), sloshing of liquid loads, a failure in the chassis components or the active safety sys-

tems, a sudden switching of the gear during a high speed cornering maneuver, or any other sources

of high/low frequency oscillations, all of which may cause asudden change in the lateral and roll

dynamics response of the vehicle.
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Figure 5.1: Second order roll plane model.

mass rolls about a fixed horizontal roll axis which is along the centerline of the body and at

ground level. In the last equationJxeq denotes the equivalent roll moment of inertia derived

using the parallel axis theorem of mechanics taking into account the CG height variation as

described below

Jxeq , Jxx+mh2. (5.51)

For small roll angles, i.e.,φ ≪, we can approximate the nonlinear terms in equation (5.50)

ascosφ ≈ 1, sinφ ≈ φ . Further defining the state asx = [ φ , φ̇ ]T , we can represent (5.50)

as in the following state space form

ẋ = Acx+Gcay +Bcu, with (5.52)

Ac =









0 1

− k−mgh
Jxeq

− c
Jxeq









, Gc =









0

mh
Jxeq









, Bc =









0

1
Jxeq









, (5.53)

whereay is the lateral acceleration measured at the center of gravity. Next we construct a

discrete time approximation for this state space system. To this end consider the continuous
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Table 5.1: Model parameters and definitions

Parameter Description Unit

m Vehicle mass [kg]

g Gravitational constant [m/s2]

Jxx Roll moment of inertia measured at the CG[kg·m2]

T Track width [m]

h CG height measured over the ground [m]

c suspension damping coefficient [kg·m2/s]

k suspension spring stiffness [kg·m2/s2]

φ Roll angle measured at the roll center [rad]

φ̇ Roll rate measured at the roll center [rad]

u Torque input about the roll center [Nm]

ay Lateral acceleration measured at CG [m/s2]

time system of the form

ξ̇ (t) = Fξ (t)+Hω(t)+Gu(t), (5.54)

whereξ (t) ∈ R
n is the state, andF ∈ R

n×n, H ∈ R
n, G∈ R

n are the corresponding system

matrices. Alsoω ∈ R, andu∈ R denote the disturbance and the control inputs for the this

generic state space system, respectively. Then the discrete time equivalent of this system

can be expressed by

ξ (k+1) = Aξ (k)+B1ω(k)+B2u(k), (5.55)

where, denoting the discrete time step by∆t, the matricesA,B1,B2 are computed from

A = eF∆t , B1 =
∫ ∆t

0
eF(∆t−τ)Hdτ, B2 =

∫ ∆t

0
eG(∆t−τ)Hdτ. (5.56)
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Note here thatξ (k) ∈ R
n is the corresponding discrete time state, andA∈ R

n×n, B1 ∈ R
n,

B2 ∈ R
n are the accompanying system matrices. Considering the roll plane model given

with (5.52), (5.53) and using a first order approximation for the matrix exponentials above,

the discrete time equivalent can be expressed with the following state space form

x(k+1) = Adx(k)+Gday(k)+Bdu(k), with (5.57)

Ad =









1 ∆t

− (k−mgh)∆t
Jxeq

1− c∆t
Jxeq









, Gd =









0

mh∆t
Jxeq









, Bd =









0

∆t
Jxeq









. (5.58)

It is important here to note that the roll plane model introduced above depends on the CG

height in a nonlinear fashion. It is known that the change in this parameter significantly af-

fects the roll dynamics of a vehicle [124], [125] and if these changes are not accounted for

in the active safety control implementations, they can cause accidents such as the rollover

of the vehicle, during extreme driving situations. This is why we consider thechanges in

the CG position here, which can potentially result from shifting loads inside thevehicle due

to inertial forces exerted during high speed maneuvers. Given that these changes in the CG

position can be detected in real time (see Chapter 2 for an example of a real timeCG estima-

tion algorithm), we give next a synthesis method for a stable switched linear control design

procedure for driving dynamics enhancement system based on activesuspension actuators,

and making use of the results obtained in Section 5.4. For the sake of exposition, we only

consider changes in the vertical position of CG here; however these ideas can be extended

to more general implementations, where changes in the CG position in 3 dimensionsare all

accounted for.

The switched control structure is shown in Figure 5.2, where there areN different controllers

that switch based on the current CG height (i.e., the CG height change is theswitching

criteria). We emphasize that one of the goals of the controller design advocated in the

sequel is to guarantee that the feedback system is able to cope with the instabilities that

might be induced by switching of dynamics as a result of detectable changesin the system

parameters (in this case the CG height of the vehicle).
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Remark 5.5.1 For the ease of exposition it is assumed here that the changes in CG height

can be detected instantaneously. In general this is not a realistic assumptionas this parame-

ter can not be measured directly in automotive vehicles. However, it is possible to estimate

CG height based on sensor data as described in Chapter 2, as well as in recent publications

[122], [121], [123]. Inherent delays in estimating the CG height using these or other alter-

native methods can be compensated by the control design suggested in the sequel, and this

shall be considered in the future extensions of the present chapter.

Figure 5.2: Switched controller structure.

To keep the following discussion as simple as possible we assumeN = 3, yielding an ex-

pression for the closed loop dynamics given by

x(k+1) = Ad,ix(k)+Gd,iay(k)+Bd,iu(k) f or i ∈ {1,2,3}, (5.59)

where

Ad,i =









1 ∆t

− (k−mghi)∆t
Jxeq,i

1− c∆t
Jxeq,i









, Gd,i =









0

mhi∆t
Jxeq,i









, Bd,i =









0

∆t
Jxeq,i









. (5.60)
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We propose the following switched linear state feedback control structurefor the above set

of dynamical systems

Ci : ui(k) = −Kix(k), i ∈ {1,2,3} (5.61)

whereKi = [ κi1, κi2 ] with κi1,κi2 ∈ R, are fixed control gains corresponding to each CG

height configuration. Under this feedback controller, the closed loop system becomes

x(k+1) = Ãix(k)+Gd,iay(k) (5.62)

where

Ãi = Ad,i −Bd,iKi =









1 ∆t

− (k−mghi+κi1)∆t
Jxeq,i

1− (c+κi2)∆t
Jxeq,i









, (5.63)

for eachi ∈ {1,2,3}. We have now the following result which is useful for the control

design.

Lemma 5.5.1 Let the matricesÃi ∈ R
2×2 for i ∈ {1,2,3} be given as defined in (5.63).

Consider the diagonal matrices D1,D2,D3 ∈ R
2×2 with positive real entries given as below

D1 =









λ1 0

0 λ2









, D2 =









λ3 0

0 λ2









, D3 =









λ1 0

0 λ3









, (5.64)

where the diagonal elements are such that0 < λ j < 1 andλi 6= λ j for every i, j ∈ {1,2,3}

and i 6= j. Suppose further that invertible matrices M1,M2,M3 ∈R
2×2 are defined as follows

M1 =









ν1 µ1

ν2 µ2









, M2 =









η1 µ1

η2 µ2









, M3 =









ν1 η1

ν2 η2









, (5.65)

where all the entriesν1,η1,µ1,ν2,η2,µ2 are real numbers. Then the following choice of

control gainsκi1,κi2 for i ∈ {1,2,3}

κ11 = mgh1−k− Jxeq,1

∆t2 (λ1−1)(λ2−1)

κ12 = −c+
Jxeq,1

∆t
(λ1−1)2−(λ2−1)2

λ2−λ1















f or i = 1 (5.66)
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κ21 = mgh2−k− Jxeq,2

∆t2 (λ3−1)(λ2−1)

κ22 = −c+
Jxeq,2

∆t
(λ3−1)2−(λ2−1)2

λ2−λ3















f or i = 2 (5.67)

κ31 = mgh3−k− Jxeq,3

∆t2 (λ1−1)(λ3−1)

κ32 = −c+
Jxeq,3

∆t
(λ1−1)2−(λ3−1)2

λ3−λ1















f or i = 3 (5.68)

guarantee that the unforced closed loop system matricesÃ1, Ã2 andÃ3 can be expressed as

Ãi = MiDiM
−1
i f or i ∈ {1,2,3} (5.69)

and thatÃ1, Ã2, Ã3 satisfy the conditions of Theorem 5.4.1.

Proof of Lemma 5.5.1:We first show the result fori = 1. Using the definitions ofD1 and

M1 in (5.64) and (5.65), respectively, the similarity transformation forÃ1 in equation (5.69)

can be expressed as follows

Ã1 =
1

ν1µ2−µ1ν2









λ1ν1µ2−λ2µ1ν2 (λ2−λ1)ν1µ1

(λ1−λ2)µ2ν2 λ2ν1µ2−λ1µ1ν2









. (5.70)

Comparing the last equation with (5.63) fori = 1 results in the following relationships

λ1ν1µ2−λ2µ1ν2 = ν1µ2−µ1ν2, (5.71)

(λ2−λ1)ν1µ1 = (ν1µ2−µ1ν2)∆t, (5.72)

Jxeq,1(λ1−λ2)µ2ν2 = −(k−mgh1 +κ11)(ν1µ2−µ1ν2)∆t, (5.73)

Jxeq,1(λ2ν1µ2−λ1µ1ν2) = (Jxeq,1 −c−κ12)(ν1µ2−µ1ν2)∆t. (5.74)

Arranging equations (5.71) and (5.72), the following set of identities can be obtained

ν1µ2

µ1ν2
=

1−λ2

1−λ1
,

ν1µ1

ν1µ2−µ1ν2
=

∆t
λ2−λ1

(5.75)

ν1 =
∆t

λ1−1
ν2, µ1 =

∆t
λ2−1

µ2, (5.76)

Also solving forκ11 from (5.73),κ12 from (5.74) and making use of the above identities,

we obtain the corresponding relations for the controller gains given by (5.66).
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For i = 2, we again use the definitions ofD2 andM2 from (5.64) and (5.65), respectively

and obtain the following expression forÃ2

Ã2 =
1

η1µ2−µ1η2









λ3η1µ2−λ2µ1η2 (λ2−λ3)η1µ1

(λ3−λ2)µ2η2 λ2η1µ2−λ3µ1η2









. (5.77)

Comparing the last equation with (5.63) fori = 2 results in the following relationships

λ3η1µ2−λ2µ1η2 = η1µ2−µ1η2, (5.78)

(λ2−λ3)η1µ1 = (η1µ2−µ1η2)∆t, (5.79)

Jxeq,2(λ3−λ2)µ2η2 = −(k−mgh2 +κ21)(η1µ2−µ1η2)∆t, (5.80)

Jxeq,2(λ2η1µ2−λ3µ1η2) = (Jxeq,2 −c−κ22)(η1µ2−µ1η2)∆t. (5.81)

Arranging equations (5.78) and (5.79), the following set of identities can be obtained

η1µ2

µ1η2
=

1−λ2

1−λ3
,

η1µ1

η1µ2−µ1η2
=

∆t
λ2−λ3

(5.82)

η1 =
∆t

λ3−1
η2, µ1 =

∆t
λ2−1

µ2, (5.83)

Also solving forκ21 from (5.80),κ22 from (5.81) and making use of the above identities,

we obtain the corresponding relations for the controller gains given with (5.67). Similarly,

the expressions (5.68) can be obtained as above fori = 3 and using the appropriate set of

matrices. It is trivial to show also that, due to the chosen structure forÃi , the resulting set of

closed loop unforced system matrices forÃ1, Ã2, Ã3 satisfy the conditions of the Theorem

5.4.1.

Q.E.D.

Next we give a technical lemma from [102] to relate the exponential stability ofthe unforced

systemx(k+ 1) = Ãix(k) to the bounded stability of the solutions of the forced system

(5.62).
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Lemma 5.5.2 Consider the following LPV discrete time system

x(k+1) = A(k)x(k)+B(k)u(k), (5.84)

y(k) = C(k)x(k). (5.85)

Let the above system be exponentially stable, and further suppose that there exists finite

constantsβ andγ such that

‖ B(k) ‖≤ β , ‖C(k) ‖≤ γ (5.86)

for all k. Then the discrete time LPV system is uniformly bounded-input, bounded-output

(BIBO) stable.

See [102] for the proof of the lemma. Next we demonstrate the suggested control design

with a numerical example.

Example 5.5.1 Let the positive constantsλ1,λ2,λ3 be given as 0.994,0.6,0.3, respectively.

Without loss of generality, we choose the constantsν2,µ2,η2 as 1,2,3, respectively. Note

that the eigenvalues and the choice ofν2,µ2,η2 affect the amount of attenuation of the

dynamics under feedback; so these can be considered as the tuning parameters. Also, we

set the discrete time step as∆t = 0.05. The vehicle model parameters used in the example

are given in Table 5.2, and they correspond to a compact class vehicle. In this example we

assume that the CG height of the vehicle can switch between any of the valuesh1,h2 or h3

specified in Table 5.2 at any instant. Now utilizing the Lemma 5.5.1 and using the matrix

definitions in (5.64) we obtain the following set ofDi matrices, which contain the target

closed loop eigenvalues of the roll plane models corresponding to each CGheight position

D1 =









0.994 0

0 0.6









, D2 =









0.3 0

0 0.6









, D3 =









0.994 0

0 0.3









.

The correspondingMi matrices are obtained making use of (5.65) and utilizing the identities
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Table 5.2: Simulation parameters

Parameter Description Unit

m 1200 [kg]

g 9.81 [m/s2]

Jxx 300 [kg·m2]

c 5000 [kg·m2/s]

k 30000 [kg·m2/s2]

h1 0.5 [m]

h2 0.7 [m]

h3 0.9 [m]

(5.76) and (5.83), which result in

M1 =









−8.333 −0.25

1 2









, M2 =









−0.2143 −0.25

3 2









, M3 =









−8.333 −0.2143

1 3









.

Also according to (5.66),(5.67) and (5.68) the controller gains for each CG height position

are computed as follows

κ11 = −23538

κ12 = −128















f or i = 1, (CG height−1), (5.87)

κ21 = 77696.4

κ22 = 14536















f or i = 2, (CG height−2), (5.88)

κ31 = −17268.24

κ32 = 12960.64















f or i = 3, (CG height−3). (5.89)

Then according to (5.69), the closed loop system matricesÃ1, Ã2 andÃ3 corresponding to
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the controller gains above are given as

Ã1 =









1 0.05

−0.048 0.594









, Ã2 =









1 0.05

−5.6 −0.1









, Ã3 =









1 0.05

−0.084 0.294









.(5.90)

Then evolution of dynamics corresponding to any periodic switching sequence between the

unforced closed loop system matricesÃ1, Ã2 andÃ3 are stable by Theorem 5.4.1. That is,

the resulting switched unforced discrete time dynamical systems expressed as follows

x(k+1) = A(k)x(k), A(k) ∈ {Ã1, Ã2, Ã3},

have positive real eigenvalues in the unit circle, and thus are stable. Thisinherently implies

that with the suggested switched control structure, where controller switching is based on

the current CG height, results in stable roll dynamics of the vehicle regardless of the switch-

ing parameters. Also, it follows from Lemma 5.5.2 that the closed loop forced switched roll

model given in (5.62) is uniformly BIBO stable for bounded lateral accelerationay(k) in-

puts.

Remark 5.5.2 As mentioned earlier, it is important to note here that the closed loop system

matricesÃi for i ∈ {1,2,3} obtained above in (5.90)do not have a CQLF, but is neverthe-

less exponentially stable. The non-existence of a CQLF can be confirmed numerically using

LMI solvers. Therefore, the stability of this specific switched system needs to be tested with

non-CQLF techniques such as the one described here.

We finally give the numerical simulation results corresponding to the suggested controller

in feedback loop with a simple vehicle model. We generate the simulated vehicle behavior

with a model commonly known as the “single track model with roll degree of freedom",

which we initially introduced in Chapter 2. The model as illustrated in Figure 5.3 is the

simplest model with coupled lateral and roll dynamics, which assumes that the steering

angleδ , roll angle φ , and sideslip angleβ are small, and also that all vehicle mass is
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Figure 5.3: Linear bicycle model with roll degree of freedom.

sprung. We can write the equations of motion for the single track model with rolldegree of

freedom and with active roll torque input as follows

ẋ =























− σ
mvx
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ρ
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x

Jxeq
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Jxxvx
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ρ
Jzz

− κ
Jzzvx

0 0

−hσ
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hρ
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− c
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
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
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
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








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Jxxvx
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0


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


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u,(5.91)

wherex =
[

β ψ̇ φ̇ φ
]T

is the state vector, andu∈ R is the roll torque input introduced

earlier. Also

σ , Cv +Ch

ρ , Chlh−Cvlv (5.92)

κ , Cvl
2
v +Chl2

h.

are the auxiliary parameters in terms of the tire cornering stiffnessesCv andCh. Further no-

tations and definitions are given in Table 5.3. For a more detailed introduction and derivation
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Table 5.3: Model parameters and definitions

Parameter Description Value Unit

m Vehicle mass 1200 [kg]

g Gravitational constant 9.81 [m/s2]

vx Vehicle longitudinal speed 20 [m/s]

δ Steering angle varying [rad]

Jxx Roll moment of inertia at the CG 300 [kg·m2]

Jzz Yaw moment of inertia at the CG 1300 [kg·m2]

lv longitudinal CG position w.r.t. front axle 1.2 [m]

lh longitudinal CG position w.r.t. rear axle 1.4 [m]

h CG height measured over the ground varying[m]

c suspension damping coefficient 5000 [kg·m2/s]

k suspension spring stiffness 30000 [kg·m2/s2]

Cv linear tire stiffness coefficient for the front tire 30000 [N/rad]

Ch linear tire stiffness coefficient for the rear tire 50000[N/rad]

β Sideslip angle at vehicle CG varying[rad]

of this model see [50]. We used this model to represent the real vehicle in simulation and

in a feedback loop with the discrete time control design introduced earlier. The reference

maneuver is a steady state cornering maneuver with a gradual step steeringinput as shown

in Figure 5.4, where the steering input starts at 4 seconds into the simulation and reaches

its peak steady state value of 80◦ at 6 seconds. Note here that we assumed a steering ratio

of 1 : 20 between the wheel and driver’s steering wheel. Also the vehiclevelocity during

the simulation was fixed atvx = 20m/s. In order to represent the switching in the dynamics

we assumed the CG height profile shown in the lower part of Figure 5.4, which we as-
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sume results from loads falling over inside the vehicle during the maneuver (which makes

sense). As specified in the control design, the CG height switches between 0.9[m],0.7[m],

and 0.5[m] only; also to simulate a gradual falling of loads inside the vehicle we assumed a

switching sequence of 0.9[m] → 0.7[m] → 0.5[m] in the CG height.

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

 δ
 [d

eg
]

time [sec]

0 1 2 3 4 5 6 7 8 9 10

0.5

0.6

0.7

0.8

0.9

C
G

 h
ei

gh
t, 

 h
  [

m
]

time [sec]

Figure 5.4: Driver steering wheel inputδ (where steering ratio is 1/20) and the time varying CG

height during the maneuver.

Using the controller gains (5.87),(5.88) and (5.89) corresponding to each CG height config-

uration, results in the state histories during the maneuver shown in Figure 5.5 for the closed

loop single track model. Note also in the figure that these states are compared tothose of

an uncontrolled vehicle subject to the same parameter switching, and the effectiveness of

the controller is evident from the results. Specifically, it is observed fromthe roll angle and

the roll rate profiles shown in the left half of figure that the suggested switched controller

reduces the controlled roll angle significantly while preserving the verticalresponse char-

acteristics. Similar conclusions can be made from the corresponding yaw rate and sideslip

angle plots shown in the right half of the same figure, where it is also observed that the

control action results in a reduced side slip angle whereas it causes an increased yaw rate
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values as compared to the vehicle with no control. These imply that for a givensteering

input, the controlled vehicle can tolerate higher yaw rates without having as much sideslip

as compared to the vehicle with no control.
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Figure 5.5: Comparisons of the states for vehicles with and without control.

It also is interesting to see how the suggested controller affect the vehicle path. To do this,

we note that the coordinates(x, y) of the vehicle CG relative to the road satisfy

x(k+1) = x(k)+vxcos(β (k)+ψ(k))∆t , (5.93)

y(k+1) = y(k)+vxsin(β (k)+ψ(k))∆t , (5.94)

where we choose the initial coordinates(x(0), y(0)) to be zero. In Figure 5.6 the CG trajec-

tories of the controlled and the uncontrolled vehicles are compared, wherewe observe that

due to higher yaw rate values of the controlled vehicle, the correspondingtrajectory has a

smaller turn radius, which is favorable in terms of the cornering capability.

Comment: We observe based on the simulation results that, the state feedback control
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Figure 5.6: Comparison of controlled and uncontrolled vehicle trajectories.

structure suggested in this section suppresses the roll motion of the controlled vehicle under

parameter switching, which in return causes an increased yaw rate and reduced sideslip

values as compared to the vehicle without control. These characteristics are reminiscent

of a sporty vehicle response in terms of increased responsiveness in the lateral dynamics

and higher cornering performance. Therefore, the suggested controller can be used used to

emulate sporty driving dynamics in a generic vehicle, as well as guaranteeing the switched

stability with respect to changing CG height.

5.6 A stabilizing switched controller synthesis proce-

dure for transient-free emulation of roll dynam-

ics of automotive vehicles

As a second example of the application of the main results presented in Section 5.4, we now

consider a problem related to the roll stabilization introduced in the previous section, but

this time there are added demands on the controller that include following a given reference

state trajectory, providing a means for transient free switching as well as guaranteeing the
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switching stability due to changing CG height. Applications of such a switching stabilizing

controller is abundant; to name a few, it can be used to modify vertical and roll dynamics

of a vehicle for various applications such as the dynamical emulation of othervehicles

(generic prototyping) [2], as well as optimization of the dynamics for driving comfort or

sporty response settings.

Remark 5.6.1 It is possible to use the control implementation described in this section as

an automotive vehicle rollover prevention system. For a detailed description and discussion

of the automotive rollover problem, see Chapter 3 as well as [124] and [125]. It is possible

to specify the reference roll angle trajectory used here for tracking such that a dynamical

metric related to rollover occurrence (such as the dynamic load transfer ratio, LTRd) is upper

bounded for given bounded disturbance inputs. However, since we are mainly concerned

with the emulation of roll dynamics here, this is outside the scope of the currentsection.

We will report an extension of this work for rollover prevention problem inthe near future.

In the preceding section we introduced a simplified second order model forthe roll dynam-

ics of an automobile in (5.50). Surprisingly, there are many other dynamical processes in

automotive systems as well as in other engineering systems, which can be represented with

the same dynamical structure. Before we give the controller synthesis procedure for such

class of systems, we need to express the roll dynamics model given with (5.50) in a more

suitable form so that it serves as a prototype for such class of systems. One can possibly ex-

press the second order roll plane model under the small angles assumptionin the following

form

φ̈ +
c

Jxeq

φ̇ +
k−mgh

Jxeq

φ =
mh
Jxeq

ay +
1

Jxeq

u, (5.95)

where the lateral accelerationay ∈ R is the disturbance input from lateral dynamics, and

u∈ R is the control torque imposed by the active suspension actuators. We further define
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the following time varying parameters as functions of the CG height

a0g =
k−mghg

Jxeq,g

, a1g =
c

Jxeq,g

, (5.96)

ωg =
mhg

Jxeq,g

, Lg =
1

Jxeq,g

, (5.97)

where the subscriptg ∈ {1,2, · · · ,m} denotes the current (detectable) CG height setting.

Note also that the parameterJxeq,g is a function of the CG height, and the dependence of

it on the current CG height,hg is clear from its definition given in (5.51). Substituting

these definitions in the roll plane model above, we obtain the following secondorder linear

parameter varying (LPV) model structure,

d2φ
dt2

+a1g
dφ
dt

+a0gφ = ωgay +Lgu, g∈ {1,2, · · · ,m}. (5.98)

Using this prototype model structure, we next give the control synthesis procedure.

The control strategy advocated here is similar to the one described in the preceding section

in that, it consists of a bank of linear controllers (one for each CG position)along with a

switching mechanism that are connected in feedback as depicted in Figure 5.7. We adopt

the following type of control strategy for each individual controller, which we denote byCi

that correspond to theith CG position setting

Ci :
dui

dt
= −biui +K1ie+K2i

de
dt

, (5.99)

wherebi ∈ R,K1i ∈ R,K2i ∈ R are the derivative, proportional and integral gains, respec-

tively. A controller of this form is a standard lead-lag (also known as proportional-integral-

derivative or PID) controller that is described in elementary text-books [98]. As a side

remark, we here note that this type of control implementations are commonly usedin au-

tomotive control applications; for example in the context of control of vertical dynamics

see [127], which uses a PI (proportional-integral) approach for tracking control design. For

the ease of exposition of the suggested control structure given in (5.99), we here consider

the tracking (i.e., emulation) of the roll angle only. Thereforee= r −φ designates the roll

angle tracking error, wherer ∈ R is the reference roll angle trajectory for the maneuver. As
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Figure 5.7: Reference tracking, switched roll dynamics emulation controller structure.

a further simplification, we also assume the switching logic selects the appropriate individ-

ual controller at the instant of a change in the CG height. It is important to notethat the

task of the emulation controller suggested here is not only the tracking of desired reference

states relevant to roll dynamics, but also maintaining the stability of the nominal switched

closed loop system. Therefore, we demonstrate here how the results presented in Section

5.4 may be used as the basis for a switched controller design, which consistsof a bank of

linear controllers (one for each CG height configuration) along with a switching mechanism

as depicted in Figure 5.7, and that accommodates all of the design considerations.

To keep the discussion in the sequel as simple as possible, we assume that there are only

three configurations that the CG height can switch to, that ism= 3, yielding an expression

for the closed loop dynamics given by,

ẋ = Agx+Bgr +Ggay, Ag ∈ {A1,A2,A3}, (5.100)
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where the state is defined asx = [ φ , dφ/dt, u1, u2, u3 ]T and the system matricesAg,Bg

andGg are given as below

Ag =


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










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
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0 1 0 0 0
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.(5.101)

Note here thatdg = 1 if thegth controller is engaged at any instant, and it is zero otherwise.

A discrete time equivalent for this dynamical system follows from (5.54), which is of the

same form as (5.100) for eachg. Utilizing a first order approximation for the matrix expo-

nentials (5.56), the following discrete time version for the forced roll plane model can be

obtained

x(k+1) = Ad,gx(k)+Bd,gr(k)+Gd,gay(k), Ad,g ∈ {Ad,1,Ad,2,Ad,3}, (5.102)

where

Ad,g =


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1 ∆t 0 0 0

−a0g∆t 1−a1g∆t L1d1∆t L2d2∆t L3d3∆t

−K11∆t −K21∆t 1−b1∆t 0 0

−K12∆t −K22∆t 0 1−b2∆t 0

−K13∆t −K23∆t 0 0 1−b3∆t
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, (5.103)

Bd,g =

[

0 0 K11∆t K12∆t K13∆t

]T

, (5.104)

Gd,g =

[

0 ωh∆t 0 0 0

]T

, (5.105)

for eachg ∈ {1,2,3}. We emphasize that the choice ofm= 3 is motivated by a desire to

aid exposition; the arguments and results obtained generalize tomarbitrary and finite. Next
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we give a technical lemma that is useful for controller synthesis for the class of systems

introduced above.

Lemma 5.6.1 Let Ad,g = {Ad,1,Ad,2,Ad,3} with Ad,g defined as in (5.103) be given. Suppose

that the characteristic polynomials of Ad,1,Ad,2,Ad,3 are denoted by p1(λ ), p2(λ ), and

p3(λ ) respectively, with,

p1(λ ) = (λ −1+b2∆t)(λ −1+b3∆t)H1(λ ),

p2(λ ) = (λ −1+b1∆t)(λ −1+b3∆t)H2(λ ), (5.106)

p3(λ ) = (λ −1+b1∆t)(λ −1+b2∆t)H3(λ ),

where

Hg(λ ) = (λ −1)3 + ãg(λ −1)2 + b̃g(λ −1)+ c̃g, (5.107)

and the constants̃ag, b̃g, c̃g are defined as

ãg = (a1g +bg)∆t, (5.108)

b̃g = (a0g +a1gbg +LgK2g)∆t2, (5.109)

c̃g = (a0gbg +LgK1g)∆t3. (5.110)

We choose the controller gains K1g,K2g,bg such that H1(λ ) = H2(λ ) = H3(λ ) = H(λ ) for

all λ . We consider the case where the roots of the polynomial P(λ ) = (λ −1+b1∆t)(λ −

1+ b2∆t)(λ −1+ b3∆t)H(λ ) are distinct. Then each pair of matrices Ad,1, Ad,2 and Ad,3

have exactly n−1 linearly independent common eigenvectors, where “n" is the dimension

of the closed loop system (that is, 5).

Proof of Lemma 5.6.1:First we show the result forAd,1 andAd,2. Identical arguments can

be developed for the matrix pairs(Ad,1,Ad,3) and(Ad,2,Ad,3). Note thatAd,1 andAd,2 are
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identical matrices except in the second row as it is apparent from

Ad,1 =
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.

We need to show that for each common eigenvalue, the matricesAd,1 andAd,2 have a com-

mon eigenvector, and that for the eigenvalue that is not common, the matrices have no

common eigenvector. We also note that, by definition,Ad,1 andAd,2 haven−1 distinct com-

mon eigenvalues. These eigenvalues correspond to the roots ofH(λ ) andλ = 1− b3∆t.

The eigenvaluesλ = 1−b2∆t (corresponding toAd,1) andλ = 1−b1∆t (corresponding to

Ad,2) are not common to both matrices. We first look at the eigenvectors corresponding to

common eigenvalues.

Common eigenvalues:

The form ofAd,1 andAd,2 implies that the common eigenvector corresponding toλ = 1−

b3∆t is given byv1 = [ 0 0 0 0 1]T . Now let λ be an eigenvalue that is common to

both matrices that is not equal to 1−b3∆t. The eigenvector ofAd,1 that corresponds to the
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eigenvalueλ can be obtained by determining the null space ofλ I −Ad,1:

λ I −Ad,1 =
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.

Let [rA11, rA12, rA13, rA14, rA15] denote the row vectors of the matrixλ I −Ad,1, whererA1i

is the ith row vector. As should be clear from the above discussion the eigenvalues under

interest here are such thatλ 6= 1−bg∆t whereg∈ {1,2,3}, that isλ is a root ofH(λ ). It

is clear that the row vectors[rA11, rA13, rA14, rA15] are linearly independent, therefore

it immediately follows thatλ I −Ad,1 is singular. Hence, it must be possible to writerA12

as a linear combination of[rA11, rA13, rA14, rA15]. This implies that the eigenvector

corresponding toλ is completely specified by the vectors[rA11, rA13, rA14, rA15].

Now consider the matrixAd,2. The eigenvector ofAd,2 that corresponds to the eigenvalueλ

defined above can be obtained similarly by determining the null space ofλ I −Ad,2:

λ I −Ad,2 =
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.

As before, let[rA21, rA22, rA23, rA24, rA25] denote the row vectors of the matrixλ I −Ad,2,

whererA2i is the ith row vector. Again,λ 6= 1− bg∆t whereg ∈ {1,2,3}, that isλ is

a root ofH(λ ). Clearly the row vectors[rA21, rA23, rA24, rA25] are linearly indepen-

dent, and the matrixλ I −Ad,2 is singular. Hence, it is possible to writerA22 as a linear
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combination of[rA21, rA23, rA24, rA25]. This implies that the eigenvector correspond-

ing to λ is completely specified by the vectors[rA21, rA23, rA24, rA25]. However, the

matricesAd,1 and Ad,2 are identical except for the second row. Hence, it follows that

rA1i = rA2i , ∀ i = {1,3,4,5}, and that the matricesAd,1 andAd,2 have a common eigenvec-

tor for all common eigenvaluesλ , whereλ 6= 1−bg∆t for g∈ {1,2,3}.

Eigenvalues that are not common to matricesAd,1 andAd,2:

Consider the matrixAd,1. The eigenvalue ofAd,1 that is not common toAd,2 is 1−b2∆t.

The eigenvector ofAd,1 that corresponds to this eigenvalue isv2 = [ 0 0 0 1 0]T . Now

consider the matrixAd,2. The eigenvalue ofAd,2 that is not common toAd,1 is 1− b1∆t.

The eigenvector ofAd,2 that corresponds to this eigenvalue isv3 = [ 0 0 1 0 0]T . Clearly,

v2 6= v3.

Q.E.D.

We now note the following facts concerning the matrixAd,g.

(i) rank{Ad,i −Ad, j} = 1, for i 6= j, andi, j ∈ {1,2,3}.

(ii) The characteristic polynomialsp1(λ ), p2(λ ), andp3(λ ) sharen−1 common roots

(eigenvalues) ifHi(λ ) = H(λ ), i ∈ {1,2,3}.

(iii) Let Hi(λ ) = H(λ ), for i ∈ {1,2,3}. Then the matricesAd,i andAd, j , for i 6= j and

i, j ∈ {1,2,3}, satisfy Lemma 5.6.1, and they sharen−1 common real linearly inde-

pendent eigenvectors.

The following corollary summarizes the sufficient conditions for the closed loop switched

system stability for this problem.

Corollary 5.6.1 The sufficient conditions for the matricesAd,g ∈ {Ad,1,Ad,2,Ad,3} to sat-

isfy the conditions of Theorem 5.4.1, and hence for the stability of the unforced system,

x(k+1) = Ad,gx(k), Ad,g ∈ {Ad,1,Ad,2,Ad,3} (5.111)
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are given by:

(i) the target polynomialsHi(λ ) have positive real eigenvalues in the unit circle for all

i ∈ {1,2,3};

(ii) Hi(λ ) = H j(λ ), ∀i, j ∈ {1,2,3};

(iii) 1 > 1−bi∆t > 0,∀i ∈ {1,2,3};

(iv) the roots of the polynomialP(λ ) = (λ −1+b1∆t)(λ −1+b2∆t)(λ −1+b3∆t)H(λ )

are distinct.

When these conditions are satisfied, one can easily verify that any 5 of the6 linearly inde-

pendent eigenvectors given by the eigenvectors ofAd,1,Ad,2,Ad,3, are linearly independent.

Therefore, the hypothesis of Theorem 5.4.1 is satisfied, and the origin ofthe switched sys-

tem representing the unforced roll plane dynamics model given in (5.102)with r = 0 and

ay = 0, is globally attractive and asymptotically stable. BIBO stability of the forced system

with r 6= 0 anday 6= 0 follows directly from elementary arguments given in Lemma 5.5.2

(also see [102]).

We next give the following corollary that is useful in obtaining roll dynamicsemulation

controllers that satisfy Lemma 5.6.1.

Corollary 5.6.2 Suppose that the discrete time roll dynamics model with three switches as

described in (5.102) along with the matrices (5.103),(5.104), and (5.105) isgiven. Noting

that each constituent switched system is of 5th order, we assume that the closed loop system

matricesAd,1,Ad,2,Ad,3 share three real common eigenvalues and the corresponding real

eigenvectors. We denote these common eigenvalues asγ1,γ2,γ3, and further assume that

they satisfy 0< γg < 1 for eachg∈ {1,2,3}. Then with the following choice of the gains
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for the PID controller given in (5.99) for eachg∈ {1,2,3}

bg =
3− (γ1 + γ2 + γ3)

∆t
−a1g, (5.112)

K2g =

[−3+2ãg +(γ1γ2 + γ1γ3 + γ2γ3)

∆t2 −a0g−a1gbg

]

1
Lg

, (5.113)

K1g =

[

1− ãg + b̃g− γ1γ2γ3

∆t3 −a0gbg

]

1
Lg

, (5.114)

results in three closed loop switched systems (5.102) that satisfy the conditions of Lemma

5.5.1 and Theorem 5.4.1. The definitions of ˜ag, b̃g, c̃g appearing in the above expressions

are as described in (5.108),(5.109), and (5.110) and they utilize the roll model parameters

given with (5.96) and (5.97) above.

Remark 5.6.2 (Condition for transient free switching)

It is known that a switched control structure such as the one introduced here can induce

undesirable transients, which result from state transitions after the switching of a controller

[139]. However, in a recent thesis [140] it is shown that when the constituent systems

corresponding to different controllers in the feedback loop have a common steady-state for

a given constant input signal, then the overall switched system has no transients, given that

the switching occurs during steady state. In order obtain a more refined control design, we

can also make use of this result. Note that, for the emulation controller synthesisprocedure

we developed so far, we made no specific mention of the fact that each of the individual

switched controllersCi defined in (5.99) can result in a different steady state roll angle for

a given constant lateral acceleration input. Denoting the steady-state forthegth controller

by x̂g(k), the steady state requirement for the discrete time switched forced roll planemodel

given in (5.102) is that ˆxg(k+1) = 0, which yields the following expression

x̂g(k) = −A−1
d,gBd,gr(k)−A−1

d,gGd,gay(k), (5.115)

for g∈ {1,2,3}. In order to make the steady state roll angle uniform for eachCi , one can

possibly multiply the reference roll angler(k) by a gain such that the first element of the

steady-state ˆxg(k) is constant for eachg. That is, instead of usingr(k) as the reference roll
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angle signal, a modified signal ˆrg(k) can be used for each of the constituent systems, which

is defined as follows

r̂g(k) = αgr(k), (5.116)

whereαg ∈ R are a set of scalars. Fixed gainsαg are chosen such that the first element of

the steady-state (i.e., the steady state roll angle), which we denote by[x̂g]1(k) is constant.

That is

[x̂i ]1(k) = [x̂ j ]1(k), (5.117)

for all i, j ∈ {1,2,3}. Note that this condition is easily implemented in the control design

through a pre-filtering of the reference roll angle signal, which is shownin Figure 5.7.

With this background in mind, and making use of Corollary 5.6.2 we next demonstrate the

roll dynamics emulation controller design with a numerical example.

Example 5.6.1 In this example we assume a similar simulation scenario to that of Section

5.5. That is, we assume the single track model with roll degree of freedom given in (5.91)

to represent the real vehicle in simulation with a constant velocity atvx = 20m/s. Also the

driver’s gradual step steering input with a peak magnitude of 80◦ was assumed to be the

same. For the ease of exposition we assumed that the CG height of the vehicleswitches

between three distinct positions; this reflects a possible situation where the loads dislocate

inside the vehicle vertically as a result of the inertial forces induced duringa maneuver.

Without loss of generality, we assumed a repeating switching sequence between 0.9[m] →

0.7[m] → 0.5[m] in the CG height as shown in Figure 5.8 along with the driver steering

input. Also, we set the discrete time step as∆t = 0.005 and the rest of the vehicle model

parameters used in the example are as specified in Table 5.2, which are representative of a

compact class vehicle. Next we give the results of the discrete time controlleradvocated

here for roll dynamics emulation based on Corollary 5.6.2, and in a feedback loop with the

single track model with roll degree of freedom as the plant model.
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Figure 5.8: Driver steering wheel inputδ (where steering ratio is 1/20) and the time varying CG

height during the maneuver.

Without loss of generality, we set the three eigenvalues that are common to each of the

Ad,1,Ad,2, Ad,3 matrices as follows

γ1 = 0.9, γ2 = 0.7, γ3 = 0.5.

Utilizing the Corollary 5.6.2 we then obtained the the following controller gains

b1 = 151.6667

K11 = 4.4343×107

K21 = 3.2976×106

,

b2 = 154.3694

K12 = 6.7681×107

K22 = 5.2448×106

,

b3 = 156.0692

K13 = 9.8731×107

K23 = 7.8498×106

.

Assuming a forward difference approximation for the derivatives in (5.99) and applying aZ-

transform with zero initial conditions, we implemented the switched controllers asdiscrete

time transfer functions given below

ug(z)

e(z)
=

K2gz+K1g∆t −K2g

z−1+bg∆t
, f or g∈ {1,2,3}, (5.118)

whereug(z) = Z[ug(k)], ande(z) = Z[e(k)].
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In Figure 5.9 the resulting state histories are shown for the controlled and uncontrolled ve-

hicles during the maneuver. Note that we also show the reference roll angle signal in this

figure. Based on the simulation results, the roll angle tracking performanceof the controller

demonstrates the effectiveness of the controller. An important observation based on the
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Figure 5.9: Comparisons of the model states for the vehicles with and without the emulation con-

troller.

simulation results as seen in the figure is that the roll torque input generated by the active

suspension actuators affect the lateral dynamics of the vehicle significantly. In particular,

the yaw rate of the controlled vehicle as seen at the top right of the figure shows significant

changes in the steady state value of the controlled vehicle. Although the switching in the

side slip angle of the controlled vehicle seen in the bottom right of the figure has a small

magnitude, the switching in yaw rate has very large magnitude and is likely to change the

cornering behavior of the vehicle. Also, it might be uncomfortable (or even dangerous) for

the driver when the steady state yaw rate switches as a result of the control action. In order

to prevent this, the effect of the roll torque input on the steady state valueof the yaw rate can
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be compensated utilizing active steering inputs in a second control loop. Thisrequires the

availability of active steering actuators in the front wheels, and we here assume a specific

type of such actuators commonly known as the “mechatronic-angle-superposition" steering

actuator. This type of actuators contain a physical steering column and actcooperatively

with the driver, while they permit various functions such as speed dependent steering ra-

tio modification, and active response to mild environmental disturbances (see[125] for an

extensive discussion of active steering actuators). Using this type actuators, the effective

steering input to the vehicle can be expressed as

δ = δdriver +δactive. (5.119)

The effect of the roll torque input on the steady state yaw rate can be calculated analytically

using the closed-loop single track model with roll degree of freedom given in (5.91). At

steady state the closed loop model becomes

xss= −A−1Bδ −A−1Gu, (5.120)

wherexss=
[

βss ψ̇ss φ̇ss φss
]T

is the value of the steady state. Also,A∈R
4 is the system

matrix given (5.91), andB,G are defined as follows from the same equation

B =

[

Cv
mvx

Jxeq

Jxx

Cvlv
Jzz

hCv
Jxx

0

]T

, G =

[

0 0 1
Jxx

0

]T

. (5.121)

In order to obtain the required active steering input to cancel the steady state contribution

of u on the yaw rate, one can use (5.120) withδc as the only steering input and also setψ̇ss

to zero. This then yields the following switched active steering compensator

Sg : δc,g =
ρhgm

JxxCv(ρ +σ lv)
u, (5.122)

where the subscriptg ∈ {1,2, · · · ,m} denotes the current (detectable) CG height setting.

The resulting integrated control structure with both active suspension andactive steering

inputs are schematically represented in Figure 5.10.

Implementation of this simple active steering compensation to the simulation scenario de-

scribed above results in the effective steering input shown in Figure 5.11, where the resultant
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Figure 5.10: Integrated roll dynamics emulation controller structure with active suspension and

active steering.

steering input is also compared with the driver input. In Figure 5.12 the resulting roll an-

gle and roll rate history is shown for the controlled and uncontrolled vehicles during the

maneuver. Note that we also show the reference roll angle signal in this figure. Based on

the simulation results, the tracking performance of the controller demonstratesthe effec-

tiveness of the suggested controller. The corresponding yaw rate andside slip plots for the

controlled and uncontrolled vehicles are shown in Figure 5.13, where the effect of the active

steering compensation on the yaw rate and sideslip trajectories are obvious when compared

to the simulation results given in Figure 5.9 for the emulation controller without the active

steering compensation. Note here that there is still some visible switching in the side slip

however its magnitude is very small and it would probably be undiscernible for the driver.

We emphasize that the aim of the active steering compensation here is to cancel the effect

suspension controller on the steady state yaw rate, this was achieved as observable from the

simulation results. Finally, in order to see how the suggested controllers affect the vehicle

path, we again used (5.93) and (5.94) to calculate the vehicle path during themaneuver,
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Figure 5.11: Comparison of the driver steering wheel inputδd and the effective steering input

δ = δd +δc as a result of active steer compensation.

where we choose the initial coordinates(x(0), y(0)) to be zero for both the controlled and

the uncontrolled vehicles. In Figure 5.14 the trajectories of the CG position ofthe controlled

(with and without active steering compensation) and the uncontrolled vehicles on a lateral

plane representing the road surface is shown. We observe that due to the high magnitude

switching in the controlled vehicle with no active steer compensation, the corresponding

trajectory has diverged greatly from the uncontrolled vehicle. It is also observed from the

same trajectory that the switching in yaw rate causes significant changes in the lateral mo-

tion of the vehicle and therefore the resulting path is non-circular. However, none of these

occur in the controlled vehicle with the active steering compensation, and the correspond-

ing vehicle trajectory is almost identical to the uncontrolled one. This is more apparent

from Figure 5.15, where the instantaneous distances of the controlled vehicles with and

without the active steering compensation relative to the uncontrolled vehicle trajectory are

compared. Note that, we compute the instantaneous relative distance according to

distance(k) =
√

(xcont(k)−xnocont(k))2 +(ycont(k)−ynocont(k))2 (5.123)

for vehicles with either of the emulation controllers, where the pair(xcont(k), ycont(k)) de-

note the instantaneous coordinates of the controlled vehicle, whereas(xnocont(k), ynocont(k))

denote that of the uncontrolled one. As seen from from this last figure, the vehicle with the

emulation controller and with the active roll compensation stays very close to uncontrolled

vehicle. This is favorable in the sense that the suggested controller does not interfere with
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Figure 5.12: Roll angle and and roll rate history of the emulation controller with active steering

compensation.

the vehicle path for tracking a certain reference roll signal, and thus the vehicle retains its

natural lateral response. Moreover these characteristics are not effected from the switches

in the CG height.

Remark 5.6.3 As a final comment, it is important to mention about the robustness of

the control design methods introduced so far. We assumed neither uncertainty in the sys-

tem matrices, nor inexact knowledge of the switching instants for either of theapplications

introduced so far. When automotive applications are considered, such certainty would prac-

tically be overly optimistic and uncertainty must always be taken into account. Ithas been

shown in [113] that, uncertainty in the eigenvectors and eigenvalues of theswitched sys-

tem matrices can lead to instability for a related class of continuous time systems to those

introduced in Theorem 5.4.1. The theoretical and numerical analysis of robustness for the

class of discrete time switched systems introduced in this chapter is still an open question.

Our future work will include a detailed analysis of the robustness for thesesystems, and the

control syntheses will include compensation of uncertainty.
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Figure 5.13: Yaw rate and side slip history of the emulation controller with active steering compen-

sation.

5.7 Conclusions and possible future directions

In this chapter we have shown that the global attractivity results for a classof discrete-

time switching systems is not necessarily equivalent to continuous time systems withthis

property. Hence, in cases when the existence of a CQLF is unknown forthe switched set

of LTI systems, qualitative statements concerning the system stability for the continuous-

time as well as the discrete-time systems must be validated separately using non-CQLF

techniques. One such technique for a specific class of discrete time systemsis presented in

the current chapter; namely, a technique which proves global attractivityby embedding the

original (n-dimensional) state space in a higher (n+1) dimensional state space. This result

can be translated into practical control design laws for switched systems. As a motivation

for the applications of this main result, we presented two examples where this result is used

to design controllers that are robust with respect to switching action. Both design examples

are related to automotive roll dynamics stabilization problem that involves switching as a

result of changing CG height. We have shown in the first application numerically that,
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Figure 5.14: Comparison of controlled and uncontrolled vehicle trajectories for the suggested emu-

lation controllers.

for a simplified version of the problem that is constrained to only three switches in the

plant parameters, the chosen switched unforced system had no CQLF; for this problem

we presented a stabilizing controller synthesis procedure utilizing the non-CQLF technique

that is the main result of this chapter. In the second application we presenteda PID control

synthesis procedure for the emulation of roll dynamics, where tracking a reference signal

related to roll dynamics was the main goal. Based on the numerical simulation results, both

examples demonstrate the efficacy of the suggested design techniques.
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steering with respect to the uncontrolled vehicle.
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Chapter 6

Integrated Decentralized Automotive

Dynamics Tracking Controllers that

Account for Structural Uncertainty

In this chapter we present a method for decentralized control design for sys-

tems with multiple dynamical modes, which guarantees robustness with re-

spect to structural uncertainty. We consider the implementation of this method

to the decentralized control designs for the automotive lateral and roll refer-

ence dynamics tracking. The respective control rules that we utilize are based

on simplified, 2-state roll and lateral dynamics models of the vehicle. We uti-

lize a method for checking the overall stability of the integrated controllers

based on a frequency domain criterion. We also give a numerical example

for the integrated automotive tracking control designs based on PI feedback,

which utilize active suspension and active steering actuators. Finally, we show

how this result can preserve robustness with respect to sensor failure insuch

applications. We acknowledge that the work in this chapter is an application
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6.1 Chapter contributions

of some recent results by Shorten and Narendra reported in [119] and Shorten,

Curran, Wulff, King and Zeheb reported in [109] and [110]; also it is ajoint

work between ourselves, Dr. Mark Readman and Carlos Villegas as part of

the EU funded project CEmACS.

6.1 Chapter contributions

It is a known fact that most real-life engineering systems have dynamical subsystems that

interact. With this perspective, the contribution of this chapter is in considering a novel

integration method for simplified decentralized controllers, each of which aredesigned for

controlling different dynamical modes of a complicated dynamical system. Thisis an im-

portant problem as most engineering systems can be modelled with many simplifieddy-

namical subsystems that interact with each other. In the context of automotive vehicle

dynamics control, we encountered the effects of dynamical interactions during the roll dy-

namics tracking problem analyzed in Section 5.6. Thus, another major contribution of the

chapter in implementing the suggested decentralized control design for the problem of si-

multaneous control of the vehicle roll and lateral dynamics, which can be considered as a

means to dynamically imitate other vehicle types. Based on the results we showed that the

suggested method can provide robustness with respect to structural uncertainty, which can

be considered as a failure mitigation method in the case of sensor and/or subsystem failure

in automotive vehicles.

6.2 Introduction

It is an irrefutable fact that decentralized control is a feature of the control engineering

practice. A basic problem in the design of control systems is the lack of simple methods

for designing decentralized controllers that are robust with respect to certain types of struc-
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tural uncertainties. Most complex engineering systems can be described by a number of

interacting dynamical modes and sub-processes. When control of suchsystems are consid-

ered, the engineering practice is to utilize a number of control systems, eachof which are

designed to control a particular sub-process or a dynamical mode. Suchdesigns arise for

a number of reasons. Firstly, it is human nature to divide a complicated problem into a set

of simpler ones, each of which can be solved independently of each other. Second, even

when a centralized controller is possible, in practice, a low order decentralized controller is

often preferred due to their simplicity and ease of implementation. Third, when networked

control systems are considered, it is often the case that interconnected subsystems must be

designed to be individually stable, even when interconnected together, sothat they are ro-

bust to the effects of unreliable communication between each of the subsystems. Finally,

from the perspective of the industry, it is often the case that different sub-contractors are

assigned separate parts of a complex control task; the automotive industryprovides a very

good example of this latter point. In terms of vehicle dynamics control applications, it is

common in the automotive industry that some parts suppliers design and manufacture the

roll over prevention systems, and some other manufacturers supply the lateral dynamics

control systems (such as the ESPr) for the same vehicle. Even though each of these control

systems affect one another1, and even sometimes these utilize common sensor and actuator

units, they are often designed independently of each other. Also, it is a common practice in

the automotive industry to utilize sensor measurements to artificially decouple dynamical

interactions of the vehicle, and the control task at hand then becomes the development of

methods for the integration of these units so that the overall performance objectives, and

also a certain degree of robustness are met with respect to unreliable sensor measurements.

Motivated by these facts, our objective in this chapter is to present one such method and

to explore how some of the methods developed in this thesis can be integrated withother

1We have seen in the preceding chapters that the lateral and the roll dynamics of the vehicle

interact at various levels. Therefore, controllers designed to control these also interact, as we have

clearly seen in Section 5.6.
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automotive control systems in a structured manner. To aid the exposition, we utilize decen-

tralized controllers based on the two-state single track model and the two-stateroll plane

model to simultaneously track reference vehicle states. Therefore, herewe discuss about

how to integrate a controller for the roll degree of freedom, with that for thelateral degree of

freedom in a vehicle equipped with both active suspension and active front wheel steering

actuators, while at the same time achieving a decentralized design that is not restricted by

the structural constraints and uncertainties imposed on the problem.

6.3 A decentralized control design methodology

In an abstract setting, the basic task of the control approach we utilize is to find a decen-

tralized control structure that simultaneously stabilizes a number of subsystems and the

integrated overall system, as well as it guarantees robustness with respect to certain types of

structural (possibly time-varying) uncertainty. A basic mechanism for achieving this objec-

tive is to select decentralized feedback structures such that the linearized closed loop system

admits a block diagonal Lyapunov function. The existence of such a Lyapunov function is

not only sufficient for guaranteeing the stability of the constituent subsystems and the inter-

connected system (i.e., the integrated overall system), but it is also sufficient that the overall

system is stable with respect to uncertain measurements, which affect certain regions of the

system matrix, and whose bounds can be quantified. In what follows, we formally describe

the problem and then present our approach for the decentralized controller design task.

Let A∈ R
n×n be a Hurwitz2 stable matrix, which represents the overall closed loop system

matrix of a dynamical process with two interacting constituent subsystems, which have the

2This means that all the eigenvalues of the matrixA have strictly negative real parts. This also

implies that the LTI system ˙x = Ax is exponentially stable.
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following structure

ẋ = Ax with A =









A11 A12

A21 A22









, (6.1)

where bothA11∈R
(n−m)×(n−m) andA22∈R

m×m are assumed to be Hurwitz stable also. For

example, this equation can be considered to represent the error dynamicsof a given closed

loop system. A basic question that arises for this feedback system is whether one can find a

positive, block diagonal matrixP = PT > 0, such that

AT
11P11+P11A11 < 0

AT
22P22+P22A22 < 0

ATP+PA< 0































(6.2)

with

P =









P11 0

0 P22









, (6.3)

whereP11 ∈ R
(n−m)×(n−m) andP22 ∈ R

m×m. In other words we want to stabilize each of

the constituent subsystems, and the entire interconnected system, simultaneously. If such a

block diagonal, positive matrixP = PT > 0 exists, then not only is the system stable, but

also it is stable with respect to structural uncertainties inA12 andA21,which in effect, can

be considered as robustness with respect to system failure. Despite having a long history

in control theory, this problem, namely the problem of finding vector Lyapunov functions,

remains open to this day. Fortunately, in our situation, one may find feedbackstrategies to

ensure a block diagonal Lyapunov function as described in the sequel.

Let B∈ R
n×m be the matrix of all zeros except for the lastm rows andmcolumns which are

set to be the elements ofm×m identity matrix, and which we denote byIm ∈ R
m×m, such

thatB matrix is expressed as follows

B =









0n−m×m

Im









. (6.4)
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Further we denotes∈ R, as the scalar variable in the frequency domain. Suppose now that

one can find a symmetric matrix̂P = P̂T ∈ R
m×m such that

P̂BT(sIn−A)−1B, (6.5)

is Strictly Positive Real (SPR).

Suppose further that the matrix pair(A,B) is controllable and at the same time, the matrix

pair (A,BP̂) is observable. Then, it follows from the KYP lemma [49] that the frequency

domain condition (6.5) is sufficient for the existence of a matrixP = PT > 0 that satisfies:

ATP+PA < 0

PB = BP̂















(6.6)

This in turns guarantees the existence of a block diagonalP matrix with P22 = P̂. This

simple idea translates into a decentralized design strategy for our application as follows.

Proposition 6.3.1 (Decentralized control design procedure)

Suppose that a feedback system structure of the form (6.1) is given, where the aim is to

design controllers for the subsystemsẋ1 = A11x1 andẋ2 = A22x2 such that the overall system

ẋ = Ax with x= [x1,x2]
T ∈ R

n is stable regardless of bounded structural uncertainties that

might be present in the blocks A12 and A21. The following design rule achieves this.

(a) Design a feedback strategy for blockẋ2 = A22x2, where x2 ∈ R
m, so that the basic

design requirements for this subsystem are met over a range of operating conditions;

this also specifies the matrix̂P∈ R
m×m.

(b) Select the control strategy for block̇x1 = A11x1, where x1 ∈ R
n−m such that

P̂BT(sIn−A)−1B, (6.7)

is SPR.
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6.4 Decentralized control design for vehicle dynam-

ics tracking

To illustrate the technique introduced in Proposition 6.3.1, we use a problem that is initially

considered in [2]. Specifically, here we implement the methodology described in the pre-

ceding section for synthesizing vehicle dynamics controllers for simultaneous tracking the

reference lateral and roll dynamics. The motivation for this problem was described in detail

in Chapter 5. While we considered the roll dynamics tracking to be the main focus in the

preceding chapter, here we are concerned with the tracking of both rolland lateral dynam-

ics based on decentralized controllers and utilizing active suspension andactive steering

actuators. In doing so, we take the dynamical interactions into account in thedesign such

that the stability of the resulting controlled roll and lateral dynamics are unaffected from the

interactions. To keep the discussion reasonably simple, we use simplified vehicle dynamics

models, which have already been introduced in the preceding chapters in detail. Specif-

ically, we design the lateral tracking controller based on the active steeringactuator and

using the two-state single track model, while we use the two-state roll plane modelwith

active suspension actuator for designing the roll dynamics tracking controller. We then in-

tegrate both controllers based on the design methodology outlined in Proposition 6.3.1. We

show the efficacy of the resulting integrated tracking controller with numerical simulations,

and as applied to a four-state single track model with the roll degree of freedom.

6.4.1 Lateral PI controller design based on LQR

In this subsection we introduce a simple lateral dynamics reference trackingcontroller de-

sign utilizing the linear single track model with active front steering input. For this control

design we assume that mechatronic-angle-superposition type active steering actuators on

the front wheels provide the sole control input. We previously introducedthese actuators
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in Chapter 3 in the context of rollover prevention control design. Also we utilized the two-

state single track model for vehicle parameter estimation in Chapter 2. Here we combine

this model and the actuator to design a simple PI control law, where the controlgains are

obtained by LQR (Linear Quadratic Regulator) design techniques.

The two-state single track model3 is the simplest model that represents the lateral dynamics

of a car in the horizontal plane, where the effects of heave, roll, and pitch motions are all

ignored [2]. It is also assumed that only the front tire is used for steeringthe vehicle, and

that the steering angle is small. In this model, we represent the horizontal dynamics in terms

of the state variablesβ andψ̇, that is thesideslip angleand theyaw rate, respectively. Both

of these states are assumed to be small for linearization. The corresponding state space

representation of the model with active steering input is given as follows








β̇

ψ̈









=









− σ
mvx

ρ
mv2

x
−1

ρ
Jzz

− κ
Jzzvx









·









β

ψ̇









+









Cv
mvx

Cvlv
Jzz









δd,+









Cv
mvx

Cvlv
Jzz









u1, (6.8)

whereδd is the driver steering command, andu1 is the steering command from the active

steering actuator. Also, the auxiliary parametersσ ,ρ, andκ are defined as below

σ , Cv +Ch

ρ , Chlh−Cvlv

κ , Cvl2
v +Chl2

h































(6.9)

For further description of the parameters of the model, refer to Table 2.1 and the Chapter 2.

The purpose of the control design we consider here is to follow a reference yaw rate trajec-

tory4. This choice is motivated by the fact that the yaw rateψ̇, along with the lateral accel-

erationay are responsible for most of thelateral handling feel, (i.e., the lateral response) of

3See Figure 2.1 for the graphical representation and the notations of the model.
4It is possible to consider the tracking of both the yaw rateψ̇, and the sideslip angleβ given that

there is more control authority such as the differential braking and/or active front and rear wheel

steering. However, we assume neither of these actuators in this discussion.
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an automotive vehicle, and therefore are the natural targets for emulation.We can achieve

this by introducing a new integrator statexI as a function of the yaw rate tracking error

ẋI = ψ̇ − ψ̇re f = ψ̇ −αδd, (6.10)

whereψ̇re f denotes the reference yaw rate trajectory, which is a linear function of thedriver

steering inputδd. Thus, the scalarα is the steady-state gain from the driver steering input

δd to the reference yaw ratėψre f for the vehicle that we want to emulate. Further, we can

define an augmented statex1 ∈ R
3 given as below

x1 =

[

β ψ̇ xI

]T

, (6.11)

which results in the following augmented feedback system description

ẋ1 = A11x1 +B1δd +B2u1 with

A11 =

















− σ
mvx

ρ
mv2

x
−1 0

ρ
Jzz

− κ
Jzzvx

0

0 1 0

















, B1 =

















Cv
mvx

Cvlv
Jzz

−α

















, B2 =

















Cv
mvx

Cvlv
Jzz

0































































(6.12)

Now in order to track the reference yaw rate trajectory, it is possible to design a PI linear

state feedback rule based on the active steering inputu1 of the form below

u1 = Kx1 =

[

Kp1 Kp2 KI

]

x1, (6.13)

whereKp1,Kp2 are the proportional gains for the first two states, andKI is the control gain

corresponding to the integrator state. While there are many ways to specify these gains, we

use a quadratic cost optimization technique known as the LQR for designing the control

input. This choice is motivated by the fact LQR is a well known method for state feedback

design and also that there are convenient numerical tools developed forthis purpose (such as

the Matlabr control system toolbox). Just to briefly explain, for a linear system ˙x= Ax+Bu

with x∈ R
n, u∈ R

m andx(0) = x0, the LQR design method for choosing a state feedback
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controlleru = Kx amounts to finding the fixed control gain vector

K =

















K11 . . . K1n

...
. . .

...

Km1 . . . Kmn

















,

such that the closed loop system is stable, and also that the quadratic cost function

J(x0,u(·)) =
∫ ∞

0

[

x(t)TQx(t)+u(t)TRu(t)
]

dt, (6.14)

is minimum for the choice symmetric matricesQ= QT ≥ 0∈R
n×n andR= RT > 0∈R

m×m.

The matricesQ andR are known as theweighting matricesand are the tuning parameters

in this design approach. We shall present the numerical implementation of this controller in

Section 6.4.3 below, where we will choose the matricesQ andR such that SPR condition

given in (6.7) are satisfied.

6.4.2 Roll PID controller design based on pole placement

In this subsection we use the second order roll plane model derived in Section 2.3.2 in detail,

for designing the roll angle reference tracking controller based on the active suspension

actuators. We note that the control design approach suggested here is based largely on

the pole placement controller introduced in Section 5.6; the difference is in that we here

consider the continuous-time version with fixed and known system parameters5.

Assuming that the sprung mass of the vehicle rolls about a fixed horizontal roll axis along

the centerline of the vehicle body relative to the ground, and also that all angles are small,

the equations describing the roll plane motion of an automotive vehicle can be expressed in

5We emphasize that it is also possible to consider linear timevarying systems in the scope of the

control design approach introduced in this Chapter, which shall be future direction.
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the following state space form with reference to Figure 5.1








φ̇

φ̈









=









0 1

− k−mgh
Jxeq

− c
Jxeq









·









φ

φ̇









+









0

mh
Jxeq









ay +









0

1
Jxeq









u2, (6.15)

whereay is the lateral acceleration andu2 is the roll torque input generated by the active

suspension actuator. Also,Jxeq denotes the equivalent roll moment of inertia defined as

Jxeq = Jxx+mh2.

For further description of the parameters of the model, refer to Table 5.1.

The purpose of the control design we consider in this subsection is to followa reference roll

angle trajectory. In order to achieve this we propose the following PID control structure

du2

dt
= −Kr3u2 +Kr1e+Kr2

de
dt

with e= φre f −φ , (6.16)

whereKr1,Kr2,Kr3 are the PID gains,e is the roll angle tracking error, andφre f is the

reference roll trajectory. Now we can define an augmented statex2 ∈ R
3 given as below

x2 =

[

φ φ̇ u2

]T

, (6.17)

which results in the following augmented feedback system description

ẋ2 = A22x1 +B3ay +B4φre f with

A22 =

















0 1 0

−a0 −a1 a2

−Kr1 −Kr2 −Kr3

















, B3 =

















0
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Jxeq

0

















, B4 =
















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0
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
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












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









































(6.18)

where

a0 =
k−mgh

Jxeq

, a1 =
c

Jxeq

, a2 =
1

Jxeq

. (6.19)

The characteristic polynomial corresponding to the closed loop system matrixA22 is

p(s) = s3 +(a1 +Kr3)s
2 +(a0 +a2Kr2 +a1Kr3)s+(a0Kr3 +Kr1a2). (6.20)
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Denoting the closed loop eigenvalues (i.e., the target poles) asλ1,λ2,λ3, the target charac-

teristic polynomial of the closed loop system can be expressed as

p(s) = s3− (λ1 +λ2 +λ3)s
2 +(λ1λ2 +λ1λ3 +λ2λ3)s−λ1λ2λ3. (6.21)

Comparing (6.21) with (6.20) we obtain the following fixed control gains in termsof the

target poles and the elements of the system matrix

Kr1 =
a0a1 +a0(λ1 +λ2 +λ3)−λ1λ2λ3

a2
,

Kr2 =
a2

1 +a1(λ1 +λ2 +λ3)−a0 +λ1λ2 +λ1λ3 +λ2λ3

a2
, (6.22)

Kr3 = −a1− (λ1 +λ2 +λ3).

Now taking the Laplace transform of the controller (6.16) we can expressthe resulting PID

controller in frequency domain as follows

u2(s) =
Kr1 +Kr2s

s+Kr3
e(s),

whereu2(s) = L {u2(t)}, ande(s) = L {e(t)} are the Laplace transforms of the control

input, and the tracking error, respectively. As a final remark we note that the design pa-

rameters for this tracking controller are the target polesλ1,λ2,λ3; in order for the closed

loop system to be stable these are set be negative real. In what follows, we implement the

integrated control methodology based on the decentralized control designs introduced in the

current and the preceding subsections.

6.4.3 Robust integration of controllers

In this subsection we give an implementation of the design methodology described in Propo-

sition 6.3.1 for simultaneous, and structurally robust emulation [2] of the reference vehicle

states related to the lateral and the roll dynamics. In doing so, we utilize the simpledecen-

tralized control structures introduced in the preceding two subsections and show that the
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resulting controller integration approach is robust with respect to certain types of structural

uncertainties.

For the controller integration we consider the four-state single track model with the roll

degree of freedom to represent the real vehicle. This choice is motivated by the fact that

the four-state single track model is the simplest model that considers the interactions of

both the roll and the lateral dynamics, and thus it is an ideal choice for exposing the control

integration idea. We utilize the version of the model with the statesξ =
[

β ψ̇ φ φ̇
]T

,

and the model assumes control inputs from both the active front wheel steering actuator and

the active suspension actuator. Then, the linearized equations of motion corresponding to

this model with two inputs can be expressed follows

ξ̇ = Aξ +G1δd +G1u1 +G2u2 with (6.23)

A =














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

− σJxeq

mvxJxx

ρJxeq

mv2
xJxx

−1 h(mgh−k)
vxJxx

− hc
vxJxx

ρ
Jzz

− κ
vxJzz

0 0

0 0 0 1

−hσ
Jxx

hρ
vxJxx

mgh−k
Jxx

− c
Jxx























, (6.24)

G1 =

[

CvJxeq

mvxJxx

Cvlv
Jzz

0 hCv
Jxx

]T

, G2 =

[

h
vxJxx

0 0 1
Jxx

]T

, (6.25)

whereu1 represents the mechatronic-angle-superposition type active steer input,andu2 rep-

resents the active suspension roll torque input. For further definitions of all the parameters

and notations appearing above, see Table 2.1 as well as the Chapters 2 and 3, where variants

of this model have been utilized extensively. Also see [50] for a detailed derivation of this

model.

The task of the integrated controller considered here is to follow reference roll angleφre f ,

and reference yaw ratėψre f trajectories corresponding to a different vehicle. In our nu-

merical studies we simulate this scenario by utilizing two four-state single track models,

each with a different parametrization; we shall refer to the vehicle that we want to emulate

as thereference vehicle, which generates the reference trajectories, and the other vehicle
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Table 6.1: Fixed model parameters

Parameter Reference Vehicle Controlled Vehicle unit

m 1400 1224.1 [kg]

Jxx 500 362 [kg·m2]

Jzz 1500 1279 [kg·m2]

lv 1.4 1.102 [m]

lh 1.5 1.254 [m]

h 0.6 0.375 [m]

c 6000 4000 [kg·m2/s]

k 39000 36075 [kg·m2/s2]

Cv 80000 90240 [N/rad]

Ch 175000 180000 [N/rad]

α 4.019 [1/s]

is referred to as thecontrolled vehicle. In Table 6.1 we give the numerical values for the

model parameters corresponding to each vehicle. Figure 6.1 below showsa gradual step

steering inputδd of the the driver that is applied to both vehicles at a constant speed of

vx = 20m/s (where a constant steering ratio of 1/20 assumed for both); this results in the

dynamical responses shown on Figure 6.2, which clearly indicates that both vehicles have

distinct dynamical characteristics.

Now in order to implement the controller integration procedure described in Proposition

6.3.1, we need to express the full state feedback system as a function of the control gains.

To do so, we first introduce a new statex∈ R
6 representing the full controlled vehicle states
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Figure 6.1: Gradual driver step steer input.

as defined below
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x1 =

[

β ψ̇ xI

]T

x2 =

[

φ φ̇ u2

]T (6.26)

Next we substituteu1 from (6.13) andu2 from (6.16) in the four-state vehicle model given

in (6.23)-(6.25), which results in the following closed loop state space system describing

the vehicle dynamics

ẋ = Ãx+ B̃1δd + B̃2φre f with (6.27)

Ã =
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Ã11 Ã12
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(6.28)

where
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, (6.30)
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Figure 6.2: Comparison of the lateral and the roll dynamics responses ofthe reference and the

uncontrolled vehicles.

Ã21 =

















0 0 0

(−σ +CvKp1)
h

Jxx
( ρ

vx
+CvKp2)

h
Jxx

−hCv
Jxx

KI

0 0 0

















, (6.31)

Ã22 =

















0 1 0

(mgh−k)
Jxx

− c
Jxx

− 1
Jxx

−Kr1 −Kr2 −Kr3

















. (6.32)

In Figure 6.3 below the integrated control structure and the corresponding closed loop feed-

back system is shown schematically.

Now we are in a position to numerically implement the control design as outlined in Propo-

sition 6.3.1. First, we start with designing the roll tracking controller based onSection

6.4.2. Recall that the target poles (eigenvalues) are the only design parameters for the roll

controller. Without loss of generality we setλ1 = −40, λ2 = −50, λ3 = −60 as the target
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6.4 Decentralized control design for vehicle dynamics tracking

Figure 6.3: Schematic representation of the integrated decentralizedcontrol structure.

poles; then from (6.22) the PID control gains are calculated as

Kr1 = 6.0533∗107, Kr2 = 3.3614∗106, Kr3 = 142.5195. (6.33)

Then in order to findP̂ we solve the following Lyapunov equation numerically

AT
22P̂+ P̂A22 = −Q22.

For this numerical solution, without loss of generality, we setQ22 = 10∗ I3, whereI3 denotes

the identity matrix inR3×3. This solution results in

P =

















1.276∗1010 7.544∗108 −8.763∗102

7.544∗108 4.830∗107 65.919

−8.763∗102 65.919 0.364

















(6.34)

Next we design the control gains for the lateral PI tracking controller described in Section

6.4.1, according to the item(b) of Proposition 6.3.1. In order to do so, we first utilized the

Matlabr control system toolbox to compute the LQR controller gains described in (6.13),

which minimizes the quadratic cost function (6.14). Again, without loss of generality, we

assumed a diagonal structure for theweighting matrices QandR in conjunction with the
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6.4 Decentralized control design for vehicle dynamics tracking

LQR solution (note here that, as the lateral tracking controller is based on a single input,

thenR is a scalar). We used the following values for these;

Q = 18∗ I3, R= 550. (6.35)

Then one can numerically show that condition (6.7) satisfied. We note that theresulting

matrix pair(Ã,B) is controllable and the pair(Ã,BP̂) is observable. In Figure 6.4 we show

the variation of the eigenvalues ofP̂BT(( jω − ε)In− Ã)−1B+(P̂BT(( jω − ε)In− Ã)−1B)∗

demonstrating SPR condition in a section of the frequency domain for varyingω ∈R, where

ε is an arbitrarily small scalar [49].
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Figure 6.4: Eigenvalues ofP̂BT(( jω − ε)In − Ã)−1B+ (P̂BT(( jω − ε)In − Ã)−1B)∗ in frequency

domain, forε = 10−15.

Comment: Note that SPR condition is easily checked using spectral methods [110], [109],

or by solving a generalized eigenvalue problem. Here we give an approximate graphical

frequency domain check to illustrate that the problem of the existence of block diagonal

Lyapunov functions can be reduced to a frequency domain search. Our motivation in doing

this is that we can quantify the uncertainty in our model over frequency ranges that are of

interest in our design. Note also that the limiting conditions given in [49] are also satisfied

and have been checked numerically. It is also easily verified that our controllability and
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6.4 Decentralized control design for vehicle dynamics tracking

observability conditions are satisfied.

In order to test the integrated controller, we considered an obstacle avoidance maneuver

scenario conducted by the driver. The vehicle speed was assumed to befixed atvx = 20m/s

during the course of the maneuver and the driver steering input is shownin Figure 6.5.

The resulting dynamical responses of the reference and the controlled vehicles is shown in

Figure 6.6, where we observe a good agrement in the reference and thecontrolled states.

Note here that the lateral acceleration in simulations was computed using the following

relationship

ay = vx(β̇ + ψ̇). (6.36)

Based on the simulation results, we observe that the decision of following a yaw rate refer-

enceψ̇re f was a reasonable one, as this also resulted in good tracking results for thelateral

acceleration of the reference vehicle. Considering the fact that the lateral acceleration is one

of the most important variables for the lateral dynamics response, the effectiveness of the

controller is evident.
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Figure 6.5: Driver steering input.

It is also interesting to look at how the suggested integrated controller affect the vehicle

path. To do this, we recall that the coordinates(x, y) of the vehicle CG relative to the road
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Figure 6.6: Comparison of the lateral and the roll dynamics responses ofthe reference and the

controlled vehicles.

satisfy

ẋ = vcos(β +ψ) , (6.37)

ẏ = vsin(β +ψ) , (6.38)

where we choose the initial coordinates(x(0), y(0)) to be zero. In Figure 6.7 the trajecto-

ries over the road plane for the reference, the controlled, and the uncontrolled vehicles are

compared. Again we observe a good agreement between the referenceand the controlled

vehicle trajectories.

As part of the numerical analysis, we finally look at the robustness of the suggested con-

troller with respect to structural uncertainty. In order to simulate such uncertainties, we arti-

ficially multiplied the blocksÃ12 andÃ21 with a scalar constant. Without loss of generality

we chose this number to be−3 such that the closed loop system matrixÃ corresponding to
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Figure 6.7: Comparison of the horizontal trajectories for the reference, controlled and the uncon-

trolled vehicles.

the controlled vehicle is now expressed with

Ã =









Ã11 −3Ã12

−3Ã21 Ã22









Under this uncertainty we repeated our simulations for the same driving scenario as before

where the steering input is as given in Figure 6.5. The resulting dynamical responses of

the controlled vehicle is shown in Figure 6.8 where we observe that the controlled vehicle

is stable, however the tracking performance of the states have been degraded due to the

structural uncertainty, which is expected. In Figure 6.9 we show the trajectories of the

controlled and the uncontrolled vehicles with the structural uncertainty as compared with the

reference vehicle trajectory. We observe from this plot that the controlled vehicle maintains

a close tracking of the reference vehicle for a range of structural uncertainty, while the

uncontrolled vehicle shows an infeasible and a divergent behavior.

6.5 Conclusions and possible future directions

In this chapter we presented a novel approach for decentralized control design for systems

with multiple interacting dynamical modes. We applied the suggested design technique
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Figure 6.8: Comparison of the lateral and the roll dynamics responses ofthe reference vehicle and

the controlled vehiclewith structural uncertainty .

for the robust integration of the decentralized control designs for the lateral and the roll

reference tracking controllers for an automotive vehicle. We presentedthe efficacy of the

integrated vehicle emulation controller with numerical simulations, which showed high per-

formance and accurate tracking results. Finally, we showed numerically that the suggested

control design preserves robustness of the closed loop system with respect to structural

uncertainty in such applications.

As a future direction we shall look into extending our results to the case where the plant

is subject to parameter variations and/or undergoes discrete switches. Also, we shall look

into extensions of the integrated vehicle emulation control design that utilize combinations

of the active four-wheel steering, the active suspension as well as thedifferential braking

actuators in conjunction with our decentralized control design approach.
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and uncontrolled vehicleswith structural uncertainty .
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Chapter 7

Two Problems on Existence of

Common Lyapunov Solutions for

Switched Linear Systems: Interval

Uncertainty & Regular Inertia

In this chapter we give some results on common Lyapunov solution (CLS) exis-

tence for certain classes of switched linear systems. For a subclass of switched

Hurwitz systems with bounded uncertainties in the matrix elements, we show

that the quadratic stability can be verified using simple algebraic conditions.

We also illustrate this with numerical examples. For another switched system

class, which involves a pair of switching system matrices with the same regu-

lar inertia and in companion form, we extend the classical Lefschetz version

of the Kalman-Yacubovich-Popov (KYP) lemma to derive an easily verifiable

spectral condition to have a CLS. As a final extension, we combine these two

results for a particular switched system class.
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7.1 Chapter contributions

The scientific contribution of this chapter over the state of the art is mainly in the area of

stability theory. While most of the achievements of the chapter have theoreticalmotivations,

some of the results have applications to control design for uncertain systems. The first ma-

jor contribution of the chapter was the extension of recent results on existence of common

quadratic Lyapunov functions (CQLF) for the class of switched linear systems that involve

a pair of Hurwitz matrices in companion form. We extended these results to a particu-

lar class of switching linear systems, where the elements of the switched systemmatrices

have bounded interval uncertainties. Particularly, we showed that quadratic stability of such

uncertain systems is easily verified by checking the eigenvalues of only 8 matrix products.

Also, we gave a numerical example of this result for checking the stability of the automotive

roll dynamics subject to parametric uncertainties and switching. The secondcontribution of

the chapter was the derivation of a simple algebraic condition that is equivalent to common

Lyapunov solution (CLS) existence for a significant class of pairs of matrices in companion

form and with the same regular inertia. We achieved this by extending the classical Lef-

schetz version of the Kalman-Yacubovich-Popov (KYP) lemma for matrices with regular

inertia; we then utilized this lemma to derive a result on CLS existence for this specific

class of switching systems. The final contribution of the chapter was to fusethese two re-

sults to obtain CLS existence conditions for switched pair of matrices with regular inertia

and with interval uncertainty.

The work contained in this chapter has resulted in the following publications:

(i) Zeheb E., Mason O., Solmaz S., Shorten R.,“On the quadratic stability of switched

interval systems: Preliminary results”, Proceedings of the 2005 IEEE International

Symposium on Intelligent Control, and 2005 Mediterranean Conference on Control

and Automation, Page(s):12 - 17, 2005.

(ii) Zeheb E., Mason O., Solmaz S., Shorten R.,“Some results on quadratic stability of
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switched systems with interval uncertainty”, International Journal of Control, Vol.

80, No. 6, Page(s):825-831, June 2007.

(iii) Mason O., Shorten R., Solmaz S., “On the Kalman-Yakubovich-Popov lemma and

common Lyapunov solutions for matrices with regular inertia”, Linear Algebra and

its Applications, Vol. 420, Issue 1, Page(s):183-197, January 2007.

(iv) Solmaz S., Mason O., Shorten R., “General Inertia and Circle Criterion”, Proceed-

ings in Applied Mathematics and Mechanics”, Vol. 6, Issue 1, Page(s):845-846,

December 2006. (Initially presented at 77th Annual Meeting of the Gesellschaft für

Angewandte Mathematik und Mechanik e.V., March 27th - 31st, 2006.)

7.2 Introduction

Classical Lyapunov theory provides a strong method for checking the exponential stabil-

ity of linear time-invariant (LTI) systems of the form ˙x = Ax, A∈ R
n×n without explicitly

calculating the eigenvalues ofA [26, 43]. The result is that, the zero state of ˙x = Ax is

asymptotically stable if and only if the solution of the Lyapunov equation

ATP+PA= −Q,

is a symmetric positive definite matrixP for all Q = QT > 0. Here, the matrixP = PT > 0

is called aLyapunov solutionfor A. Also, the asymptotic stability of ˙x = Ax implies that

all the eigenvalues ofA have strictly negative real parts, where such matrices are said to be

Hurwitz .

In this chapter we consider certain subclasses of the switched linear systems of the form

Σ : ẋ = A(t)x, (7.1)

wherex(t) ∈ R
n, A(t) ∈ R

n×n, A(t) ∈ {A1, ...,Am}. One way of establishing the stability

of such systems is to show that for some positive definite matrixP the quadratic Lyapunov
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functionV(x) = xTPx is decreasing in time; namely thatAT
i P+PAi < 0 for all 1≤ i ≤ m.

When such a function exists, then the associated LTI systems

ΣAi : ẋ = Aix 1≤ i ≤ m (7.2)

are said to have a common quadratic Lyapunov function (CQLF). AlsoP is referred to as a

common Lyapunov solution (CLS) for the inequalitiesAT
i P+PAi < 0, 1≤ i ≤m . Recently,

motivated by the stability of switched systems [59], the problem of determining compact

conditions for the existence of a CQLF for a finite number of LTI systems hasassumed a

position of great theoretical importance in the mathematics and engineering communities;

see [9, 115, 116, 29, 30, 90, 75, 6] for some of the recent work in thisarea. Also in an

earlier publication, CQLF existence problem has been investigated in conjunction with the

stability of LTI systems with uncertain parameters in [41]. Drawing from theseresults, in

this chapter, we give some extensions of the CLS existence results for certain subclasses of

the switched linear systems of the form (7.1).

As a first extension we consider, in Section 7.3, the exponential stability of acertain class

of switching systems, which involves Hurwitz system matrices in companion formand

with elements having bounded interval uncertainties. We show that it is possible to obtain

analogs of the CQLF existence results in [116, 115] for this particular system class. This

extension has significant implications for control engineering, as many real life systems

involve controllers based on simplified dynamical models with uncertainties; we have seen

some examples of these in Chapter 2 in the context of automotive systems. In a second

extension in Section 7.4, we consider a pair of LTI systems with regular inertia, meaning

that the system matrices can have nonzero eigenvalues on either side of theimaginary axis

(but not on it), thus are not necessarily Hurwitz. We extend the classicalLefschetz version

of the KYP lemma and utilize it to show that the algebraic conditions for existence of a CLS

(with a regular inertia) can readily be verified for this system class. Finally inSection 7.5,

we combine these two results to obtain a CLS existence result for a switched system class

that involves matrices with both interval uncertainty and regular inertia.
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7.3 CQLF existence problem for interval matrix fam-

ilies

In this section we consider the stability of a certain subclass of the switched linear systems

given in (7.1). Although great progress has been made on the generalCQLF existence

problem in recent years, the problem of determining whether or not a setof LTI systems

subject to interval uncertainty has a CQLF has received relatively little attention, despite

its obvious considerable practical importance. Our objective in this section isto study this

problem for a restricted class of switching systems subject to interval uncertainty; namely

the class of switching systems given by ˙x = A(t)x, A(t) ∈ {A,A− ghT}, whereg,h are

vectors1 in R
n, and the system matricesA,A−ghT are subject to interval uncertainty of the

form ai j ≤ ai j ≤ ai j .

The class of switched linear systems that we study is thus restricted in two ways:

(i) We consider switching between two LTI systems,ΣA1, ΣA2;

(ii) the system matricesA1 andA2 differ by rank one (A2 = A1−ghT).

The first restriction, although a special case of the general problem ofswitching between

an arbitrary number of LTI systems, is important, has numerous applications,and has been

extensively treated in the literature (see e.g. [90, 30]). Also, this restriction is relevant to

control systems which include a relay with two states e.g. “on” and “off”, orother linear

dynamical systems containing a single switch whose position is assumed to take onvalues

from a discrete set of the form{0,1} according to a certain rule. Moreover, many dynamical

systems with nonlinearities due to saturation, hysteresis, or backlash can bedescribed as

switching between two linear systems.

Obviously, a necessary condition for the existence of a CQLF for a finite set of LTI systems

1We emphasize that the vectorsg,h∈ R
n are not necessarily fixed.
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is that every pair of systems belonging to the set has a CQLF. Moreover, there can exist

system classes for which the existence of a CQLF for any pair of systems ina finite family

implies the existence of a CQLF for the entire family. This was shown to be the case for the

class of second order positive systems in [37]. This fact provides further motivation for the

study of the problem of CQLF existence for pairs of systems.

With regard to the second restriction, pairs of systems differing by rank one have histori-

cally occupied a position of great importance in systems theory, and several classical results

on absolute stability for single-input single-output (SISO) systems such asthePopov Crite-

rion andCircle Criterion can be considered in this framework. Also, this class of systems

includes pairs of systems whose system matrices are in companion form as a subclass. Fur-

thermore, switching between systems differing by rank one arises in a number of practical

applications. For example, in [134] a control system for four-wheel steer-by-wire vehicles

is described, which involves switching between a pair of LTI systems differing by rank one,

and whose parameters are subject to interval uncertainty. It should alsobe noted that sys-

tems differing by rank one have received a considerable amount of attention in the literature

[115, 76, 51].

It should be emphasized that, in compensation to these restrictions, this paperextends re-

sults for the class of systems under study in a very important direction. Every mathematical

model of a physical system is inaccurate and includes uncertainties. These are either in-

herent to the model or a result of measurement inaccuracies or environmental changes, etc.

These uncertainties can often be characterized by interval parameters inthe model, exam-

ples of which were analyzed in Chapters 3 and 4. Such “interval models” are, however,

difficult to analyze and thus are frequently neglected unjustifiably. Alternatively, numeri-

cal methods are used, as was the case in Chapters 3 and 4, where we used numerical LMI

solvers to find Lyapunov solutions satisfying certain matrix inequalities. In thissection we

treat such interval uncertainty in a systematic analytic way, which is independent of the

uncertainty.
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7.3.1 Mathematical preliminaries

Throughout the current chapter, we adopt the convention that vectors in R
n are assumed to

be column vectors. Also,j is used in the chapter to denote the complex number satisfying

j2 = −1. Moreover, for a vectorx in R
n, we denotexi as theith component ofx, and for

a matrixA in R
n×n, we denote the entry in the(i, j) position byai j . Also, we useσ(A) to

denote the spectrum (i.e., the set of eigenvalues) of a given square matrixA. Finally, we

denoteIn as then×n identity matrix. We have the following definitions and results that will

be useful for the rest of the chapter.

Companion matrices:

We say that a matrixA∈ R
n×n is in companion form[102, 42] if

A =































0 1 0 . . . 0

0 0 1 . . . 0

...

0 0 0 . . . 1

−a0 −a1 −a2 . . . −an−1































, (7.3)

wherea0, . . . ,an−1 are real numbers. It is straightforward to verify that ifA is in the form

(7.3), then the characteristic polynomial ofA is

det(sIn−A) = sn +an−1sn−1 + · · ·+a1s+a0.

In this chapter, for notational convenience, we shall denote the companion matrix (7.3) by

C(a0, . . . ,an−1).

The Circle Criterion and CLS existence for systems differing by rankone:

One of the most fundamental results on the stability of dynamical systems in the engineering

literature is the Circle Criterion. The relevance of the Circle Criterion [76] in our present

context stems from the fact that it provides a necessary and sufficientcondition for two fixed
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Hurwitz matrices in companion form to have a common Lyapunov solution (or a CQLF).

Formally, if A, A−ghT are two Hurwitz matrices inRn×n in companion form, whereh,g

are vectors inRn, then they have a CLS if and only if the rational function

1+hT(sIn−A)−1g (7.4)

is strictly positive real (SPR), meaning that

1+Re{hT( jω In−A)−1g} > 0 for all ω ∈ R. (7.5)

Moreover, it follows from Meyer’s extension of the KYP Lemma in [67] thatthe condition

(7.5) is also sufficient for CQLF existence for two LTI systemsΣA, ΣA−ghT whereA, A−ghT

are Hurwitz matrices differing by rank one, but not necessarily in companion form. Recently

in [115, 114], it has been established that the frequency domain condition(7.5) is equivalent

to a simple condition on the eigenvalues of the matrix productA(A−ghT). This equivalence

was first demonstrated in [115] for matrices in companion form and then extended to the

case of a general pair of Hurwitz matricesA1, A2 with rank(A2−A1) = 1 in [114]. We state

the most general form of the result here.

Theorem 7.3.1 Let A, A−ghT be Hurwitz matrices inRn×n, where g,h∈ R
n. Then

1+Re{hT( jω In−A)−1g} > 0 for all ω ∈ R

if and only if the matrix product A(A−ghT) has no negative real eigenvalues.

See Appendix C for the proof of this theorem.

Combining the result of Theorem 7.3.1 with Meyer’s extension of the KYP Lemma[67],

yields the following spectral condition for CLS existence for Hurwitz matricesdiffering by

rank one.

Theorem 7.3.2 [114] Let A, A−ghT be two Hurwitz matrices inRn×n where g,h are vec-

tors in R
n. A necessary and sufficient condition for the existence of a common Lyapunov
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solution for the matrices A, A−ghT is that the matrix product A(A−ghT) does not have

any negative real eigenvalues.

In the remainder of this section, we shall show how Theorem 7.3.2 may be used to obtain

results on CQLF existence for pairs of LTI systems subject to interval uncertainty.

Kharitonov’s theorem and rational transfer functions:

In obtaining the main results of this section, we shall make use of a version of Kharitonov’s

Theorem for rational functions that was derived in [24]. LetP be the family of interval

polynomials of ordern given by

p(s) = p0 + p1s+ · · ·+ pnsn, (7.6)

wherep
i
≤ pi ≤ pi for 0≤ i ≤ n. Then define the four Kharitonov polynomials associated

with P:

kP
1 (s) = p

0
+ p

1
s+ p2s2 + p3s3 + · · · (7.7)

kP
2 (s) = p

0
+ p1s+ p2s2 + p

3
s3 + p

4
s4 · · · (7.8)

kP
3 (s) = p0 + p

1
s+ p

2
s2 + p3s3 + p4s4 + · · · (7.9)

kP
4 (s) = p0 + p1s+ p

2
s2 + p

3
s3 + · · · (7.10)

If P andQ are two families of interval polynomials of ordern andm respectively with

n≤ m, thenP/Q denotes the family of proper rational functions of the form

p(s)
q(s)

(7.11)

wherep ∈ P andq ∈ Q. The following result on the strict positive realness of all of the

rational functions inP/Q was derived in [24].

Theorem 7.3.3 Every transfer function in the familyP/Q is strictly positive real if and
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only if the following eight transfer functions are strictly positive real.

kP
2 (s)

kQ
1 (s)

,
kP

3 (s)
kQ

1 (s)
,

kP
1 (s)

kQ
2 (s)

,
kP

4 (s)
kQ

2 (s)
,

kP
1 (s)

kQ
3 (s)

,
kP

4 (s)
kQ

3 (s)
,

kP
2 (s)

kQ
4 (s)

,
kP

3 (s)
kQ

4 (s)
,















(7.12)

where kPi , kQ
i , 1 ≤ i ≤ 4, are the Kharitonov polynomials corresponding to the interval

polynomial familiesP andQ respectively.

In what follows, we give the main result of this section.

7.3.2 CQLF existence for interval matrices in companion form

In this subsection, we derive a result on CQLF existence for a pair of LTI systems, which

involve interval matrix families in companion form as the system matrices. Particularly, we

consider the case when each matrix family is independently subject to intervaluncertainty.

Based on results from two different areas and applications for this particular type of switch-

ing systems, we give necessary and sufficient conditions expressedexplicitly in terms of

eight fixed coefficient matrices.

We denoteA andB as real interval matrix families inRn×n consisting of companion ma-

trices as defined below

A = {C(a0, . . . ,an−1) ∈ R
n×n : ai ≤ ai ≤ ai for 0≤ i ≤ n−1}

B = {C(b0, . . . ,bn−1) ∈ R
n×n : bi ≤ bi ≤ bi for 0≤ i ≤ n−1}















(7.13)

In Theorem 7.3.4 below, we consider the following problem.

Determine necessary and sufficient conditions for any pair of LTI systemsΣA,

ΣB with A∈ A , B∈ B to have a CQLF.

We are concerned with CQLF existence for pairs of systemsΣA, ΣB with A ∈ A , B ∈ B.

Hence, we shall assume that all of the matrices belonging to the familiesA , B are Hurwitz.
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7.3 CQLF existence problem for interval matrix families

The problem of determining whether or not a family of interval matrices consists entirely

of Hurwitz matrices has itself been the subject of a considerable amount of research [108,

100, 142], and in the case of interval matrices in companion form, Kharitonov’s Theorem

can be used to test for stability.

For the interval matrix familyA , construct the four matrices

A1 = C(a0,a1,a2,a3, . . .)

A2 = C(a0,a1,a2,a3,a4, . . .)

A3 = C(a0,a1,a2,a3,a4, . . .)

A4 = C(a0,a1,a2,a3, . . .),











































(7.14)

in analogy with the Kharitonov polynomials given by (7.7)–(7.10). The matricesB1, B2, B3,

B4 are defined in the same manner for the familyB. We are now ready to state the main

result of this subsection.

Theorem 7.3.4 Consider the interval matrix familiesA , B given by (7.13), and assume

that all the matrices belonging toA , B are Hurwitz. Then for every pair of LTI systems of

the formΣA, ΣB with A∈A , B∈B to have a CQLF, it is necessary and sufficient that none

of the eight matrix products

A1B2,A1B3,A2B1,A2B4,

A3B1,A3B4,A4B2,A4B3,

has a negative real eigenvalue.

Proof of Theorem 7.3.4:Let A = C(a0, . . . ,an−1), B = C(b0, . . . ,bn−1) be two matrices in

the familiesA andB respectively, and writeB = A− ghT whereg = (0,0, . . . ,1)T , and

h = (b0 − a0, . . . ,bn−1 − an−1)
T . Then it follows from the Circle Criterion that the LTI

systemsΣA, ΣB have a CQLF if and only if the rational function

1+hT(sIn−A)−1g
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7.3 CQLF existence problem for interval matrix families

is strictly positive real. It is known that for any vectorf = ( f0, . . . , fn−1)
T in R

n,

f T(sIn−A)−1g =
f0 + f1s+ . . .+ fn−1sn−1

det(sIn−A)
, (7.15)

for s∈ C [47, 102]. Utilizing this result, it can be verified by direct computation that

1+hT(sIn−A)−1g = b(s)/a(s) (7.16)

where the polynomialsa(s), b(s) are given by

a(s) = a0 +a1s+ · · ·an−1sn−1 +sn

b(s) = b0 +b1s+ · · ·bn−1sn−1 +sn















(7.17)

It now follows that every pair of LTI systemsΣA, ΣB with A∈ A , B∈ B will have a CQLF

if and only if all of the rational functionsb(s)/a(s) are strictly positive real wherea(s) and

b(s) belong to the interval polynomial families

a(s) = a0 +a1s+ · · ·an−1sn−1 +sn with ai ≤ ai ≤ ai for 0≤ i ≤ n−1,

and

b(s) = b0 +b1s+ · · ·bn−1sn−1 +sn with bi ≤ bi ≤ bi for 0≤ i ≤ n−1,

respectively. By a slight abuse of notation, we shall use the notationA , B to denote these

polynomial families also.

Now, Theorem 7.3.3 establishes that all of the rational functions inB/A are strictly posi-

tive real if and only if the functions

kB
2 (s)

kA
1 (s)

,
kB

3 (s)

kA
1 (s)

,
kB

1 (s)

kA
2 (s)

,
kB

4 (s)

kA
2 (s)

,

kB
1 (s)

kA
3 (s)

,
kB

4 (s)

kA
3 (s)

,
kB

2 (s)

kA
4 (s)

,
kB

3 (s)

kA
4 (s)

,

are strictly positive real. The result now follows from Theorem 7.3.1.

Q.E.D.
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7.3 CQLF existence problem for interval matrix families

Remark 7.3.1 The above result provides simple conditions that are necessary and suffi-

cient for CQLF existence for a pair of LTI systems in companion form subject to interval

uncertainty. In fact, it is only necessary to calculate the eigenvalues of eight matrix products,

whereas testing for strict positive realness requires evaluating transfer functions at infinitely

many values ofω .

7.3.3 Applications of the results

In this subsection we present two numerical examples to illustrate the use of Theorem 7.3.4.

The first example is based on a hypothetical switched system with interval uncertainty. The

second example is motivated by automotive roll dynamics that is analyzed in detail within

this thesis. In this example we show how the results of this chapter can be utilizedto check

whether the roll dynamics is stable under switching and subject to parameter uncertainties.

Example-1: (Hypothetical switching plant with interval uncertainty)

Consider the following stable family of matrix pairs in companion form and with interval

uncertainty, as expressed in terms of our notation given in (7.13),

A = {C(a0,a1,a2) : a0 ∈ [1,2],a1 ∈ [5,6],a2 ∈ [3,4]}

B = {C(b0,b1,b2) : b0 ∈ [1,1],b1 ∈ [1,2],b2 ∈ [3,4]}
(7.18)

whereC(a0,a1,a2) denotes the companion matrix whose last row is(−a0,−a1,−a2). We

are interested in the stability of arbitrarily switching linear systemsΣA, andΣB, whereA∈

A , B∈B. We emphasize that this problem originates from an example in [24], where they

consider the following stable family of transfer functions with interval uncertainty,

G(s) =
1+b1s+b2s2 +s3

a0 +a1s+a2s2 +s3 , with















b0 ∈ [1,1],b1 ∈ [1,2],b2 ∈ [3,4]

a0 ∈ [1,2],a1 ∈ [5,6],a2 ∈ [3,4]
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7.3 CQLF existence problem for interval matrix families

Here we express this transfer function family as a rational function of two interval families

of companion matrices,A , B ∈ R
3×3 as described in (7.18).

For this problem, the corresponding Kharitonov family of companion matrices defined by

(7.14) are as follows

A1 = C(1,5,4) , A2 = C(1,6,4) , A3 = C(2,5,3) , A4 = C(2,6,3)

B1 = C(1,1,4) , B2 = C(1,2,4) , B3 = C(1,1,3) , B4 = C(1,2,3)















(7.19)

Then, bothA andB consist of Hurwitz matrices and the eigenvalues of the eight matrix

products of Theorem 7.3.4 utilizing (7.19) are presented in Figure 7.1.
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Figure 7.1: Eigenvalues of the matrix products of Theorem 7.3.4.

As can be seen from the plot none of the matrix products have negative real eigenvalues.

Theorem 7.3.4 therefore guarantees the existence of a CQLF for any pair of LTI systems

ΣA, ΣB whereA∈ A , B∈ B.
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7.3 CQLF existence problem for interval matrix families

Example-2: (Switching automotive roll dynamics subject to interval uncertainty)

In this example we show how the results of the current section can be utilized tocheck

whether the roll dynamics of an automotive vehicle is stable under switching when also

subject to parametric uncertainties. The example is motivated by the fact that the roll dy-

namics of a vehicle can change as a result sudden switches in the vehicle’scenter of gravity

(CG) height. Also, the suspension parameters and/or the roll center can change depending

on many factors2. When using linearized models to analyze the problem, it is possible to

model these variations as bounded interval uncertainties.

Assuming that the sprung mass of the vehicle rolls about a fixed horizontal roll axis along

the centerline of the vehicle body relative to the ground, and also that all angles are small,

the equations describing the roll plane motion of an automotive vehicle can be expressed in

the following state space form with reference to Figure 2.2








φ̇

φ̈









=









0 1

− k−mgh
Jxeq

− c
Jxeq









·









φ

φ̇









+









0

mh
Jxeq









ay (7.20)

whereay is the lateral acceleration, andJxeq denotes the equivalent roll moment of inertia

defined as

Jxeq = Jxx+mh2. (7.21)

For further description of the parameters of the model, refer to Table 2.1.

Now we consider a scenario where the CG height can switch between two values h =

[h1,h2]. Further we assume that the uncertainties in the linear suspension stiffnessk, and

the linear damping coefficientc can be expressed as bounded interval uncertainties such

2In a real vehicle, the suspension parameters are nonlinear functions of the vehicle speed, aero-

dynamic forces, suspension geometry and varying roll center, as well as other factors such as the tire

pressure, temperature etc. However these factors do not appear in the simple, linearized roll plane

model (7.20), which motivates the consideration of parametric uncertainty ink andc.
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7.3 CQLF existence problem for interval matrix families

thatk∈ [k,k] andc∈ [c,c]. We are interested in stability of the roll dynamics subject to the

switching in the CG heighth, and uncertainties in the linear suspension parametersk,c.

Under these assumptions, the roll dynamics evolve according to two matrix familiesA∈A

andB∈ B depending on the two possible CG positions, and they have the following form

A =









0 1

− k−mgh1
Jxeq,1

− c
Jxeq,1









, B =









0 1

− k−mgh2
Jxeq,2

− c
Jxeq,2









, (7.22)

where

Jxeq,i = Jxx+mh2
i , f or i = {1,2}. (7.23)

Further we define the following auxiliary parameters

a0 = k−mgh1
Jxeq,1

, a1 = c
Jxeq,1

b0 = k−mgh2
Jxeq,2

, b2 = c
Jxeq,2















(7.24)

wherek∈ [k,k] andc∈ [c,c]. Then, we can cast the resulting family of system matrices from

(7.20) into our notation given in (7.13) as two interval families of companion matrices,A ,

B defined below

A = {C(a0,a1) : a0 ∈ [a0,a0],a1 ∈ [a1,a1]}

B = {C(b0,b1) : b0 ∈ [b0,b0],b1 ∈ [b1,b1]}















(7.25)

For the numerical analysis we assumed the parameters given Table 7.1, which results in the

following companion matrix family from (7.25)

A = {C(a0,a1) : a0 ∈ [30.1425,42.6425], a1 ∈ [5,10]}

B = {C(b0,b1) : b0 ∈ [16.2322,24.1186], b1 ∈ [3.1546,6.3091]}















(7.26)

The corresponding Kharitonov family of companion matrices defined by (7.14) are then
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7.3 CQLF existence problem for interval matrix families

Table 7.1: Model parameters for numerical analysis

Parameter Numerical Value unit definition

m 1200 [kg] vehicle mass

Jxx 500 [kg·m2] roll moment of inertia about CG

h1 0.5 [m] CG height configuration-1

h2 0.8 [m] CG height configuration-2

k 40000 [kg·m2/s2] spring stiffness (upper bound)

k 30000 [kg·m2/s2] spring stiffness (lower bound)

c 8000 [kg·m2/s] roll damping coefficient (upper bound)

c 4000 [kg·m2/s] roll damping coefficient (lower bound)

given as follows

A1 = C(30.1425,5) , A2 = C(30.1425,10)

A3 = C(42.6425,5) , A4 = C(42.6425,10)

B1 = C(16.2322,3.1546) , B2 = C(16.2322,6.3091)

B3 = C(24.1186,3.1546) , B4 = C(24.1186,6.3091)











































(7.27)

Then, bothA andB consist of Hurwitz matrices and the eigenvalues of the eight matrix

products of Theorem 7.3.4 utilizing (7.19) are presented in the figure 7.2 below.

As none of the matrix products have negative real eigenvalues, Theorem 7.3.4 guarantees

the existence of a CQLF for any pair of matricesA ∈ A , B ∈ B; thus the described roll

dynamics model subject to random switches in CG height as well as interval uncertainty in

the suspension parameters is stable.
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Figure 7.2: Eigenvalues of the matrix products of Theorem 7.3.4 for the roll dynamics.

7.4 Generalized KYP lemma and common Lyapunov

solutions for matrices with regular inertia

In the preceding section we considered an extension of some recent results on CQLF ex-

istence for a set of Hurwitz matrices to switched systems with interval uncertainty. We

will consider a further extension here for a particular subclass of a pairof switched lin-

ear systems. Recall that, for the case of a pair of systems, the CQLF existence problem

amounts to determining necessary and sufficient conditions for the existence of a positive

definite symmetric matrixP = PT > 0, P ∈ R
n×n that simultaneously satisfies the matrix

inequalities

AT
1 P+PA1 < 0 , AT

2 P+PA2 < 0 (7.28)
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where all eigenvalues of the given matricesA1,A2 ∈ R
n×n lie in the open left half of the

complex plane, that isA1,A2 are Hurwitz. When there exists aP = PT > 0 satisfying the

above inequalities, then the scalar functionV(x) = xTPx is said to be a common quadratic

Lyapunov function (CQLF) for the dynamical systemsΣAi : ẋ = Aix i ∈ {1,2}, and the

matrix P is a common Lyapunov solution (CLS) for the Lyapunov inequalities (7.28). In a

slight abuse of notation, we shall often refer to such aP as a CLS for the matricesA1,A2.

The existence of CQLFs is of considerable importance in a number of engineering problems

[58] and consequently the CQLF existence problem has assumed a pivotal role in research

on stability theory.

It is generally accepted that determining the existence of a CQLF for a finite set of LTI

systems is very difficult to solve analytically. However, in certain situations asin the case of

switching between two LTI systems, elegant conditions for the existence of aCQLF may be

obtained when restrictions are placed on the matricesA1 andA2. Recently, one such result

was obtained for the case whereA1 andA2 are Hurwitz andrank(A1−A2) = 1; in this case

a CQLF exists forΣA1 andΣA2 if and only if the matrix productA1A2 does not have any real

negative eigenvalues. Furthermore, it has been shown recently in [115] that this result can

be seen as a time-domain version of the Kalman-Yacubovich-Popov (KYP) lemma which

was introduced by Kalman in [47].

Our primary aim in this section is to extend this result on CLS existence to the casewhere

the matricesA1 andA2 are no longer Hurwitz, but rather have regular inertia [43]. Note that

the general problem of CLS existence for matrices with regular inertia has been considered

by various authors before [39, 29, 30, 9, 99], and, in particular, results linking CLS existence

to the inertia of so-calledconvex invertible conesof matrices have been established for the

cases of Hermitian and triangular matrices inR
n×n and for matrix pairs inR2×2. In this

section, we shall extend the KYP lemma from classical stability theory to matrices with

regular inertia and show that, in analogy with the classical case of Hurwitz matrices [76],

this extension leads to elegant conditions for CLS existence for matrices with regular inertia
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also.

7.4.1 Mathematical Preliminaries

In this subsection we present a number of basic definitions and results thatare required for

the discussions in the remainder of this chapter.

Matrix Inertia:

The inertia of a matrixA∈ R
n×n is the ordered triple

In(A) = (i+(A), i−(A), i0(A)) (7.29)

wherei+(A), i−(A), i0(A) are the number of eigenvalues ofA in the open right half plane,

the open left half plane, and on the imaginary axis, respectively. We say that A has regular

inertia if i0(A) = 0.

The Matrix Ray σγ[0,∞)[A1,A2]:

Later in the current section, we shall refer to thematrix rayσγ[0,∞)[A1,A2]. Formally, this is

the parameterized family of matrices of the form

σγ[0,∞)[A1,A2] = {A1 + γA2 : γ ∈ [0,∞)}. (7.30)

We shall say thatσγ[0,∞)[A1,A2] is non-singularif A1 + γA2 is non-singular for allγ ≥ 0;

otherwise it is said to besingular. It is trivial to show that singularity of the matrix ray

σγ[0,∞)[A1,A2] is equivalent to the matrix productA−1
1 A2 having a negative real eigenvalue if

A1 andA2 are non-singular. Also, we say thatσγ[0,∞)[A1,A2] has constant inertia if there are

fixed non-negative integersn+,n−,n0 such thatIn(A1 + γA2) = (n+,n−,n0) for all γ ≥ 0.

Technical lemmas:

We next record some basic technical facts that shall be used in proving the principal results

of this section.
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Lemma 7.4.1 Suppose that A∈R
n×n and has regular inertia, such that In(A)= (n+,n−,0).

Then

det(ω2In +A2) > 0, (7.31)

for all ω ∈ R.

Proof of Lemma 7.4.1:As the matrixA has real entries and has regular inertia, it follows

that for anyω ∈ R,

det(ω2In +A2) = |det( jω In +A)|2 > 0. (7.32)

Q.E.D.

Lemma 7.4.2 [47] Let A∈ R
n×n and A−ghT ∈ R

n×n be in companion form, where h,g∈

R
n with g= [0, ...0,1]T . Then we can write

1+Re{hT( jω In−A)−1g} = 1−hTA(ω2In +A2)−1g

The next lemma verifies the fact that any symmetric matrixP, which satisfies the Lyapunov

inequality for a matrixA, also satisfies the Lyapunov inequality for its inverse,A−1.

Lemma 7.4.3 [29] Let A∈ R
n×n be non-singular. Then for any symmetric P= PT in R

n×n

with In(P) = In(−A),

ATP+PA< 0 (7.33)

if and only if

(A−1)TP+P(A−1) < 0. (7.34)

Proof of Lemma 7.4.3:This follows immediately from the observation that

(A−1)TP+PA−1 = (A−1)T(ATP+PA)A−1. (7.35)
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Q.E.D.

The principal contribution of the present section is to extend Theorem 7.3.2to the case of

pairs of matrices with the same regular inertia. First of all, we recall some fundamental

facts on the existence of solutions to the Lyapunov inequality for a single matrixwith reg-

ular inertia. The first part of Theorem 7.4.1 below is usually referred to as theGeneral

Inertia Theorem[43], while the second part follows from general results on the existence

of solutions to the Sylvester equationAX + XB = C (For instance, see Theorem 4.4.6 in

[43]). While the General Inertia Theorem has been established for matrices with complex

entries, we state it here for real matrices as we only consider the CLS existence problem for

real matrices in this paper.

Theorem 7.4.1 General Inertia Theorem [43]

Let A∈ R
n×n be given. Then there exists a symmetric matrix P= PT in R

n×n such that

ATP+PA< 0 (7.36)

if and only if A has regular inertia. In this case, In(P) = In(−A).

Furthermore, ifλi + λ j 6= 0 for all eigenvaluesλi , λ j of A, then for every Q= QT < 0 in

R
n×n, there is a unique P= PT with In(P) = In(−A) and ATP+PA= Q < 0.

In the sequel, the two main contributions of this section are described. First of all, in

Theorem 7.4.2 we extend the classical Lefschetz [54] version of the Kalman-Yacubovich-

Popov (KYP) lemma to the case of matrices with regular inertia3 and in companion form.

Historically, the KYP lemma has played a key role in stability theory and has led to a number

of important results on Lyapunov function existence for dynamical systemsincluding the

Circle Criterion [76] and thePopov Criterion[97, 81]. We shall see below that the extension

3We note that in a recent publication [99] a generalized version of the KYP lemma has been

reported, which does not impose some of the restrictions that we require in our version of the proof.
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of the KYP lemma to the case of matrices with regular inertia also has implications for the

existence of common Lyapunov solutions in this more general context. In particular, in

Theorem 7.4.3 we derive a simple algebraic condition that is equivalent to CLS existence

for a significant class of pairs of matrices in companion form, and with the sameregular

inertia.

7.4.2 The KYP Lemma for matrices with regular inertia

The classical KYP lemma considered the existence of constrained solutions tothe Lyapunov

inequality for Hurwitz matrices. More formally, the following question, which weshall

address below for matrices with regular inertia, was considered.

Given, A∈ R
n×n Hurwitz, vectorsg,h ∈ R

n, a real constantτ > 0, and a positive definite

matrixD = DT > 0, determine conditions for the existence of a vectorq∈R
n, a real number

ε > 0 and a positive definite matrixP = PT > 0∈ R
n×n such that

ATP+PA = −qqT − εD (7.37)

Pg−h =
√

τq. (7.38)

Before we proceed, we prove the following technical lemma which shall be needed later in

this subsection.

Lemma 7.4.4 Let A∈ R
n×n be a nonsingular matrix such that for all pairsλi ,λ j of eigen-

values of A,Re(λi +λ j) 6= 0. Further suppose that g,h are column vectors inRn such that

for any h, the matrices A ,and A−ghT can simultaneously be transformed to companion

forms using similarity transformations. Then

Re{hT( jω In−A)−1g} = 0 for all ω ∈ R (7.39)

implies that h= 0.
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Proof of Lemma 7.4.4:Without loss of generality, we can assume thatA is in companion

form and thatg = (0, . . . ,1)T . We shall argue by contradiction. Assume now that (7.39)

holds and thath = (h0, . . . ,hn−1)
T is non-zero, and consider the rational functionR(z) =

hT(zIn−A)−1g. Then we can write

R(z) =
h0 +h1z+ · · ·+hn−1zn−1

det(zIn−A)
, (7.40)

and moreover, under our assumptions the following facts must hold:

(i) R(z) is not uniformly zero;

(ii) R(z) has at least one pole and any such pole must be an eigenvalue ofA;

(iii) R(z) takes strictly imaginary values on the imaginary axis.

From (iii), it follows that the functionR1(z) = jR( jz) takes real values for realz, and hence

thatR1(z) is a real rational function. Thus, the poles ofR1(z) must be real, or else occur in

complex conjugate pairs. Moreover, ifλ is any pole ofR1(z), then jλ is a pole of the orig-

inal functionR(z). From this it follows thatR(z) must either have a pole on the imaginary

axis or else that there are two poles,λi , λ j of R(z) with Re(λi +λ j) = 0. Remembering that

any pole ofR(z) must be an eigenvalue ofA, this is a contradiction. Thush must be zero as

claimed.

Q.E.D.

Remark 7.4.1

(i) The proof given above is based on an argument presented in Chapter 8 of [54],

where it was shown that for a Hurwitz matrixA ∈ R
n×n in companion form, and

g = (0, . . . ,1)T ,

Re{hT( jω In−A)−1g} = 0 for all ω ∈ R
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implies thath = 0. This is not in general true for a companion matrixA with regular

inertia as can be seen from the simple example

A =









0 1

4 0









,g = h = (0,1)T .

Clearly, the additional assumption made in Lemma 7.4.4 , that Re(λi + λ j) is non-

zero, is automatically satisfied ifA is Hurwitz.

(ii) The assumption, that Re(λi + λ j) is non-zero, for all eigenvaluesλi , λ j of A is sat-

isfied generically. More precisely, given anyA∈ R
n×n in companion form with reg-

ular inertia which does not satisfy the assumption, andε > 0, there exists a matrix

A′ ∈ R
n×n in companion form with the same inertia asA such that‖A−A′‖ < ε and

Re(λi + λ j) is non-zero for all eigenvaluesλi , λ j of A′. (Here‖.‖ can be any matrix

norm onR
n×n.)

(iii) It is important to note that if Re(λi + λ j) is non-zero for all eigenvaluesλi , λ j of

A, then it follows from the last part of Theorem 7.4.1 that for any negativedefinite

matrixQ= QT < 0 inR
n×n, there is a unique symmetricP= PT with In(P)= In(−A)

such thatATP+PA= Q < 0. We shall make use of this fact in the proof of Theorem

7.4.2 below.

We are now in a position to state the principal result of this subsection which is an extension

of the classical KYP lemma to the case of matrices with regular inertia.

Theorem 7.4.2 Let A∈R
n×n be a companion matrix with regular inertia such thatRe(λi +

λ j) 6= 0 for all λi ,λ j ∈ σ(A), and let g,h ∈ R
n be vectors such that A− ghT is also in

companion form. Moreover, let D= DT > 0 in R
n×n and τ > 0 in R be given. Then the

following two statements are equivalent:

(i) There exists a symmetric matrix P= PT in R
n×n with In(P) = In(−A), a vector
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q∈ R
n and a scalarε > 0 such that

ATP+PA= −qqT − εD (7.41)

Pg−h =
√

τq. (7.42)

(ii) τ +2Re{hT( jω In−A)−1g} > 0 for all ω ∈ R.

Proof of Theorem 7.4.2:For convenience, throughout the proof we shall use the notation

A jω to denote( jω In−A) andmjω shall denote the complex vector-valued functionA−1
jω g.

It is then straightforward to check that for anyP = PT in R
n×n,

A∗
jωP+PAjω = −(ATP+PA), (7.43)

Moreover, multiplying the left and right hand sides of (7.43) bygT(A−1
jω )∗ andA−1

jω g respec-

tively, we see that

gTPmjω +m∗
jωPg= −m∗

jω(ATP+PA)mjω . (7.44)

(i) ⇒ (ii):

Suppose that the equations (7.41), and (7.42) hold. It follows immediately from (7.41) and

(7.44) that

m∗
jωPg+gTPmjω = m∗

jωqqTmjω + εm∗
jωDmjω . (7.45)

In (7.45) we can replace thePg term using (7.42) and arrange to get

m∗
jωh+hTmjω +

√
τ(m∗

jωq+qTmjω) = m∗
jωqqTmjω + εm∗

jωDmjω

or equivalently,

2Re{hTmjω} = m∗
jωqqTmjω −2

√
τRe{qTmjω}+ εm∗

jωDmjω . (7.46)

It now follows that

2Re{hTmjω} = |qTmjω −
√

τ|2− τ + εm∗
jωDmjω , (7.47)
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and hence, asD is positive definite andA has regular inertia,

τ +2Re{hTmjω} > 0 (7.48)

for all ω ∈ R.

(ii) ⇒ (i):

Without loss of generality, we can assume thatA is in companion form, andg= (0,0, . . . ,1)T .

In this case, it can be verified by direct calculation [47, 102] that for any vector f =

( f0, . . . , fn−1)
T in R

n,

f T(zIn−A)−1g =
f0 + f1z+ . . .+ fn−1zn−1

det(zIn−A)
, (7.49)

for z∈ C.

For convenience, we shall useκ(ω) andπ(ω) to denote

κ(ω) = 2Re{hTmjω}, π(ω) = m∗
jωDmjω , (7.50)

for ω ∈ R. Then:

(i) τ +κ(ω) > 0 for all ω ∈ R, andτ +κ(ω) → τ as|ω | → ∞;

(ii) π(ω) > 0 for all ω ∈ R andπ(ω) → 0 as|ω | → ∞.

It follows from (i) there exists a positive constantmκ > 0 such thatτ + κ(ω) > mκ for all

ω ∈ R. Also, (ii) implies that there is some constantMπ > 0 such thatπ(ω) < Mπ for all

ω ∈ R. If we now chooseε > 0 with ε < mκ
Mτ

then it follows that for allω ∈ R,

τ +2Re{hTmjω}− εm∗
jωDmjω > 0. (7.51)

It can be verified by calculation that the left hand side of (7.51) can be written in the form:

τ +m∗
jωh+hTmjω − εm∗

jωDmjω

=
η(ω)

det(ω2In +A2)
(7.52)

whereη(.) is a polynomial with the following properties.
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(i) η(.) is a polynomial of degree 2n with real coefficients and leading coefficientτ.

Thus, any non-real zeroes ofη(.) occur as complex conjugate pairs.

(ii) Only the even coefficients ofη are non-zero. Thus, for any zeroz0 of η(.), −z0 is

also a zero with the same multiplicity asz0.

(iii) η(ω) > 0 for all ω ∈ R. Thus, for any real zero,ω0, of η(.), ω0 and−ω0 have the

sameevenmultiplicity.

It follows from the above considerations that there exists a polynomialθ(.) of degreen with

real coefficients, and leading coefficient
√

τ, such that

η(ω) = θ( jω)θ(− jω), (7.53)

for all ω ∈ R. Now, if we defineψ(z) = det(zIn−A), then, as the leading coefficient ofθ is
√

τ,

√
τ − θ(z)

ψ(z)
=

ν(z)
ψ(z)

(7.54)

whereν(z) = q0 +q1z+ · · ·+qn−1zn−1 is a polynomial of degree at mostn−1. Thus, from

(7.49)

ν(z)
ψ(z)

= qT(zIn−A)−1h (7.55)

whereq = (q0, . . . ,qn−1)
T .

For this vectorq, it follows from Theorem 7.4.1 that there exists a symmetric matrixP= PT

with In(P) = In(−A) such that

ATP+PA= −qqT − εD. (7.56)

Moreover, combining (7.52), (7.55) and (7.54), we see that

τ +m∗
jωh+hTmjω − εm∗

jωDmjω = |
√

τ −qTmjωh|2 (7.57)
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It now follows immediately that

m∗
jωh + hTmjω − εm∗

jωDmjω

= (−m∗
jωq+

√
τ)(−qTmjω +

√
τ)− τ

= m∗
jωqqTmjω −

√
τ(qTmjω +m∗

jωq).

We can now use (7.44) and (7.56) to obtain

m∗
jωh+hTmjω − εm∗

jωDmjω = m∗
jωPg+gTPmjω

− εm∗
jωDmjω −

√
τ(qTmjω +m∗

jωq). (7.58)

After suitably rearranging the equations above we see that

m∗
jωPg+gTPmjω − m∗

jωh−hTmjω

−
√

τqTmjω −
√

τm∗
jωq = 0 (7.59)

and hence,

m∗
jω(Pg−h−

√
τq)+(Pg−h−

√
τq)Tmjω = 0

⇒ 2Re{(Pg−h−
√

τq)Tmjω} = 0. (7.60)

As (7.60) holds for any real value ofω , it now follows from Lemma 7.4.4 thatPg−h=
√

τq.

This completes the proof of the theorem.

Q.E.D.

7.4.3 Common Lyapunov solutions and the generalized KYP lemma

We shall now show how Theorem 7.4.2 can be used to obtain simple algebraic conditions

for CLS existence for a significant class of pairs of matrices with the same regular inertia in

R
n×n. The following theorem establishes this result.
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Theorem 7.4.3 Let A, A−ghT be two matrices inRn×n in companion form and with the

same regular inertia, In(A) = In(A−ghT) = (n+,n−,0), where g,h are vectors inRn. Fur-

ther, assume that for any pair of eigenvalues,λi ,λ j , of A,Re(λi +λ j) 6= 0. Then, the follow-

ing statements are equivalent:

(i) There exists a symmetric matrix P= PT in R
n×n with In(P) = In(−A) = In(−(A−

ghT)), and positive definite matrices Q1 > 0, Q2 > 0 such that

ATP+PA= −Q1

(A−ghT)TP+P(A−ghT) = −Q2















(7.61)

(ii) The matrix raysσγ[0,∞)(A,A−ghT) andσγ[0,∞)(A
−1,A−ghT) have the same regular

inertia.

(iii) The matrix A(A−ghT) has no real negative eigenvalues.

(iv) 1+Re{hT( jω In−A)−1g} > 0, ∀ω ∈ R.

Proof of Theorem 7.4.3:We shall obtain the result by showing that(i) ⇒ (ii) ⇒ (iii ) ⇒

(iv) ⇒ (i).

(i) ⇒ (ii) :

Suppose that there is a symmetricP = PT satisfying (7.61). From Lemma 7.4.3 we know

thatP also satisfies

((A−ghT)T)−1P+P(A−ghT)−1 < 0 (7.62)

Hence for allγ ∈ [0,∞)

(A+ γ(A−ghT))TP+P(A+ γ(A−ghT)) < 0 (7.63)

(A+ γ(A−ghT)−1)TP+P(A+ γ(A−ghT)−1) < 0 (7.64)

It now follows immediately from Theorem 7.4.1 that (ii) is true.
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(ii) ⇒ (iii) :

Assume that (ii) is true. Then,A−1 + γ(A−ghT) has regular inertia for allγ > 0. In partic-

ular,A−1 + γ(A−ghT) is non-singular for allγ > 0. It follows immediately that the matrix

productA(A−ghT) has no negative real eigenvalues.

(iii) ⇒ (iv):

Assume thatA(A− ghT) has no real negative eigenvalues. AsA, A− ghT have the same

regular inertia, it follows that

det(ω2In +(A−ghT)A) > 0 (7.65)

for all ω ∈ R. This implies that

det(ω2In +(A−ghT)A) > 0

⇒ det(Inω2 +A2−ghTA) > 0

and hence

det(ω2In +A2)det(In− (ω2In +A2)−1ghTA) > 0.

In this last relation we know thatdet(ω2In + A2) > 0 from Lemma 7.4.1. Thus we can

conclude that

det(In− (ω2In +A2)−1ghTA) > 0 (7.66)

for all ω ∈ R. Now making use of the identitydet(In−AB) = det(Im−BA), (whereA ∈

R
n×m andB∈ R

m×n) we can express the last inequality as follows;

det(1−hTA(ω2In +A2)−1g) > 0. (7.67)

Notice that the argument in the last relation is a scalar, and hence that

1−hTA(ω2In +A2)−1g = T(ω2) > 0. (7.68)

Now comparing this last equation with the result of Lemma 7.4.2, we see that

T(ω2) = 1+Re{hT( jω In−A)−1g} > 0 (7.69)
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which proves (iv).

(iv) ⇒ (i):

Finally, assume that (iv) is true. Choose some positive definiteD = DT > 0 in R
n×n. Then

it follows from Theorem 7.4.2 (withτ = 2) that there exists a symmetricP = PT with

In(P) = In(−A) and a vectorq such that

ATP+PA= −qqT − εD (7.70)

Pg−h =
√

2q. (7.71)

It can be verified by direct computation that thisP is a common Lyapunov solution forA,

A−ghT . This completes the proof of the theorem.

Q.E.D.

Remark 7.4.2 It is sufficient that either one ofA, orA−ghT satisfy the spectral assumption

that Re(λi +λ j) 6= 0 for any pair of eigenvaluesλi ,λ j of the matrix.

7.5 CLS existence for interval matrix families with

regular inertia

In this section we give an extension of the common Lyapunov solution (CLS) existence

result of Section 7.4 for a specific class of pairs of matrices inR
n×n with the same regular

inertia, and with bounded interval uncertainties in their entries. This also serves as a general

inertia extension of Theorem 7.3.2 for interval matrices with regular inertia. We show that

the generalization of the KYP lemma as recorded by Theorem 7.4.2 can be used again to

obtain easily verifiable algebraic conditions for CLS existence for the interval matrices with

regular inertia. The following theorem establishes this result.

286



7.5 CLS existence for interval matrix families with regular inertia

Theorem 7.5.1 Consider the interval matrix familiesA , B ∈ R
n×n in companion form

given by

A = {C(a0, . . . ,an−1) : ai ≤ ai ≤ ai for 0≤ i ≤ n−1}

B = {C(b0, . . . ,bn−1) : bi ≤ bi ≤ bi for 0≤ i ≤ n−1}















(7.72)

and assume that all the matrices A∈ A , and B∈ B have the same regular inertia, that is

In(A) = In(B) = (n+,n−,0). Further, assume that any pair of eigenvalues,λi ,λ j , of A∈ A

(and/or B∈ B), satisfy thatRe(λi +λ j) 6= 0. Then a necessary and sufficient condition for

any pair (A,B) with A∈ A ,B∈ B to have a common Lyapunov solution P= PT ∈ R
n×n

with In(P) = In(−A) = In(−B) is that the following eight matrix products

A1B2,A1B3,A2B1,A2B4

A3B1,A3B4,A4B2,A4B3















(7.73)

have no real negative eigenvalues, where each of the matrices A1, . . . ,A4,B1, . . . ,B4 are

specified by

A1 = C(a0,a1,a2,a3, . . .) , B1 = C(b0,b1,b2,b3, . . .)

A2 = C(a0,a1,a2,a3,a4, . . .) , B2 = C(b0,b1,b2,b3,b4, . . .)

A3 = C(a0,a1,a2,a3,a4, . . .) , B3 = C(b0,b1,b2,b3,b4, . . .)

A4 = C(a0,a1,a2,a3, . . .), , B4 = C(b0,b1,b2,b3, . . .)











































(7.74)

Proof of Theorem 7.5.1:

Without loss of generality, we can express the family of matricesB ∈ B asB = A−ghT ,

whereg= (0,0, . . . ,1)T , andh= (b0−a0, . . . ,bn−1−an−1)
T . Then it follows from Theorem

7.4.3 that the matrix pair(A,B) has a common Lyapunov solutionP = PT with In(P) =

In(−A) = In(−B) if and only if the rational function

1+Re{hT( jω In−A)−1g} > 0, ∀ω ∈ R,

287



7.5 CLS existence for interval matrix families with regular inertia

that is, it is strictly positive for allA ∈ A , andB ∈ B. Using the fact that for any vector

f = ( f0, . . . , fn−1)
T in R

n,

f T(zIn−A)−1g =
f0 + f1z+ . . .+ fn−1zn−1

det(zIn−A)
, (7.75)

for z∈ C [47, 102], it can be verified by direct computation that

1+Re{hT( jω In−A)−1g} = Re{b( jω)/a( jω)} (7.76)

where the polynomialsa( jω), b( jω) are given by

a( jω) = a0 +a1( jω)+ · · ·an−1( jω)n−1 +( jω)n

b( jω) = b0 +b1( jω)+ · · ·bn−1( jω)n−1 +( jω)n















(7.77)

It now follows that every pair of matrices(A,B) with A∈ A , B∈ B will have a CLS if and

only if all of the rational functionsRe{b( jω)/a( jω)} are strictly positive, wherea( jω) and

b( jω) belong to the interval polynomial families

a( jω) = a0 +a1( jω)+ · · ·an−1( jω)n−1 +( jω)n with ai ≤ ai ≤ ai , (7.78)

and

b( jω) = b0 +b1( jω)+ · · ·bn−1( jω)n−1 +( jω)n with bi ≤ bi ≤ bi , (7.79)

where 0≤ i ≤ n−1. By a slight abuse of notation, we shall use the notationA , B to denote

these polynomial families also.

Now, considering the Kharitonov polynomials associated with the interval polynomials

(7.78) and (7.79), Theorem 7.3.3 establishes that all of the rational functions inRe{B/A }

are strictly positive if and only if the functions

Re

{

kB
2 (s)

kA
1 (s)

}

,Re

{

kB
3 (s)

kA
1 (s)

}

,Re

{

kB
1 (s)

kA
2 (s)

}

,Re

{

kB
4 (s)

kA
2 (s)

}

,

Re

{

kB
1 (s)

kA
3 (s)

}

,Re

{

kB
4 (s)

kA
3 (s)

}

,Re

{

kB
2 (s)

kA
4 (s)

}

,Re

{

kB
3 (s)

kA
4 (s)

}

,

are strictly positive. Then for each of the rational functions above, Theorem 7.4.3 verifies

the spectral condition for the corresponding matrix products in (7.73).

Q.E.D.
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7.6 Conclusions and possible future directions

In the first half of this chapter, we have considered the stability of switchedlinear systems

subject to interval uncertainty, and gave necessary and sufficient conditions for CQLF ex-

istence for pairs of LTI systems in companion form and with interval uncertainty in the

entries of their system matrices. Particularly we gave an easily verifiable spectral condi-

tion for CQLF existence for this class of systems. We also gave two numericalexamples

to illustrate how the results of the section can be used in practice, where the second ex-

ample was motivated by automotive roll dynamics. As an extension of this resultwe shall

consider obtaining practical design laws for synthesizing stable switched controllers for un-

certain systems arising from practical automotive control problems, particularly for the roll

dynamics and the lateral dynamics control applications for improving drivingcomfort and

vehicle safety.

In the second half of the chapter we derived a verifiable spectral condition for common

Lyapunov solution (CLS) existence for pairs of matrices inR
n×n in companion form, and

with the same regular inertia; thereby extending a recent result for pairs of Hurwitz matrices

in [115]. We then further extended these results to case when the elements of the matrices

for this particular system class included bounded interval uncertainties also.
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Chapter 8

Concluding Remarks

In the closing chapter of the thesis, we give a brief summary of the preced-

ing chapters, and highlight the major contributions accomplished during the

completion of the work reported within.

The starting point for this thesis was a practical problem related to automotivevehicles,

which is known as the rollover. Statistically, rollover accidents have the highest fatality rate

among all accident types, and they pose a real threat for top heavy vehicles such as trucks,

busses, vans and SUVs. Based on these observations, we started this thesis by analyzing

the roll motion of automotive vehicles and found that the two of the most importantfactors

affecting rollover tendency of a vehicle are lateral acceleration and the height of the center

of gravity (CG). While the former is a measurable quantity using standard sensor equipment

on cars, the CG height is a time varying quantity that is not measurable directly.

Motivated by these, in Chapter 2 we successfully implemented a technique known as the

MMST (which originates from adaptive control field), for the problem ofreal time CG

position estimation, that makes use of multiple identification models to minimize a nonlin-

ear cost function based on the identification errors. We used simplified linear models for

roll and lateral motion of the vehicle in conjunction with the algorithm and showedthat
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this method can give good estimations of the longitudinal and the vertical positionof CG,

as well as the linear suspension and tire parameters. We also gave an implementation of

the method off-line measurement data from a real vehicle with success. In order to assess

the limitations of the suggested method, we made an analysis of the cost function (i.e., the

switching criterion) of the estimation algorithm, and found that when the parameter space of

the identification models does not contain the exact plant parameterizations, the algorithm

may end up with wrong estimations. This problem is related to the fact that there isno

1-1 mapping between the output space (of identification errors) and the parameter space of

the identification models. While using a dense number of identification models solves this

problem, this solution might be infeasible for automotive applications due to computational

overheads. As a remedy we suggested an adaptive algorithm to modify the model space of

the multiple model algorithm in an iterative fashion, which resulted in a small numberof

identification models with good estimation accuracy. We demonstrated the efficacy of this

method with numerical examples utilizing a scalar dynamical system as well as utilizing

second order vehicle models in conjunction with the CG position estimation problem.

Having considered the parameter estimation related to the automotive rollover problem, in

Chapter 3 we gave a robust controller design technique to mitigate rollover. The suggested

controller design is based on a particular bounded-input bounded-output (BIBO) stability

result, which considers bounded driver steering command as disturbance input, and load

transfer ratio (LTR) as the performance output. We showed the relevance of LTR in terms

of rollover occurrence and obtained a dynamical version of LTR in terms of the states of the

vehicle. We also showed that our controller design guarantees robustness with respect to

parameter uncertainty, subject to the condition that the uncertainty belongs toa convex hull.

In numerical simulations we considered robustness with respect to CG height and vehicle

velocity and showed that rollover can be prevented based on this approach. We implemented

the controllers based on differential braking and active steering actuators and showed that

both can be used to mitigate rollover effectively. In conjunction with the control design
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we also considered a mode switch based on the imminence of rollover, which resulted in

controllers that are not intrusive when the rollover potential is low.

In Chapter 4 we fused the CG position estimation method of Chapter 2 with the robust con-

trol design procedure of Chapter 3 to obtain adaptive rollover mitigation controllers in the

sense of MMST framework. We showed numerically that the resulting adaptive switched

controllers with active differential braking performed better than the robust controller alter-

native with fixed gains.

In Chapter 5, we considered the discrete time extension of a recent non-Lyapunov result for

the stability of a class of switched systems in continuous time. Specifically, we considered

the asymptotic stability of a subclass of discrete-time switching linear systems, where each

of the constituent subsystems is Schur stable among other conditions. We first presented

an example to motivate our study, which illustrated that the bilinear (i.e., Tustin) transform

does not preserve the stability between the discrete and continuous switched linear sys-

tems. This implies that the continuous time stability results cannot always be transformed

to discrete time analogs using this transformation. We then presented a subclass of discrete-

time switching systems with globally asymptotic origin, which arise frequently in practical

applications. We showed that global attractivity can be established without requiring the ex-

istence of a common quadratic Lyapunov function (CQLF) for the switched linear systems.

Utilizing this result we then gave constructive procedures to synthesize switching stabiliz-

ing controllers for two separate problems in automotive control based on active suspension

actuators; the first problem was related to the stabilization of road vehicle roll dynamics

subject to changes in the center of gravity (CG) height; we showed that thiscontroller can

also be used to change driver experience. The second problem concerned the design of PID

tracking controllers for emulating reference roll dynamics while guaranteeing transient free

switching as well as stability due to varying CG height.

During the course of the control designs for roll dynamics enhancementin Chapter 5, we

observed interactions between the lateral roll dynamics of the controlled vehicle. These
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required us to compensate the effects of the roll torque control inputs from the suspension

actuators onto the lateral dynamics, which we partially achieved using activesteering ac-

tuators. Motivated by these considerations, in Chapter 6 we applied a novel decentralized

controller integration method for systems with multiple dynamical modes, which preserves

robustness with respect to structural uncertainty. Based on some recent results in the liter-

ature, we utilized a method for checking the overall stability of the integrated controllers

based on a frequency domain criterion. We then applied the design method for the inte-

gration of decentralized controllers for the simultaneous tracking of reference lateral and

roll dynamics of an automotive vehicle. We designed the decentralized controllers based on

simplified models utilizing active suspension and active front wheel steeringactuators. We

presented the efficacy of the integrated vehicle emulation controller with numerical simu-

lations, which showed high performance and accurate tracking results. Finally, we showed

numerically that the suggested control design preserves robustness ofthe closed loop system

with respect to structural uncertainty in such applications.

Finally, in Chapter 7 we considered theoretical problems related to the switching linear

systems. The first problem we considered was related to the stability of switched linear

systems subject to interval uncertainty. Specifically we showed necessary and sufficient

conditions for CQLF existence for pairs of LTI systems in companion form and with inter-

val uncertainty in the entries of their system matrices. Then we gave a verifiable condition

for CQLF existence for such uncertain systems. We also demonstrated the result with two

numerical examples, where the second example was motivated by automotive roll dynam-

ics. The second problem we considered in Chapter 7 was related to common Lyapunov

solution (CLS) existence for pairs of matrices in companion form, and with the same reg-

ular inertia. As part of this problem, we extended the classical Lefschetz version of the

Kalman-Yacubovich-Popov (KYP) lemma. Then, we derived an easily verifiable spectral

condition for CLS existence for this class of systems. As a final problem, weconsidered in-

terval matrices in companion form and with regular inertia; we showed that easily verifiable
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CLS existence conditions can be obtained for this particular switched systemclass as well.
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Appendix A

Proof of Theorem 3.5.1

We acknowledge that the proof given here follows [91] with minor modifications. Before

we obtain the proof of Theorem 3.5.1, we give two results from literature that is helpful in

obtaining the proof of the theorem. We first start with the definition ofL∞ stability that we

utilize in the following discussion.

Definition (L∞ Stability) [91]: Consider a general nonlinear input-output system below

ẋ = F(x,ω) (A.1)

z = H(x,ω), (A.2)

wherex(t) ∈ R
n is the state vector at timet, andω(t) ∈ R

l is the exogenous (disturbance)

input whilez(t) ∈ R
p is the performance output. We define the input-output system above

to beL∞ stablewith performance levelγ if the following conditions are satisfied.

(i.) The undisturbed system ˙x = F(x,0) is globally uniformly asymptotically stable about

the origin.

(ii.) For everyω(t) andx(t0) = 0 with t0 ≥ 0, we have

‖z(t)‖ ≤ γ‖ω(t)‖∞, ∀t ≥ t0.

Note that scalarγ is an upper bound on theL∞ gain of the system.
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The following theorem from [91] records a sufficient condition for theL∞ stability of the

system described by (A.1), (A.2) with a level of performanceγ.

Theorem A.0.1 [91] Consider a general nonlinear input-output system described by (A.1)

and (A.2). Suppose there exists a matrix P and positive scalarsµ0,µ1 andµ2 such that for

all x ∈ R
n andω ∈ R

l we have

xTPF(x,ω) < 0 when xTPx> µ0‖ω‖2 (A.3)

and

‖H(x,ω)‖2 ≤ µ1xTPx+ µ2‖ω‖2. (A.4)

Then system (A.1), and (A.2) is L∞ stable with level of performance

γ =
√

µ0µ1 + µ2. (A.5)

See [91] for the proof of this theorem. We next give the following well known theorem that

is commonly referred to as the Schur complement result.

Theorem A.0.2 [42] (Schur Complement Result): Suppose that a symmetric matrix Q∈

R
(n+m)×(n+m) is partitioned as follows

Q =









Q11 Q12

QT
12 Q22









, (A.6)

where Q11 = QT
11 ∈ R

n×n, Q22 = QT
22 ∈ R

m×m are symmetric square matrices, and Q12 ∈

R
n×m. Then Q is positive definite, i.e., Q> 0, if and only if

Q11 > 0, Q22 > 0, Q11−Q12Q
−1
22 QT

12 > 0. (A.7)

See [42] for the proof of this theorem.
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Corollary A.0.1 It is straightforward to show that the Schur complement result given with

inequalities (3.22) corresponding Q> 0 implies also that

Q < 0 ⇐⇒ Q11 < 0, Q22 < 0, Q11−Q12Q
−1
22 QT

12 < 0,

Q ≥ 0 ⇐⇒ Q11 ≥ 0, Q22 ≥ 0, Q11−Q12Q
−1
22 QT

12 ≥ 0, (A.8)

Q ≤ 0 ⇐⇒ Q11 ≤ 0, Q22 ≤ 0, Q11−Q12Q
−1
22 QT

12 ≤ 0.

Next, making use of these two theorems, we give the proof of the main theoremof Chapter

3. We emphasize that the proof given below follows that given in [91].

Proof of Theorem 3.5.1: Now consider a system described by (3.14)-(3.15) satisfying

Assumption 3.5.1. Further suppose that there exist a matrixS= ST > 0, a matrixL and

scalarsβ1, . . .βN > 0 andµ0,µ1 j ,µ2 j ≥ 0, for j = 1, . . . , r that satisfy the hypotheses of the

Theorem 3.5.1. We will first show, based on the inequality (3.22), the sufficient condition

for the stability of the dynamical system (3.14).

As the inequality (3.22) conforms to the hypotheses of Theorem A.0.2, we can use the Schur

complement result on it, which yields

βi(SAT
i +AiS+LTBT

ui +BuiL)+S+
β 2

i

µ0
BiB

T
i ≤ 0.

Pre and post multiplying this inequality byP = S−1 and arranging results in

AT
i P+PAi +PLTBT

uiP+PBuiLP+
1
βi

P+
βi

µ0
PBiB

T
i P≤ 0.

Again, we pre and post multiply the last relation byxT andx, respectively; we also add and

subtract 2xTPBiω to inequality, which results in the following expression

2xTP(Aix+Biω +BuiLPx)−2xTPBiω +
1
βi

xTPx+
βi

µ0
xTPBiB

T
i Px≤ 0.

Now denoting‖.‖ as the 2-norm, and substituting the definitions ofL = KS= KP−1 and

u = Kx in the last inequality, and after few arrangement steps we obtain

2xTP(Aix+Biω +Buiu)−2xTPBiω +
1
βi

xTPx+
βi

µ0
‖BT

i Px‖2 ≤ 0.
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In is straightforward to show that this last in equality can be written as follows

2xTP(Aix+Biω +Buiu)+
βi

µ0

[

GTG− µ2
0

β 2
i

ωTω
]

+
1
βi

xTPx≤ 0,

whereG = (xTPβi − µ0
βi

ω). Now sinceGTG > 0, and furtherβi , µ0 were chosen to be

positive scalars, then removing theβi
µ0

GTG in the above inequality does not change semi-

negativity, that is

2xTP(Aix+Biω +Buiu)− µ0

βi
ωTω +

1
βi

xTPx≤ 0,

which is equivalent to

2xTP(Aix+Biω +Buiu)+
1
βi

(xTPx−µ0‖ω‖2) ≤ 0 f or i = 1, . . . ,N (A.9)

for all x∈ R
n, andω ∈ R. Sinceβi > 0 for i = 1, . . . ,N it now follows that

xTP(Aix+Biω +Buiu) < 0 when xTPx> µ0‖ω‖2 f or i = 1, . . . ,N (A.10)

Since it was assumed that the system matrices (3.14)-(3.15) satisfy the Assumption 3.5.1,

then (A.10) implies that

xTP(A(θ)x+B(θ)ω +Bu(θ)u) < 0 when xTPx> µ0‖ω‖2, (A.11)

whereθ is some parameter vector that captures the plant nonlinearity/uncertainty, which can

depend ont,x,ω andu. Now definingF(θ) = A(θ)x+B(θ)ω +Bu(θ)u and substituting in

the last inequality yields

xTPF(θ) < 0 when xTPx> µ0‖ω‖2, (A.12)

which is same as the inequality (A.3) of Theorem A.0.1.

It remains to show that the inequality (3.23) of theorem holds so that the nonlinear/uncertain

system (3.14)-(3.15) isL∞ stable according to the theorem A.0.1. Now, pre and post multi-

plying the inequality (3.23) with

T =

















P 0 0

0 I 0

0 0 I

















,
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and substitutingK = LP andCcl ji
=Cj i +D jui K, (whereCcl ji

denotes the closed loop system

matrix for i = 1, . . . ,N and j = 1, . . . , r) results in the following inequality
















−µ1 jP 0 CT
cl ji

0 −µ2 j DT
j i

Ccl ji
D j i −I

















≤ 0 i = 1, . . . ,N j = 1, . . . , r. (A.13)

Again, we can use Schur complement result to write this inequality in the followingform








CT
cl ji

Ccl ji
−µ1 jP CT

cl ji
D j i

DT
j iCcl ji

DT
j i D j i −µ2 j I









≤ 0, (A.14)

Since it was assumed that the system matrices (3.14)-(3.15) satisfy the Assumption 3.5.1,

then above inequality implies that








Ccl j (θ)TCcl j (θ)−µ1 jP Ccl j (θ)TD j(θ)

D j(θ)TCcl j (θ) D j(θ)TD j(θ)−µ2 j I









≤ 0, j = 1, . . . , r, (A.15)

whereCcl j (θ) = Cj(θ)+D ju(θ)K, andθ is some parameter vector that captures the plant

nonlinearity/uncertainty, which can depend ont,x,ω andu. Utilizing the Schur complement

result on (A.15) and further arranging implies that

(Cj(θ)x+D j(θ)ω +D ju(θ)u)T(Cj(θ)x+D j(θ)ω +D ju(θ)u)

−µ1 jx
TPx−µ2 j‖ω‖2 ≤ 0 (A.16)

for all x∈R
n andω ∈R. Now settingH(θ) =Cj(θ)x+D j(θ)ω +D ju(θ)u and substituting

in the last inequality yields

‖H(θ)‖2 ≤ µ1 jx
TPx+ µ2 j‖ω‖2, (A.17)

which is the same inequality as (A.4) of Theorem A.0.1. Therefore the nonlinear/uncertain

system given with equations (3.14)-(3.15) in compliance with Assumption 3.5.1 isL∞ stable

by Theorem A.0.1, with a level of performanceγ j , where

γ j =
√

µ0µ1 j + µ2 j . (A.18)

Q.E.D.
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Appendix B

Iterative algorithm for robust control

design

In our rollover controller design we attempt to minimize the level of performanceγ1 while

keeping the level of performanceγ2 below some specified levelγ2. Utilizing the structure

of the data in the rollover control design problem, and making use of the Remark 3.5.4, one

can solve the minimization problem described in Theorem 3.5.1 by solving the following

problem:

Minimize µ0µ11 subject to








βi(SAT
i +AiS+LTBT

ui
+Bui L)+S βiBi

βiBT
i −µ0I









≤ 0 for i = 1, . . . ,N









−S SCT
1

C1S −µ11I









≤ 0









−S LT

L −µ12I









≤ 0

µ0µ12 ≤ γ2
2































































































(B.1)
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and

S= ST > 0

µ0,µ11,µ12 ≥ 0

βi > 0 for i = 1, . . . ,N































(B.2)

Thenγ1 =
√µ0µ11 andK = LS−1.

To solve the above optimization problem, one first needs a value ofγ2 for which the above

inequalities are feasible. To achieve this one can first minimizeγ2
2 = µ0µ12 subject to all

the inequalities above except those involvingµ11 andγ2. After this first minimization ones

obtain a value ofγ2 which we denote byγ2 f . Now chooseγ2 ≥ γ2 f ; in this paper,γ2 = 5γ2 f .

Having obtained a feasible value ofγ2, one can can then minimizeγ1 = µ0µ11.

The inequalities (B.1), (B.2) above and the objective functionsµ0µ11, µ0µ12 are not linear

functions of the variables. However if we separate the variables into two groupsS,L,µ11,µ12

andβ1, . . . ,βN,µ0, the inequalities are linear with respect to each group of variables. Also,

we can use commercially available software to solve optimization problems with linear

objective functions and linear matrix inequality constraints. Based on these observations,

we propose the following iterative algorithm in an attempt to solve the above optimization

problems.

Algorithm To initiate the optimization ofγ2 one needs feasible symmetric matricesS

andL. These can be found by solving the corresponding quadratic stabilizabilityproblem

using the following linear matrix inequalities

SAT
i +AiS+Bui L+LTBT

ui
+2ηS ≤ 0 for i = 1, . . . ,N (B.3)

for someη > 0. Notice that if there is no solution to this quadratic stabilization problem,

then the first inequality in (B.1) does not have a solution.

The next part of the algorithm now iterates through Steps 1-3 in an attempt to minimize γ2.
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1. Fix S and L to those values obtained as a solution to (B.3) or from the previous

iteration.

Minimize µ0 subject to








βi(SAT
i +AiS+LTBT

ui
+Bui L)+S βiBi

βiBT
i −µ0I









≤ 0 for i = 1, . . . ,N

βi > 0 for i = 1, . . . ,N

µ0 ≥ 0

2. Fix β1, ...,βN andµ0 from the previous step.

Minimize µ12 subject to








βi(SAT
i +AiS+LTBT

ui
+Bui L)+S βiBi

βiBT
i −µ0I









≤ 0 for i = 1, . . . ,N









−S LT

L −µ12I









≤ 0

S= ST > 0

µ12 ≥ 0

3. Letγ2
2 = µ0µ12 and return to Step 1 unlessγ2 has not decreased by a certain prespec-

ified amount from the previous iteration.

Although the above steps may not achieve a global minimum forγ2, a feasible value of

γ2 (which we denote byγ2 f ) will be obtained along with corresponding feasibleS andL

matrices. We now fixγ2 at γ2 > γ2 f ; in this thesis,γ2 = 5γ2 f .

The next part of the algorithm attempts to minimizeγ1 subject toγ2 ≤ γ2. It iterates through

Steps 4-6.

4. Fix matricesSandL from the previous stage or the previous iteration.
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Minimize µ0 subject to








βi(SAT
i +AiS+LTBT

ui
+Bui L)+S βiBi

βiBT
i −µ0I









≤ 0 for i = 1, . . . ,N

βi > 0 for i = 1, . . . ,N

µ0 ≥ 0

5. Fix β1, . . . ,βN andµ0 from the previous step.

Minimize µ11 subject to








βi(SAT
i +AiS+LTBT

ui
+Bui L)+S βiBi

βiBT
i −µ0I









≤ 0 for i = 1, . . . ,N









−S SCT
1

C1S −µ11I









≤ 0









−S LT

L −µ12I









≤ 0

µ0µ12 ≤ γ2
2

S= ST > 0

µ11,µ12 ≥ 0

6. Letγ2
1 = µ0µ11 and return to Step 4 unlessγ2 has not decreased by a certain prespec-

ified amount from the previous iteration.

Note that although the iterations above may not achieve a global minimization ofγ1, each

iteration of Steps 4-6 decreasesγ1.
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Appendix C

Proof of Theorem 7.3.1

We acknowledge that the proof given here follows the one in [115]. Thefollowing lemma

is helpful in obtaining the proof of this theorem.

Lemma C.0.1 [46] Let A,A−ghT be Hurwitz matrices inRn×n, where g,hT ∈ R
n. Then

for any complex number s,

1+hT(sI−A)−1g =
det(sI− (A−ghT))

det(sI−A)
. (C.1)

Proof of Theorem 7.3.1:Without loss of generality, we may assume thatghT is in one of

the following Jordan canonical forms

(i)























c 0 . . . 0

0 . . . . . . 0

...

0 . . . . . . 0























, (ii)























0 . . . . . . 0

1 . . . . . . 0

...

0 . . . . . . 0























. (C.2)

As A andA−ghT are both Hurwitz, their determinants will have the same sign, so it follows

that the productA(A−ghT) has no negative real eigenvalues if and only if, for allλ > 0

det(λ I +(A−ghT)A) = det(λ I +A2−ghTA) > 0
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If ghT is in Jordan form then it follows that the expressions

det(λ I +A2−ghTA)

and

Re{det(λ I +A2−ghTA−
√

λ jghT)},

are identical. Thus, writingλ = ω2 we have that for all realω

Re{det(ω2I +A2−ghTA− jωghT)} > 0. (C.3)

It now follows, after a short calculation (see [115],[89]) that for allω ∈ R

Re{det( jω I − (A−ghT))

det( jω I −A)
} > 0. (C.4)

Making use of Lemma C.0.1 It follows that for all realω

1+Re{hT( jω I −A)−1g} > 0

as claimed.

Q.E.D.
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