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“Le doute n’est pas une condition agréable,
mais la certitude est absurde.”

(Doubt is not a pleasant condition, but certainty is absurd.)

– Voltaire
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Abstract

Ordinary differential equations play an important role in the modeling of many real-world
processes. To guarantee reliable results, model design and analysis must account for un-
certainty and/or variability in the model input. The propagation of uncertainty & vari-
ability through the model dynamics and their effect on the output is studied by sensitivity
analysis. Global sensitivity analysis is concerned with variations in the model input that
possibly span a large domain. Two major problems that complicate the analysis are high-
dimensionality and quality control, i.e. controlling the approximation error of the estimated
output uncertainty. Current numerical approaches to global sensitivity analysis mainly fo-
cus on scalability to high-dimensional models. However, to what extent the estimated
output uncertainty approximates the true output uncertainty generally remains unclear.

In this thesis we suggest an error-controlled approach to global sensitivity analysis of ordi-
nary differential equations. The approach exploits an equivalent formulation of the problem
as a partial differential equation, which describes the evolution of the state uncertainty
in terms of a probability density function. We combine recent advances from numerical
analysis and approximation theory to solve this partial differential equation. The method
automatically controls the approximation error by adapting both temporal and spatial dis-
cretization of the numerical solution. Error control is realized using a Rothe method that
provides a framework for estimating temporal and spatial errors such that the discretization
can be adapted accordingly. We use a novel technique called approximate approximations
for the spatial discretization; it is the first time that these are used in the context of an
adaptive Rothe scheme.

We analyze the convergence of the method and investigate the performance of approxi-
mate approximations in the adaptive scheme. The method is shown to converge, and the
theoretical results directly indicate how to design an efficient implementation. Numerical
examples illustrate the theoretical results and show that the method yields highly accu-
rate estimates of the true output uncertainty. Furthermore, approximate approximations
have favorable properties in terms of readily available error estimates and high approxima-
tion order at feasible computational costs. Recent advances in the theory of approximate
approximations, based on a meshfree discretization of the state space, promise that the ap-
plicability of the adaptive density propagation framework developed herein can be extended
to higher-dimensional problems.
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Introduction

Mathematical modeling is a key tool for the analysis of a wide range of real-world phenom-
ena ranging from physics and engineering to chemistry, biology and economics [50, 43, 82].
The recently growing influence of modeling in the analysis of biological processes [83] poses
challenging mathematical problems. Among the different modeling approaches, ordinary
differential equations (ODE) are particularly important and have led to significant advances
[6, 16]. Ordinary differential equations model the temporal evolution of the relevant vari-
ables by describing their deterministic dynamics. The study of dynamical systems with
ODEs is a mature field and therefore, there is a rich literature devoted to their analysis
[2, 20] and solution [30, 31, 25].

ODEs are used to model biological processes on various levels ranging from gene expres-
sion [23, 24] or signaling processes on the cellular level [35] to the kinetics of drugs on
the whole-body level [87]. All these processes have in common that their modeling with
ODEs bears a considerable degree of uncertainty and/or variability in both initial conditions
and parameters [4, 17, 52]. This is particularly the case when models are considered in a
population-wide context. Then, uncertainty commonly corresponds to noisy measurements
or the lack of knowledge about individual systems, whereas variability refers to variations
over time in individual systems or within the population [5, 7]. The propagation of uncer-
tainty and variability through the system dynamics can lead to considerable variations in
the model outputs, see Figure 1, and neglecting this may lead to unreliable conclusions.

The systematic study of how uncertainty and variability affect the model outputs is called
sensitivity analysis and is a crucial step of any practical modeling approach [13, 17]. Sensi-
tivity analysis of ODEs can be addressed from different mathematical perspectives, which
give access to different numerical methods. The advantages and disadvantages of those
motivated the development of a novel approach, which is presented in this thesis.

Sensitivity analysis of ODEs Depending on the problem under study, the uncertainty and
variability of an ODE model may affect initial values, the parameters, or both. These will
be referred to as the model input.

In many cases, uncertainty can be regarded as small variations, or perturbations, around
reference input values, while variability generally refers to larger variations. Effects of small
variations are often studied using a local approach. Local sensitivity analysis is based on
linearized solutions of the ODE around a reference input values. Linearization facilitates
the analysis of the problem considerably. It involves the computation of partial derivatives
of the ODE with respect to the uncertain input variables, so called sensitivity indices, which
describe the variance of the output uncertainty [74, 86]. The two terms, local and linear
sensitivity analysis, are often used interchangeably [25, 86].
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Figure 1: Sensitivity analysis: (a) uncertainty in the model input propagates through the
model dynamics and yields an uncertain model output. Three scenarios of output uncertainty
are shown: (b) small output uncertainty, the model is not very sensitive to the input; (c) & (d)
input uncertainty seriously affects the output uncertainty, the model is sensitive, and simple
descriptors such as mean or variance fail to capture the structure of the output uncertainty.

The linear approach provides a good estimate of the true sensitivity only when variations
are small, or when the model dynamics are linear. In the case of larger variations, the
sensitivity of a nonlinear model should therefore be studied globally. Global sensitivity
analysis commonly considers the input values as random variables with a given probability
distribution. The problem can then be transformed to a system of ODEs with random
initial values. By extending the state space to include the model parameters, this approach
can account for variations in initial values and parameters within a single framework. A
straightforward approach is to solve this system for a set of sampled input values. An
estimate of the sensitivity of the model can then be obtained from the outputs produced
with each of the sampled values. Sampling-based approaches are called Monte Carlo (MC)
methods [32, 61, 77, 78] and are widely used for sensitivity analysis of ODEs [36, 62].

Based on the probability density function of the random initial values, the problem can be
recast as a density propagation problem. The evolution of the density function is described
by a first-order linear partial differential equation (PDE). Costanza & Seinfeld [19] first
proposed to perform sensitivity analysis by numerically solving this PDE, and since then
the approach is often referred to as stochastic sensitivity analysis [74, 86]. The numerical
analysis of PDEs is a broad field of ongoing research and an extensive literature is dedicated
to it [29, 73, 84]. Therefore, the density propagation approach gives access to a rich theory
and methodology that facilitate a highly accurate estimation of the output uncertainty.

Limitations of existing approaches In most applications, ODE models describe nonlinear
dynamics, so that analytical solutions are generally not available and one must resort to
numerical methods. In addition, many applications require sensitivity analysis with respect
to numerous input variables, and thus the numerical methods have to deal with high-
dimensions.

Local sensitivity methods can cope with high-dimensionality comparatively well, but they
are limited to problems with small input variations. In the case of global sensitivity analysis,
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the input space (and thus the complexity of the problem) grows exponentially with the
number of dimensions. This limitation is common to all numerical methods. One way to
circumvent this problem is to study the sensitivity of each input variable separately. This
approach requires moderate effort but does not reflect the true nature of the problem, since
correlations between variables are lost.

Currently, most global sensitivity methods that can be applied to high-dimensional prob-
lems are based on an MC method [36, and references therein]. As for all numerical meth-
ods, the discretization (for MC methods the representation of the uncertainty by means
of a discrete sample) inherently carries on approximation errors of the estimated output
uncertainty. In the random setting, estimates of these errors are generally hard to obtain
[21]. It thus remains a problem to judge if the sensitivity has been analyzed with sufficient
accuracy.

The density propagation approach facilitates accuracy control, since the numerical analysis
of PDEs provides methodology that is specially tailored for an error-controlled, or adap-
tive solution, see e.g. [29]. In our view, adaptive density propagation promises the most
accurate estimates of the sensitivity of ODE models. However, this strategy is generally
limited to low-dimensional problems [74, 86], since most PDE methods become inefficient
for dimensions higher than two or three [12, 28].

Objective of this work MC methods continue to be fundamental for the global sensitivity
analysis of high-dimensional ODE models. Many practical studies could however benefit
from a global method that, at high accuracy, can be applied to medium-dimensional models.
This thesis intends to provide a theoretical framework to address such global sensitivity
analysis problems. In this work an adaptive density propagation method is developed.
The method allows us to control both temporal and spatial errors via an adaptation of the
discretization. This is implemented by combining recent results from the fields of numerical
analysis and approximation theory.

Numerical analysis offers different approaches to the solution of PDEs. Among these, the
Rothe approach [75, 76] is particularly important in terms of adaptivity, see e.g. [29]. Rothe
methods are based on a temporal semi-discretization of the PDE. This results in stationary
spatial problems, which can be solved using approximation methods.

The proposed method is based on a Rothe scheme with multiplicative error correction that
was introduced by Bornemann [8, 9] for the solution of parabolic PDEs. Multiplicative
error correction aims at improved temporal adaptivity by avoiding numerical cancellation
in the temporal error estimates. This approach also allows for a separate estimation of
temporal and spatial errors, which in turn provides the basis for the decision when to refine
the temporal or the spatial discretization.

A novel approximation method called approximate approximations is used for the solution of
the stationary spatial problems. This method was developed by Maz’ya & Schmidt [64, 63,
66] and has successfully been employed for the solution of elliptic and time-dependent PDEs
mostly of order two or higher [48, 68, 81]. Favorable analytical properties with respect to
the approximation of differential operators [65], together with a sound convergence theory
[66] make approximate approximations attractive for their use in an adaptive Rothe context.
To our knowledge, they have not been used for this purpose so far.
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The analysis shown in this work reveals that, to guarantee convergence of the overall nu-
merical scheme, dependencies between the spatial and temporal discretization have to be
taken into account. These impose high accuracy constraints on the spatial discretization.
Approximate approximations prove more favorable in this respect as compared to classi-
cal spatial discretization methods, because they allow these dependencies to be efficiently
resolved.

To fully understand the numerical aspects of the suggested approach, we confine the analysis
to approximate approximations on uniform grids. In practice, this implies that the method,
in its current shape, is restricted to low-dimensional problems. We intend to establish a
theoretical foundation for adaptive Rothe methods with approximate approximations in
the context of global sensitivity analysis of ODEs. At a later stage, we plan to combine
the methodology with approximate approximations on non-uniform or scattered grids in
order to extend its applicability to problems with higher dimensions. There is ongoing
research on approximate approximations with scattered grids [27, 44, 54]. A combination
of the framework presented herein with approximate approximations on scattered grids
may provide a powerful tool for the global sensitivity analysis of ODEs with moderate
input dimensions.

Thesis overview In Part I, the mathematical setting is presented: ODEs with random
initial values are discussed in Chapter 1, and the two equivalent approaches to solving this
problem—the ODE-based and the PDE-based approach—are presented. Chapter 2 then
gives an overview on existing numerical methods to address the problem. We focus on the
conceptual frameworks of those methods rather than discussing their differences in detail.

Part II constitutes the main part of the thesis. The Rothe approach with multiplicative
error correction is described in Chapter 3, and Chapter 4 gives an introduction to approx-
imate approximations. Then, in Chapter 5, we propose an algorithm for adaptive density
propagation that combines the Rothe method with approximate approximations. The con-
vergence of the suggested method is analyzed in Chapter 6, and numerical examples are
presented in Chapter 7.

Finally, in Part III, we conclude by summarizing the results obtained in this work and
discussing possible extensions of the method and applications to other problems.

Some technical material has been allocated to the Appendix. This includes basic concepts
for semi-discretization of PDEs in time (Part A), derivations of spatial error estimates
within the multiplicative error correction (Part B) as well as formulas of derivatives of the
basis functions of approximate approximations (Part C).
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Chapter 1

Ordinary differential equations with random
initial values

The objective of sensitivity analysis is to study the effect of uncertainty and variability on
the model output. In this thesis we are interested in global sensitivity analysis. We assume
that the uncertainty or variability is specified in terms of a probability distribution of the
input variables under study. Considering parameter variables as part of the state space
allows us to formulate global sensitivity analysis as the solution of ODEs with random
initial values.

In this chapter we present the mathematical setting for ODEs with random initial values
together with their solution. In Section 1.1, the problem is formally stated, and Section
1.2 describes its solution using the theory of Frobenius-Perron operators. This perspective
allows us to derive an equivalent characterization of the solution by means of a first-order
linear PDE.

1.1 Problem statement

We are interested in problems where the state z ∈ Rn of the system can be described by
an ordinary differential equation of the form

ż = f(z | p) , with z(0) = z0 . (1.1)

The right hand side f(·|p) : Rn → Rn may depend on parameters p ∈ Rm. Since we are
interested in a sensitivity analysis with respect to a model input consisting of both initial
conditions z0 and parameters p, we consider the extended state variable x :=

(
z p

)T ∈ Rd,
with d = n+m. This allows us to study the effects of variations in z0 and p simultaneously
by setting

ẋ = F (x) :=
(
f(z | p)

0

)
, with x(0) = x0 =

(
z0

p

)
. (1.2)

Let | · | denote a vector norm on Rd (e.g. the Euclidean norm). Then, the following theorem
gives conditions for the existence and uniqueness of a solution x(t), t ≥ 0.

Theorem 1.1.1 (Existence Theorem of Picard-Lindelöf, [25, Theorem 2.7]). Let F
be locally Lipschitz continuous, i.e., there exists L ≥ 0 such that

|F (x)− F (y)| ≤ L · |x− y| , ∀x ∈ Rd, y ∈ Bκ(x),

7



Chapter 1 Ordinary differential equations with random initial values

where Bκ(x) :=
{
y ∈ Rd, |y − x|2 ≤ κ

}
denotes an open neighborhood around x. Then, the

initial value problem (1.2) has a unique solution x(t), t ≥ 0.

A sufficient condition for local Lipschitz continuity is continuous differentiability of F with
respect to the state variable x, which will be assumed henceforth. Let us denote the
evolution operator Φt : Rd → Rd with

Φtx0 := x(t) , (1.3)

which maps an initial state x0 to its state at time t. The evolution operator has the following
properties:

(i) Φ0x = x for all x ∈ Rd,

(ii) Φt(Φt′x) = Φt+t′x for all x ∈ Rd and t, t′ ∈ R,

(iii) Φtx is differentiable with respect to x for all t ∈ R.

Note that by the first two properties, {Φt}t∈R forms a group, and therefore Φt is invertible
with Φ−1

t = Φ−t.

To mathematically characterize the uncertainty or variability in initial values, we assume
that x0 = X0 is a random variable. Consequently, Φtx0 = Xt is also a random variable and
{Xt}t≥0 a stochastic process. For any t ≥ 0, let us denote with ut = u(t, ·), u : R×Rd → R,
the probability density function of the probability distribution of Xt, i.e.

P[Xt ≤ x] =
∫ x

−∞
ut(s) ds . (1.4)

The objective is to solve the following problem:

Problem 1.1.2 (Random Initial Value Problem). Let the system be described
by an ODE of the form

ẋ = F (x) .

Assume the initial value x0 = X0 is a random variable and has a known probability
distribution with density u0. The problem is to compute the probability density
function ut associated with the random state x(t) = Xt on a finite interval t ∈
[0, T ].

1.2 Analytical solution

In the following we consider the solution of the Random Initial Value Problem 1.1.2. In
Section 1.2.1, the temporal evolution of the probability density function is studied using the
theory of Frobenius-Perron operators. The interpretation of Frobenius-Perron operators as
a semigroup allows us then, in Section 1.2.2, to derive an equivalent formulation of the
Random Initial Value Problem in terms of a first-order linear PDE. Finally, in Section
1.2.3, we show how pointwise solutions to this PDE can be obtained using the method of
characteristics.

8



1.2 Analytical solution

1.2.1 Evolution of density functions: the Frobenius-Perron operator

Below we give a brief introduction to the theory of Frobenius-Perron operators along with
some required background on measure theory. A comprehensive treatment can be found in
[55].

Measures, measure spaces and Lp-spaces

As a matter of convention, let us denote the state space Rd by Ω. A set B containing subsets
of Ω is called a σ-algebra if

(i) Ω ∈ B,

(ii) B ∈ B ⇒ Ω\B ∈ B,

(iii) for any countable collection {Bk}k=1,2,... of subsets of Ω: Bk ∈ B ⇒
⋃
k Bk ∈ B.

The σ-algebra generated by all closed intervals [a, b] ⊂ Rd, a, b ∈ Rd, is called the Borel
σ-algebra. A real-valued function µ : B → R is called a measure on Ω if

(i) µ(∅) = 0,

(ii) µ(B) ≥ 0 for all B ∈ B,

(iii) for all countable sets {Bk}k=1,2,... of pairwise disjoint Bk ∈ B: µ(
⋃
k Bk) =

∑
k µ(Bk),

and all sets B ∈ B are called measurable sets. We are particularly interested in probability
measures µ = P, i.e. µ(Ω) = 1. The triple (Ω,B, µ) is called a measure space, and a
probability space in case µ = P. Any function u : Ω → Ω̂ is called measurable in (Ω,B, µ),
if for all B̂ ⊂ Ω̂ the pre-image of u

u−1(B̂) :=
{
ω ∈ Ω, u(ω) ∈ B̂

}
is a measurable set, i.e. u−1(B̂) ∈ B. We are specifically interested in real-valued measurable
functions u : Ω→ R. For these,

||u||Lp :=
(∫

x∈Ω
|u(x)|p µ(dx)

)1/p

for 1 ≤ p <∞ and ||u||L∞ := sup
x∈Ω
|u(x)| (1.5)

defines a norm on (Ω,B, µ), which is called the Lp-norm. Moreover, the set of all functions
u for which ||u||Lp is finite is called the Lp(Ω,B, µ)-space.

Remark 1.2.1. Throughout this work, ||·|| will denote the Lp-norm unless stated otherwise.
We will also write Lp instead of Lp(Ω,B, µ) whenever the measure space is clear from the
context, or sometimes Lp(Ω) when Ω ⊂ Rd denotes a sub-domain of Rd.

This setting now allows us to define densities and probability density functions: Any positive
function u ∈ L1 with ||u||L1

= 1 is called a density, and furthermore u is called a density
of the measure µu, if

µu(B) =
∫
B
u(x) µ(dx) . (1.6)

9



Chapter 1 Ordinary differential equations with random initial values

If additionally µu = P is a probability measure, u is called a probability density function. For
a Borel σ-algebra, the Borel measure that assigns to each interval its length (or hyper-area,
if d > 1), uniquely defines a measure. We then write dx instead of µ(dx).

A measurable transformation φ : Ω→ Ω is called nonsingular, if for all B ∈ B
µ(φ−1(B)) = 0 ⇒ µ(B) = 0 , (1.7)

which means that only nullsets (with measure zero) can be mapped to nullsets.

Transformations of measures & densities

To study the solution to the Random Initial Value Problem 1.1.2, we consider the measure
space (Ω,B, µ), where the state space is Ω = Rd, B denotes the Borel σ-algebra and µ the
Borel measure. For a fixed time t ≥ 0, the evolution operator Φt of the ODE denotes a
transformation on the state space. The transformation of Ω through Φt causes a change
in the probability distribution on Ω. The probability of a set B at time t must equal the
probability of its pre-image Φ−1

t (B), i.e.

P[Xt ∈ B] =
∫
B
ut(x) dx =

∫
Φ−1
t (B)

u0(x) dx = P[X0 ∈ Φ−1
t (B)] . (1.8)

Thus, the transformation of the probability distribution can be quantified by means of the
density functions u0 and ut. Frobenius-Perron operators establish a functional relation
between the initial and the transformed density by

Ptu0 = ut , (1.9)

where Pt is called the Frobenius-Perron operator corresponding to Φt. Similar to the evo-
lution operator Φt, the Frobenius-Perron operator maps any initial density u0 to its trans-
formed version ut at time t. Therefore, it describes the evolution of the probability density
function associated with the random state Xt, as illustrated in Figure 1.1.

Figure 1.1: Shown are the two probability density functions u0 and ut. The conservation of
probability mass on any set B and its pre-image Φ−1

t (B) defines the Frobenius-Perron operator
Pt corresponding to Φt, which relates the two density functions to each other.

The general definition of Frobenius-Perron operators follows from relation (1.8):

10



1.2 Analytical solution

Definition 1.2.2 (Frobenius-Perron operator). Let (Ω,B, µ) be a measure space and
Φt : Ω → Ω a nonsingular transformation. The Frobenius-Perron operator Pt : L1 → L1

corresponding to Φt is defined by∫
B
Ptu(x) µ(dx) =

∫
Φ−1
t (B)

u(x) µ(dx) , ∀ B ∈ B and u ∈ L1 . (1.10)

Nonsingularity of Φt ensures that the Frobenius-Perron operator is uniquely defined by
(1.10) and follows from invertibility of Φt. Definition 1.2.2 further implies that Pt has the
following properties:

(i) Pt is linear.

(ii) u(x) ≥ 0 , ∀x ∈ Ω ⇒ Ptu(x) ≥ 0 , ∀x ∈ Ω.

(iii) ||Ptu||L1
= ||u||L1

, ∀u ∈ L1.

(iv) For the concatenation Φn
t = Φt ◦ n. . . ◦Φt, the corresponding Frobenius-Perron opera-

tor is Pn = Pnt .

Let us mention that by properties (ii) and (iii), Pt is a Markov operator , and thus if u0 is
a probability density function, then ut = Ptu0 is as well. Since the evolution operator Φt is
differentiable and invertible, an explicit form of Pt can be obtained. To illustrate this, let
us consider Ω = R. Then for an interval B = [a, x], relation (1.10) becomes∫ x

a
Ptu0(s) ds =

∫
Φ−1
t ([a,x])

u0(s) ds ,

and by differentiation

Ptu0(x) =
d

dx

∫
Φ−1
t ([a,x])

u0(s) ds .

By the differentiability and invertibility of Φt, it follows that the evolution operator is
monotone. Let us assume Φt is monotonically increasing, hence Φ−1

t ([a, x]) = [Φ−ta,Φ−tx],
and we get

Ptu0(x) =
d

dx

∫ Φ−tx

Φ−ta
u0(s) ds

= u0(Φ−tx) · d
dx

(Φ−tx) . (1.11)

In [55, Chapter 3] it is shown that for Ω = Rd, (1.11) generalizes to

ut(x) = Ptu0(x) = u0 (Φ−tx) ·
∣∣∣∣ d
dx

(Φ−tx)
∣∣∣∣ , (1.12)

where
∣∣ d

dx (Φ−tx)
∣∣ := det

(
d

dx (Φ−tx)
)
, and d

dx (Φ−tx) denotes the Jacobian of Φ−t. Since
Φt is invertible, we can rewrite (1.12) as

ut(Φtx) = Ptu0 (Φtx) = u0(x) ·
∣∣∣∣ d
dx

(Φtx)
∣∣∣∣−1

. (1.13)

11



Chapter 1 Ordinary differential equations with random initial values

This means that the density ut evaluated at the propagated point x(t) = Φtx0 differs from
the initial density at the original point x(0) = x0 by the factor

∣∣ d
dx (Φtx)

∣∣−1
. This factor

accounts for local contractions or expansions of the evolution Φt. (Hamiltonian systems,
for example, imply that

∣∣ d
dx (Φtx)

∣∣ = 1 for all x ∈ Ω and thus, for all t ≥ 0 the density
remains constant along a trajectory x(t) = Φtx.)

We next exemplify how in special cases the pointwise information from (1.12) can be used
to obtain an explicit global solution.

Example 1.2.3 (Evolution of a Normal distribution under linear dynamics). As-
sume that the ODE is linear with right hand side F (x) = Ax, A ∈ Rd×d. Then the evolution
of the ODE with random initial value x0 = X0 is given by

Φtx0 = etA x0 ,

see e.g. [2], and its inverse by

Φ−tx0 = e−tA x0 ,

where etA denotes the matrix exponential.

Let the initial probability density function u0 associated with X0 be the density of a Normal
distribution with mean µ0 and covariance matrix Σ0, i.e.

u0(x) =
1√

(2π)d|Σ0|
· exp

(
−1

2
(x− µ0)TΣ−1

0 (x− µ0)
)
, |Σ0| := det(Σ0).

Applying the explicit formula for the Frobenius-Perron operator (1.12) yields

ut(x) =
1√

(2π)d|Σ0|
· exp

(
−1

2
(e−tAx− µ0)TΣ−1

0 (e−tAx− µ0)
)
·
∣∣∣∣ d
dx
e−tAx

∣∣∣∣
=

1√
(2π)d|Σ0||etA|2

· exp
(
−1

2
(x− etAµ0)T (e−tA)TΣ−1

0 e−tA(x− etAµ0)
)
, (1.14)

which is identical to the probability density function of the Normal distribution N (µt,Σt)
with parameters

µt = etA · µ0 , and Σt = (etA)T · Σ0 · etA . (1.15)

2

In the above example it is seen that Gaussian densities are invariant to linear transforma-
tions. We will see in Chapter 2 that this property is used by some numerical methods to
obtain a linearized estimate of the sensitivity of a model. In the following we will use the
Frobenius-Perron operator to derive an equation that describes the temporal evolution of
the probability density function ut.

12



1.2 Analytical solution

1.2.2 Equivalent formulation in terms of a PDE

So far we have considered the transformation of the initial density for a fixed time t. Using
the properties of the evolution operator Φt, it can be shown that the family of Frobenius-
Perron operators {Pt}t≥0 forms a semigroup, i.e.

(i) P0u = u , ∀u ∈ L1 and

(ii) Pt(Pt′u) = Pt+t′u , ∀u ∈ L1 and t, t′ ≥ 0.

To derive a differential equation that describes the evolution of ut = Ptu0 for t ≥ 0, we will
now consider a closely related operator, the Koopman operator.

Definition 1.2.4 (Koopman operator). Let (Ω,B, µ) be a measure space and Φt : Ω→ Ω
a nonsingular transformation. The operator Kt : L∞ → L∞ defined by

Ktv(x) = v(Φtx) , ∀ v ∈ L∞ , (1.16)

is called the Koopman operator with respect to Φt.

It can be shown, see [55, Chapter 3], that the Koopman operator has the properties:

(i) Kt is linear.

(ii) Kt is a contraction on L∞, i.e. ||Ktv||L∞ ≤ ||v||L∞ , ∀v ∈ L∞.

(iii) Kt is the adjoint operator of the Frobenius-Perron operator corresponding to Φt, i.e.

〈Ptu, v〉 =
∫

Ω
Ptu(x)·v(x) dx =

∫
Ω
u(x)·Ktv(x) dx = 〈u,Ktv〉 , ∀u ∈ L1 , v ∈ L∞ ,

where 〈·, ·〉 denotes the scalar product.

Furthermore, the family of Koopman operators {Kt}t≥0 with respect to {Φt}t≥0 forms a
semigroup. We next derive a differential representation of Kt with respect to t. Assume
v ∈ L∞ is continuously differentiable and has compact support. By definition, the Koopman
operator satisfies

Ktv(x0)− v(x0)
t

=
v(Φtx0)− v(x0)

t
=
v(x(t))− v(x0)

t
.

Since v is continuously differentiable and has compact support, the mean value theorem
yields

Ktv(x0)− v(x0)
t

=
d∑
i=1

ẋi(θt) · vxi(x(θt)) =
d∑
i=1

Fi(θt) · vxi(x(θt)) , 0 < θ < 1 ,

where vxi denotes the partial derivative of v with respect to xi. Since v, and thus vxi , has
compact support, the limit for t→ 0 exists and is given by

lim
t→0

Ktv(x0)− v(x0)
t

= lim
t→0

(
d∑
i=1

Fi (θt) · vxi (x (θt))

)
=

d∑
i=1

Fi(x0) · vxi(x0) .

13



Chapter 1 Ordinary differential equations with random initial values

The differential operator defined by

AKv(x) :=
d∑
i=1

Fi(x) · ∂
∂xi

v(x) ,

is called the infinitesimal generator of the semigroup of Koopman operators {Kt}t≥0 with
respect to {Φt}t≥0. An explicit form of the infinitesimal generator of the semigroup of
Frobenius-Perron operators, defined by

Au(x) := lim
t→0

Ptu(x)− u0(x)
t

,

can be derived using that the Koopman operator is the adjoint operator, i.e.

〈Ptu, v〉 = 〈u,Ktv〉 , u ∈ L1 , v ∈ L∞ .

Subtracting 〈u, v〉 from both sides and dividing by t yields〈Ptu− u
t

, v

〉
=
〈
u,
Ktv − v

t

〉
.

For functions u ∈ D(A) and v ∈ D(AK) in the domains of A and AK , taking the limit as
t→ 0 further yields the relation

〈Au, v〉 = 〈u,AKv〉 , (1.17)

which, using the explicit form of AK , can be written as

〈Au, v〉 =

〈
u,

d∑
i=1

∂

∂xi
v · Fi

〉
=

d∑
i=1

∫
Rd

(
∂(uFiv)
∂xi

− v · ∂(uFi)
∂xi

)
dx .

If v has compact support, then by the divergence theorem it follows that

d∑
i=1

∫
Rd

∂(uFiv)
∂xi

dx = 0 ,

and therefore

〈Au, v〉 = −
d∑
i=1

∫
Rd
v · ∂(uFi)

∂xi
dx =

〈
−

d∑
i=1

∂(uFi)
∂xi

, v

〉
= 〈−div(F · u), v〉

for all continuously differentiable functions u ∈ D(A) and continuously differentiable func-
tions v ∈ D(AKt) with compact support. Since D(A) forms a dense subset of L1, com-
pare [55, Remark 7.6.2 & Theorem 7.5.1], the semigroup of Frobenius-Perron operators is
strongly continuous, i.e.

lim
t→t0
||Ptu− Pt0u|| = 0 , ∀u ∈ L1 , t, t0 ≥ 0 ,

which allows us to state the following relation between the infinitesimal generator A and
the differential equation describing the evolution of a density function under deterministic
dynamics.

14



1.2 Analytical solution

Proposition 1.2.5 (ODEs with random initial values & the infinitesimal genera-
tor of Pt, [55, Chapter 7]). Assume F : Rd → Rd is continuously differentiable. Then the
evolution of the probability density function ut = u(t, ·) associated with the Random Initial
Value Problem 1.1.2 with right hand side F is described by the first-order linear partial
differential equation

∂

∂t
u = Au = −div(F · u) , u(0, ·) = u0 . (1.18)

Remark 1.2.6. If div(F (x)) = 0 for all x ∈ Rd, as e.g., in Hamiltonian dynamics, then
the above PDE is called the Liouville equation.

1.2.3 Solution of the PDE along characteristics

First-order partial differential equations can be solved along characteristic curves or charac-
teristics. Characteristics are curves (t(s), x(s))s∈R in Rd+1 along which the value u(t(s), x(s))
of a solution u is described by an ordinary differential equation. To understand this, let us
recall the previously derived PDE (1.18), which can be rewritten as

∂u

∂t
+

d∑
i=1

Fi · ∂u
∂xi

= −div(F ) · u . (1.19)

A solution u(t(s), x(s)) =: z(s) parameterized by s has to satisfy

dz
ds

=
d
ds
u(t, x) =

∂u

∂t
· dt

ds
+

d∑
i=1

∂u

∂xi
· dxi

ds
. (1.20)

Comparison with (1.19) suggests to set dt
ds = 1 and dxi

ds = Fi, so that

dz
ds

=
∂u

∂t
+

d∑
i=1

Fi · ∂u
∂xi

= −div(F ) · z . (1.21)

Therefore, the PDE has been transformed to the system of ODEs
d
ds
t(s) = 1

d
ds
x(s) = F (x(s))

d
ds
z(s) = −div [F (x(s))]︸ ︷︷ ︸

=:λ(x(s))

·z(s) (1.22)

which can be solved analytically for initial values t(0) = 0, x(0) = x0 and z(0) = u(0, x0).
The solutions are:

t(s) = s

x(t) = Φtx0

z(t) = u(Φtx0, t) = e−λ̂(t) · u(x0, 0) , (1.23)

with λ̂(t) :=
∫ t

0 λ(x(s)) ds. This way of solving PDEs is called the method of characteristics.
For a more detailed description, see e.g. [20, 26]. Comparison of the obtained solution
with the explicit formula (1.13) for the Frobenius-Perron operator further implies that
e−λ̂(t) =

∣∣ d
dxΦtx

∣∣−1
.
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Chapter 1 Ordinary differential equations with random initial values

Concluding remarks In this chapter we have seen that the impact of uncertainty and
variability in the input of ODE models can be studied using two equivalent characterizations
of the problem. The first one is based on the solution of the ODE for a random initial
value X0 and yields the random state Xt with probability density function ut. The second
approach is based on the description of the the probability density function by means of a
first-order linear PDE, and solution yields the density ut. Frobenius-Perron operators as
well as the method of characteristics provide a link between the two approaches. Next, in
Chapter 2, we discuss numerical methods for both approaches.
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Chapter 2

Numerical solutions for deterministic systems
with random initial values

In this chapter we give an overview on numerical methods to solve the Random Initial Value
Problem 1.1.2, i.e.,

ẋ = F (x) , with x(0) = x0 , (2.1)

where x0 = X0 is a random variable with probability density function u0. We distinguish
between methods that solve the ODE directly and methods that solve the equivalent PDE
formulation

∂

∂t
u = −div(F · u) = Au , u(0, ·) = u0 . (2.2)

First, in Section 2.1, we focus on ODE-based methods, and later, in Section 2.2, on general
strategies for the solution of PDEs. The applicability of methods from both approaches to
the global sensitivity analysis of ODEs is then discussed in Section 2.3.

2.1 ODE-based approaches

Sensitivity analysis methods can be divided into local and global approaches. Local, or
linear, sensitivity analysis considers small changes in the model input x0 and studies their
propagation along the solution x(t) = Φtx0 locally, based on a linearization of the dynamics.
Here, Φt denotes the evolution operator of (2.1) as defined in the previous chapter. This
strategy is briefly described in Section 2.1.1. Global sensitivity methods commonly rely on
a sampling-based exploration of the input space. Sampling-based or Monte Carlo (MC)
methods are described in Section 2.1.2.

2.1.1 Local sensitivity analysis of ODEs

Here, we follow the presentation of linear sensitivity in [25, Chapter 3] and consider a small
change or perturbation δx0 around the initial value x0. The ODE with a perturbed initial
value x0 + δx0 has the solution

x(t) = Φt(x0 + δx0) . (2.3)

Using the Taylor expansion of Φt around x0, the linearized perturbation at time t,

δx(t) = Φt(x0 + δx0)− Φtx0 , (2.4)

17



Chapter 2 Numerical solutions for deterministic systems with random initial values

can be written as
δx(t) = Wt · δx0 , (2.5)

where Wt ∈ Rd×d denotes the Jacobian of Φt evaluated at Φtx0, i.e.

Wt =
∂

∂x
Φtx

∣∣∣∣
x=Φtx0

. (2.6)

Under the linearized dynamics, Wt propagates an initial perturbation along the trajectory
(Φtx0, t) and is therefore called propagation matrix (also Wronski or sensitivity matrix [86]).
Since F and Φt are assumed to be differentiable with respect to x, we can establish an ODE
for the evolution of the propagation matrix by

d
dt
Wt =

d
dt

(
∂

∂x
Φtx

)
=

∂

∂x

(
d
dt

Φtx

)
=

∂

∂x
F (Φtx) ·Wt . (2.7)

Multiplication with δx0 and considering relation (2.5) yields the initial value problem

d
dt
δx(t) =

∂

∂x
F (Φtx) δx(t) , δx(0) = δx0 , (2.8)

which is called the variational equation. For linear ODEs, it can be solved analytically.
For nonlinear ODEs, it yields a good approximation only for small times t and small initial
perturbations δx0 . Then, the variational equation may be solved numerically, and the
solution δx(t), t ≥ 0, denotes a linearized perturbation along the trajectory (Φtx0, t). By
its deformation, i.e. expansion or contraction, the sensitivity of Φt with respect to the model
input x0 is studied. The linearized propagation of an initial perturbation is illustrated in
Figure 2.1.

Figure 2.1: Linear sensitivity analysis of ODEs. The solid line denotes the evolution x(t) =
Φtx0 of the unperturbed initial value x0. Dashed lines indicate the evolution of the linearized
perturbation δx(t) around x(t). Solutions to the perturbed initial value problem are expected
to remain within the grey shaded area.

In a probabilistic interpretation, δx0 can denote the standard deviation of a normally dis-
tributed initial value X0 ∼ N (µ0,Σ0) with

µ0 = x0 and Σ0 =

(δx0)2
1 0

. . .
0 (δx0)2

d

 ,
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2.1 ODE-based approaches

where (δx0)i denotes the i-th component of δx0 . We have seen earlier in Example 1.2.3 that
linear dynamics result in a Gaussian distribution of Xt. Then, the variational equation
describes the evolution of a linearized estimate of the standard deviation δx(t) of the Gaus-
sian distribution, and the shaded region in Figure 2.1 denotes error bounds or confidence
intervals along the trajectory.

Often, linear or local sensitivity analysis refers to a description of the sensitivity by means
of sensitivity indices or sensitivity coefficients [74, 86]. These denote the partial derivatives
of the evolution Φt with respect to the uncertain variable x(t) and can be extracted from
the propagation matrix Wt.

Local or linear sensitivity analysis yields estimates of the uncertainty in the model output
for small perturbations of the model input. Further, the estimate reflects the true sensitivity
of the model only if perturbations remain small during propagation, or if the dynamics are
linear.

2.1.2 Global sensitivity analysis using Monte Carlo methods

Since we assume that the uncertainty and/or variability in the model input x0 = X0 is
captured by the probability distribution of X0, a straightforward approach is to sample
from this distribution, which yields a set of sample points {ξ1, . . . , ξM}. If the sample size
M is sufficiently large, then by the law of large numbers, the initial probability distribution
can be approximated by

P[X0 ∈ B] =
∫
B
u0(x) dx ≈ 1

M

M∑
m=1

1{B}(ξm) , 1{B}(ξ) :=
{

1, ξ ∈ B
0, ξ /∈ B . (2.9)

With a subsequent solution of the ODE for each of the sample points, the probability
distribution at time t can analogously be estimated by

P[Xt ∈ B] =
∫
B
ut(x) dx ≈ 1

M

M∑
m=1

1{B}(Φtξm) . (2.10)

Similarly, the propagated sample points can be used to estimate other observables, including
the mean or the variance of Xt.

The law of large numbers guarantees that the expected approximation error decays with1

O(M−1/2) as M → ∞. If an observable ϕ : Rd → R is differentiable and a function with
bounded variation V (ϕ) <∞, where

V (ϕ) :=
∫

Ω
|∇ϕ(x)| dx ,

then by the Koksma-Hlawka inequality, see e.g. [38, 67, 70, 71], the approximation error
of the realization {Φtξ1, . . . ,ΦtξM} on a compact domain Ω̄ ⊂ Ω = Rd is proportional to
V (ϕ) with∣∣∣∣∣ 1

M

M∑
m=1

ϕ(Φtξm)−
∫

Ω̄
ϕ(x) · ut(x) dx

∣∣∣∣∣ ≤ V (ϕ) ·Dt,M (Ω̄, ξ1, . . . , ξM ) . (2.11)

1See Definition A.1.1 in Appendix A for O-notation.
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Chapter 2 Numerical solutions for deterministic systems with random initial values

The term Dt,M (Ω̄, ξ1, . . . , ξM ) is called the discrepancy of the sample on Ω̄. It is defined
by

Dt,M (Ω̄, ξ1, . . . , ξM ) := sup
B⊆Ω̄

∣∣∣∣∣
(

1
M
·
M∑
m=1

1{B}(Φtξm)

)
− P[Xt ∈ B]

∣∣∣∣∣ (2.12)

and measures how well the points {Φtξ1, . . . ,ΦtξM} represent the distribution of Xt on
Ω̄ (we consider the discrepancy with respect to nonuniform distributions, compare with
[33]). In practice, we are interested in approximating the distribution of Xt accurately on
a domain that contains most of the probability mass, i.e.

P[Xt /∈ Ω̄t] ≤ ε� 1 , ∀ t ∈ [0, T ] .

The region of interest thus depends on the distribution of Xt, and therefore on the evolution
Φt(X0) = Xt. The following examples illustrate how expansions and contractions of the
evolution can affect the approximation error in (2.11).

Example 2.1.1. Consider the one-dimensional case d = 1 and a random variable X uni-
formly distributed on an interval Ω = [0, L], 0 < L <∞. Assume a set of equidistant points
xm := m · L

(M+1) , m = 1, . . . ,M , is given. Since the state space is a compact interval, the
discrepancy can be computed on the whole domain Ω:

DM (Ω, x1, . . . , xm) = sup
0<`≤L

∣∣∣∣∣
(

1
M

M∑
m=1

1[0,`)(xm)

)
− `

L

∣∣∣∣∣
= sup

0<`≤L

∣∣∣∣⌊ `

M

⌋
− `

L

∣∣∣∣ =
∣∣∣∣ LM − 1

∣∣∣∣ ,
which implies that for constant M and increasing L—i.e. for an expanding state space
Ω—the discrepancy increases (and so does the approximation error).

2

Example 2.1.2. Now consider a normally distributed initial value X0 with mean µ0 and
variance σ2

0, and linear dynamics

ẋ = F (x) = α · x , x(0) = X0 .

For α > 0, the evolution operator Φtx = eαtx denotes an expanding transformation of the
state space, and we know from Example 1.2.3 that Xt, t ≥ 0, is normally distributed with
mean µt = eαt · µ0 and variance σ2

t = e2αt · σ2
0. Figure 2.2 depicts the approximation error

of

(i) the mean estimated by

µ̂t :=
1
M
·
M∑
m=1

Φtξm ,

(ii) the probability of an interval [a, b] estimated by

P̂[Xt ∈ [a, b]] :=
1
M
·
M∑
m=1

1[a,b](Φtξm) ,
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2.2 Numerical solution of PDEs
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Figure 2.2: Error of the mean (dashed blue, left y-axis) and the probability of an interval
[a, b] (dotted-dashed green, right y-axis) estimated with M = 1000 sample points and linearly
expansive dynamics.

for M = 1000, µ0 = 0, σ2
0 = 0.5, α = 5 and [a, b] = [1, 1.5]. The example illustrates how the

approximation errors increase exponentially with the exponentially expanding distribution
of Xt. While for linear dynamics the distribution is globally expanded or contracted, for
nonlinear dynamics, local contractions and expansions of the evolution operator Φt can
moreover cause spatial inhomogeneities of the approximation error, which complicate error
estimation.

2

Sampling-based strategies as the one described above are referred to as MC-based sensitivity
analysis [74, 86]. Numerous adaptations have been suggested that most aim at reducing
the number of sample points while maintaining or improving the approximation quality
[36], however not error-controlled, i.e., based on error estimates. (Among those, probably
the most important extensions are the Fourier amplitude sensitivity test (FAST) [22, 79]
and the surface response method [10, 37, 51].) Due to their simplicity (the possibility to
use standard sampling techniques and ODE solvers) but most importantly due to their
applicability in high dimensions, MC-methods and adaptations of those constitute a widely
used tool for global sensitivity analysis [36].

2.2 Numerical solution of PDEs

Global sensitivity analysis of ODEs can equivalently be studied by solving the PDE (2.2)
that describes the evolution of the probability density function associated with the random
state variable x(t) = Xt. This approach is often referred to as stochastic sensitivity analysis
[19, 74, 86]. In this section we give a brief overview of approaches to solving time-dependent
PDEs. The numerical solution of PDEs is a broad field of research, and there is a rich
literature devoted to it [29, 73, 84]. We confine ourselves to treating only those concepts
with more detail that are relevant to discuss the approach proposed in this work.
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Chapter 2 Numerical solutions for deterministic systems with random initial values

Time-dependent PDEs are commonly solved by treating the spatial and temporal domains
separately. A discretization in one of the domains is called semi-discretization. In the
following section we classify methods by the order in which the semi-discretization is applied.
A brief overview of the most important spatial discretization techniques is then given in
Section 2.2.2, and Section 2.2.3 introduces concepts of temporal discretization. In Section
2.2.4 we focus on TRAIL, a method by Horenko et al. [39, 41, 42], that was developed for
a particular case of our problem. We point out that this research was motivated by the
attempt to transfer and apply TRAIL to the global sensitivity analysis of ODEs.

2.2.1 Method of lines & Rothe method

A solution u : R+ × Rd → R to a time-dependent PDE is a function in time and space.
Semi-discretization in space corresponds to a computation of u at discrete space points or
a representation in a finite-dimensional function space. Semi-discretization in time is the
computation of u at discrete time points. Depending on the order of semi-discretization we
distinguish between methods of lines, which first conduct a semi-discretization in space, and
Rothe methods, which first apply semi-discretization in time. Semi-discretization results
in a reduced problem, a temporal problem in case of the method of lines, and a spatial
(stationary) problem in case of the Rothe method, as illustrated in Figure 2.3.

Figure 2.3: Spatio-temporal discretization by the method of lines and the Rothe method.

In the following we demonstrate by means of two examples how the reduced problems can
be derived. For a comprehensive introduction we refer to [80, 84] for a numerical treatment
by the method of lines and [75, 76, 46] with an emphasis on the Rothe method.

The method of lines

For first order PDEs, an initial semi-discretization in space results in a system of ODEs.
Solving this system of ODEs yields a discrete solution along trajectories—or lines—in
time, as illustrated in Figure 2.4, which is why the approach is called method of lines. We
exemplify the derivation of such ODEs with a finite difference approximation of the spatial
derivatives of the PDE.
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Example 2.2.1 (Semi-discretization in space by first-order finite differences).
Consider the one-dimensional case d = 1. The PDE describing the evolution of an initial
probability density function u0 under deterministic dynamics F is given by

∂

∂t
u = Au = − ∂

∂x
(F · u) with u(0, ·) = u0 . (2.13)

A first-order finite difference approximation of the spatial derivative of u(t, ·) = ut yields

∂

∂x
ut(y) ≈ ut(y)− ut(z)

y − z , y, z ∈ R . (2.14)

Given a finite set of points xm ∈ R, m = 1, . . . ,M , a substitution of ∂
∂xu for the above finite

difference approximation transforms (2.13) to

∂

∂t
ut(xm) = −F ′(xm) · ut(xm)− F (xm) · ut(xm)− ut(xm−1)

xm − xm−1
. (2.15)

With the remaining temporal derivative of u, the problem has been transformed into a system
of ODEs. It can be solved using the initial values

u(0, xm) = u0(xm) , m = 1, . . . ,M ,

where u(t, x1), t ≥ 0, needs to be specified by a boundary condition. Solution yields a fully
discrete solution u(tj , xm) at discrete time points tj ∈ R+, j = 0, 1, . . ., and space points
xm, m = 1, . . . ,M .

2

The above example shows how ODEs for the function values ut(xm) can be derived by an
approximation of the spatial derivatives. Alternatively, u can be represented in a finite-
dimensional function space, i.e. as a linear combination of a finite number of basis functions,
see e.g. [29]. Then, a system of ODEs for the coefficients of the linear combination can be
derived in a similar way. Higher-order PDEs, which require the inclusion of boundary con-
ditions, yield differential algebraic equations (DAE) instead of ODEs. Due to the possibility
of using standard numerical ODE (or DAE) solvers, the method of lines is a popular tool
for the solution of time-dependent PDEs.

The Rothe method

The Rothe method first conducts a semi-discretization in time, which is why it is also
referred to as the method of discretization in time [46, 75, 76]. The basic idea is to consider
the PDE as an ODE in a function space. Semi-discretization in time then corresponds to
the application of ODE discretization strategies and yields time-independent or stationary
PDEs, see e.g. [29]. Solution of those yields an approximation of the function u at discrete
time points as illustrated in Figure 2.4. We exemplify the derivation of the stationary
problems using the implicit Euler method to approximate the temporal derivative.
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Figure 2.4: Spatio-temporal discretization by the method of lines (left) and the Rothe method
(right). The method of lines computes temporal trajectories for discrete initial values u0(xm),
and the Rothe method approximates utj at discrete time points. The method of lines and the
Rothe method are sometimes referred to as method of vertical and horizontal lines.

Example 2.2.2 (Semi-discretization in time by the implicit Euler). Consider the
same time-dependent PDE as in Example 2.2.1. Now we approximate the temporal deriva-
tive for a fixed time step τ > 0. Applying an implicit Euler approximation of the temporal
derivative yields the sequence of stationary or elliptic PDEs

utj − utj−1

τ
= Autj , tj = j · τ, j = 1, 2, . . . . (2.16)

The stationary PDEs can be solved using spatial discretization techniques, which will be
discussed later on. Their solution yields a sequence of approximations to u at discrete time
points tj.

2

In the above example we used a fixed time step τ . However, time steps can also be chosen
differently in each integration step tj+1 = tj + τj . If reliable error estimates are available,
time steps can be adjusted such that the estimated error in each integration step remains
below a specified tolerance.

The main advantage of the Rothe method over the method of lines relies on the repeated
solution of the stationary spatial problems. Instead of choosing a semi-discretization in
space once, at t = 0, the resolution of the spatial approximation can be adapted according
to the structure that a solution develops in the course of its temporal evolution. Therefore,
the Rothe method allows for a fully adaptive integration of time-dependent PDEs.

2.2.2 Spatial discretization

Spatial discretization of PDEs can be achieved using various approximation methods. The
methods summarized in this section can in general be used for the joint spatial and tempo-
ral discretization of PDEs. However, in view of the separate treatment of the temporal and
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spatial domains discussed previously, we consider those methods for a spatial discretiza-
tion only. We focus on the conceptual frameworks and mention only the most important
methods; for a more comprehensive treatment, see e.g. [29, 73, 84].

Difference methods In difference methods, the spatial domain is discretized by a set of
(preferably) uniform grid points. The pointwise information is then used to replace the
derivatives in the PDE by finite difference quotients, which is why the methods are called
finite difference methods. Discretizing the PDE in this way results in difference equations,
which in the case of the method of lines are ODEs, and algebraic equations when used to
discretize the stationary spatial problems within a Rothe method. An example of finite
difference methods was shown in Example 2.2.1, where the implicit Euler scheme was used
to obtain the finite difference quotients. Other difference quotients can be derived via
Taylor expansions of the solution, see e.g. [29, 84]. An attractive feature of finite difference
methods is their easy implementation. In addition, the Taylor expansion as a basis for
the derivation of the difference quotients provides a straightforward convergence theory.
However, difference methods require strong assumptions about the smoothness of solutions,
and they are generally limited to domains with simple geometries.

Finite volume methods constitute a generalization of finite difference methods. They re-
quire less assumptions on the geometry of the spatial domain as well as on the structure
of the grid points. Discretization is based on small control volumes surrounding each grid
point. Balance equations between the volumes are then derived by considering conserva-
tion laws such as mass conservation, or in our case, the conservation of probability mass.
Integrating the balance equations by parts (applying the divergence or Gauss’s theorem),
the PDE is transformed from an integral on the volume to an integral on the surfaces of
the volume, see e.g. [56]. Since finite volume methods, by construction, inherently consider
conservation laws, they are particularly attractive for conservative systems such as fluid
dynamical problems or transport equations as the one derived in the previous chapter, see
[53].

Ansatz methods While difference methods approximate the derivatives of a solution,
ansatz methods approximate the solution of the PDE itself. This is commonly done by
representing the solution in an ansatz space, as a linear combination of basis functions.
A solution is then obtained by determining the coefficients of the basis functions, either
by deriving ODEs that describe the temporal evolution (in case of the method of lines),
or by solving algebraic equations (in case of Rothe methods). Methods that require the
approximate function to satisfy the PDE at a set of grid points, are called collocation
methods. It is often advantageous to satisfy the PDE in a weak sense, which leads to
the formulation of variational problems, see e.g. [29]. The weak formulation requires less
assumptions about the smoothness of a solution.

Methods that solve the variational problem in a finite-dimensional ansatz space are referred
to as Galerkin (ansatz) methods. The most important class of Galerkin methods are finite
element methods, which are based on a geometrical decomposition of the spatial domain
into simple sub-domains, usually triangles, which are then called elements. The basis func-
tions are constructed by defining simple functions on those elements, typically piecewise
polynomial functions. A major advantage of finite element methods is the construction of
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basis functions with small support. Discretizing the variational problem using these ba-
sis functions results in sparse, or localized problems, which can be solved more efficiently,
see e.g. [3, 29, 73]. Finite element methods are often favorable for problems with a com-
plex spatial domain, especially, if the domain changes in time, or when the solution lacks
smoothness.

Spectral methods are closely related to finite element methods. Based on the same ideas,
they rely on an approximation of the solution using orthogonal ansatz functions of gener-
ally global support, e.g., trigonometric functions or orthogonal polynomials. Although the
sparseness is lost by this global approach, spectral methods are often favorable to solve
problems with smooth solutions, in particular, if the boundary conditions are periodic,
because they yield exponential, or spectral convergence, see e.g. [14, 15, 85].

Sparse grids & meshfree methods The methods mentioned above rely on the construction
of grids. For a growing number of dimensions, the computational costs of these grids increase
exponentially, which in practice limits the methods to problems with up to two or three
dimensions.

Sparse grids are an alternative class of methods, which can be applied to problems in
higher dimensions. They rely on the construction of grids that have a low discrepancy
with respect to the uniform distribution, see Figure 2.5 (left) and compare (2.12) (note
that for d > 1 uniform grids do not have minimal discrepancy). It can be shown that
there is a one-to-one correspondence between sparse grids and so called hyperbolic crosses,
see Figure 2.5 (right). With this relation, it is straightforward to show that the number

Figure 2.5: Two-dimensional sparse grid (left) and corresponding hyperbolic cross (right).

of grid points does not scale exponentially with the number of dimensions, see e.g. [58].
Therefore, sparse grids can be applied to solve considerably higher-dimensional problems.
The solution of the PDE is then approximated in an ansatz space. Each basis function
is associated with one grid point and defined by the tensor product of univariate basis
functions that are associated with the coordinate in each dimension. Sparse grids yield
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solutions of comparable approximation quality to the conventional methods, i.e. solutions
of the same approximation order, however, at costs of additional smoothness assumptions,
which depend on the number of dimensions, see e.g. [12, 92].

Another class of methods are meshfree methods, which constitute a comparably new field of
research that has drawn considerable attention in recent years. The concept is rather gen-
eral; various methods can be classified as meshfree methods (e.g. diffuse element methods,
element-free Galerkin methods, generalized finite element methods, moving least squares,
or smooth particle hydrodynamics methods, see e.g. [28]). Their common feature is that
no assumption about the structure of the grid points is made. The solution of the PDE is
approximated in an ansatz space with basis functions, often radial basis functions, which
are centered at a set of scattered points. In contrast to finite element methods, the basis
functions can have variable shapes. Furthermore, the multivariate basis functions only de-
pend on univariate information, which, in the case of radial basis functions, is the distance
from the center. Thus, virtually, the basis denotes a univariate basis, which makes these
methods particularly attractive for a use in high dimensions, see e.g. [28, 57]. Moreover,
since no assumptions are made about the structure of the grid points, they are favorable for
problems with complex spatial geometries, especially when the domain changes in time.

2.2.3 Temporal discretization

Semi-discretization of PDEs in space results in systems of ODEs; temporal discretization
then denotes the discretization of these ODEs. We omit a discussion of the various tech-
niques for the discretization of ODEs; for a comprehensive treatment, see e.g. [25, 30, 31].
Here, we focus on the temporal semi-discretization of PDEs within the Rothe method.

The basic idea is to consider a time-dependent PDE as an ODE in a function space and treat
errors introduced by the spatial discretization as perturbations. Analogously to the solution
of ODEs, the semigroup describing the evolution of the solution—in our case the Frobenius-
Perron operator Pt—is approximated using rational functions. This is described in more
detail in the Appendix, Section A.1. If the rational function satisfies certain properties,
namely, consistency and A-stability, the discrete solution is guaranteed to converge to the
analytical solution. Consistency of order k ∈ N further implies convergence of order k, see
Section A.1 for definitions and Theorem A.1.6 or [11] for the convergence result. In the
following example, the approximation by rational functions is illustrated by means of the
implicit Euler method.

Example 2.2.3 (Rational function of the implicit Euler method). In Example 2.2.2,
the implicit Euler method was used for semi-discretization in time. The corresponding
rational function is

r(z) =
1

1− z .
The discrete evolution operator is then defined by

Rτ = r(τA) = (Id− τA)−1 , τ > 0 ,

where Id denotes the identity operator. It can be shown that, if r is A-stable and consistent
of order one, the discrete solution defined by

u
(1)
tn = Rnτ u0 = (Id− τA)−1 u

(1)
tn−1

⇔ (Id− τA)u(1)
tn = u

(1)
tn−1

, (2.17)
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with u(1)
0 := u0 and tn = n · τ , n ∈ N, converges to the solution utn with order k = 1.

2

Selecting the time step τ adaptively in each integration step permits to control the dis-
cretization error. Analogously to ODEs, the local discretization error, i.e. the error of one
integration step, is typically estimated comparing two solutions of different (consistency
and convergence) orders. The time step is then adjusted such that the estimated error
remains below a specified accuracy, or tolerance condition. Error estimation and time step
selection are described in Section A.2, in the Appendix.

Semi-discretization in time results in a sequence of stationary spatial problems (2.17), which
are solved using spatial discretization techniques as introduced in the previous section.
Spatial discretization yields solutions û(1)

tj
≈ u

(1)
tj

, which introduce additional local errors,
or spatial perturbations,

δtj := û
(1)
tj
− u(1)

tj
.

Since the stationary problems are solved independently, the spatial resolution can as well
be adjusted in each integration step to meet spatial accuracy conditions. This constitutes a
major advantage of the Rothe method over the method of lines, where the spatial resolution
is determined initially.

The following example illustrates the impact of the spatial perturbations to the global
approximation error

εglob =
∣∣∣∣∣∣uT − û(1)

T

∣∣∣∣∣∣ .
By means of an ODE, with spatial perturbations in each integration step, we draw attention
to dependencies between spatial accuracy and temporal discretization.

Example 2.2.4 (ODE with spatial perturbations). Consider d = 1 and a linear ODE

ẋ = α · x , α ∈ R , x(0) = x0 .

We solve the ODE for t ∈ [0, T ] using the implicit Euler method with a fixed time step
τ > 0. In each integration step, a random perturbation is added, i.e.

x̂(tj) =
1

1− τα · x̂(tj−1) + ξ(tj) , tj = j · τ, j = 1, . . . , n ,

where ξ(tj) ∼ N (0, σ2) are normally distributed random variables with standard deviation
σ = δx. To obtain representative results, the system is solved N = 1000 times, and the mean
of the solutions x̂1(T ), . . . , x̂N (T ) is compared to the analytical solution x(T ) = eT ·α · x0.

The double-logarithmic plot in Figure 2.6 shows the global approximation error for different
choices of the time step. The dashed line denotes the error for δx = 0.1 constant and
indicates a growing error for τ → 0. This can be explained by the accumulation of spatial
errors in the n = T/τ integration steps until tn = T , where n grows for decreasing τ . Since
δx was chosen independent of τ , the spatial perturbations can be expected to build up with
O(τ−1) as τ → 0.

Consequently, to ensure convergence of the spatially perturbed solutions, δx = δx(τ) cannot
be chosen independently of τ . To further observe convergence of order k, δx(τ) should
vanish with O(τk+1) as τ → 0. The solid line in Figure 2.6 shows the global approximation
error for δx(τ) = 0.1 · τk+1. Comparison with the dotted line indicates an error decay of
order k = 1, as expected for the implicit Euler method.
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Figure 2.6: Global discretization error of the implicit Euler method for time steps τ .

2

The above example makes clear that for the discretization of time-dependent PDEs, the
spatial accuracy cannot be chosen independently of the temporal discretization. This de-
pendency will be analyzed more extensively in Chapter 6.

2.2.4 TRAIL

TRAIL stands for “Trapezoidal Rule for Adaptive Integration of Liouville dynamics”. The
method was developed by Horenko et al. [39, 41, 42] for the solution of Liouville-type
equations in the context of quantum molecular dynamics. Its main feature is adaptivity in
time and space based on a Rothe approach and a meshfree spatial discretization. Promising
results in quantum molecular dynamics motivated its application to the general problem of
ODEs with random initial values, which was the starting point of this research.

Adaptivity in time is based on the comparison of the second-order solution u
(2)
t obtained

via the trapezoidal rule,

r(z) =
1 + z

1− z ⇒
(

Id− τ

2
A
)
u

(2)
tj+τj

=
(

Id +
τ

2
A
)
u

(2)
tj
, j = 0, . . . , n , (2.18)

to the first-order implicit Euler solution u(1)
tj

, compare Example 2.2.3. Spatial discretization
relies on the representation of the solutions in an ansatz space with Gaussian basis functions,
i.e.

û
(k)
tj

(x) =
N∑
i=1

ωi · ηi(tj , x) , k = 1, 2 ,

with

ηi(tj , x) =
1√

2π|Σi(tj)|
· exp

(
−1

2
· [x− µi(tj)]T · (Σi(tj))

−1 · [x− µi(tj)]
)
.
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The basis functions in each integration step are predicted by a linearized propagation of the
previous basis functions along the characteristics of the PDE. Since the linearly predicted
basis can be computed analytically (compare Example 1.2.3) same as the action of the gen-
erator A on the Gaussian basis functions (see Appendix, Part C), the stationary problems
can be restated as linear least-squares problems. Solution of these yields the coefficients of
the basis functions. Spatial adaptivity is achieved by an adaptive insertion or pruning of
basis functions, based on residual error estimates of the optimization problems.

Note that the Gaussian basis functions are not positioned uniformly on the spatial domain,
but scattered according to local error estimates. This meshfree construction allows for an
application of the method to higher-dimensional problems, see e.g. [40], where the method
was applied to a six-dimensional problem.

2.3 Discussion of the different approaches

Each of the different approaches shown in this chapter has its advantages and drawbacks,
which we briefly discuss in the following.

ODE-based approaches Linear sensitivity analysis provides a powerful tool for the study
of ODEs with perturbed initial values. It yields a local and linearized measure of the
sensitivity and is thus only appropriate if perturbations are small. Consequently, it is not
adequate for the global sensitivity analysis of ODEs, in particular when studying the impact
of variability, which generally involves variations over a substantial domain.

Most approaches to global sensitivity analysis of ODEs are based on MC-methods, see
e.g. [36] and references therein. Due to their flexibility and applicability to high dimensions,
MC-based methods are the only choice for the analysis of many complex systems in practical
applications. However, error estimation and control denotes a major challenge that has not
been solved adequately.

PDE-based approaches The PDE-based approach to global sensitivity analysis gives ac-
cess to a profound theory and broad methology. Methods of lines are generally simple to
implement due to the possibility of using standard ODE solvers. Concerning error control,
adaptive ODE solvers straightforwardly allow for temporal adaptivity. However, spatially
adaptive methods of lines commonly rely on a-posteriori error estimates, which require
a complete solution of the system, before the spatial discretization can be adapted, see
e.g. [1]. In that respect, Rothe methods offer a substantial advantage, since the temporal
and spatial discretization can be adjusted in each integration step.

Spatial discretization within the Rothe method Among the conventional discretization
strategies, finite volume methods are generally favorable for our problem, because conser-
vation principles are inherently included. However, we aim at solving problems in higher
dimensions than those that can be treated with conventional discretization techniques.
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Sparse grids provide one option. But prior to the usage of sparse grids, a complete under-
standing of the “full” grid situation is desirable. Another option are meshfree methods,
which in our view is the most promising approach to our problem.

The starting point of this research was the transfer of the TRAIL scheme to the gen-
eral problem of ODEs with random initial values. TRAIL combines all desirable features
mentioned earlier: error control based an adaptive Rothe scheme, and applicability to high-
dimensional problems due to meshfree spatial discretization.

First studies of the sensitivity of pharmacokinetic models proved applicability of the general
strategy, but revealed severe problems concerning the adaptive error control. The temporal
error estimation is error-prone due to possible cancellation effects. Furthermore, the cou-
pling of temporal discretization and spatial accuracy requires large numbers of basis func-
tions to meet the accuracy condition—even for one-dimensional problems, and especially
for functions with steep gradients. Initial spatial refinement typically necessitated further
refinements, resulting in inefficiently large numbers of basis functions and extremely small
time steps. Moreover, the propagated basis functions can become very wide, i.e. with large
variance, so that the assumption underlying the linearized propagation is questionable.

Heuristic modifications addressing these problems were published in [91]. These modifica-
tions, however, improved the performance only to a minor extent. The lack of a theoretical
basis to prove convergence of the spatial discretization scheme obstructed substantial im-
provements.

A novel approach The objective of this work is to develop a fully adaptive numerical
scheme to solve ODEs with random initial values. Based on the PDE formulation, the
problem is addressed using an adaptive Rothe method as introduced by Bornemann for the
solution of parabolic PDEs [8, 9]. The key feature of this method is a multiplicative error
correction, which realizes the computation of temporal error estimates in a multiplicative
fashion to avoid numerical cancellation effects. The method also provides a framework for
coupling temporal discretization and spatial accuracy (which will be modified in the course
of this work to account for properties of the PDE considered herein).

The adaptive Rothe scheme is combined with approximate approximations to solve the
stationary spatial problems. This novel approximation method developed by Maz’ya et
al. [64, 66] is based on representing a function in an ansatz space spanned by a rather
general class of basis functions. We consider approximate approximations with radial basis
functions. In particular, the method provides a powerful convergence theory for Gaussian
basis functions. It further allows for constructing basis functions that yield high approxima-
tion orders and thereby facilitate an efficient solution of the spatial discretization problem.
The basis functions are centered around grid points covering the spatial domain. The grid
points can be uniformly distributed or scattered. In this work we consider approximate
approximations on uniform grids in order to fully understand theoretical and numerical
properties of the overall discretization scheme within the adaptive Rothe setting. The per-
spective is to combine the Rothe method with approximate approximations on scattered
points, i.e. in a meshfree setting.
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A novel approach to adaptive density
propagation
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Chapter 3

A Rothe method with multiplicative error
correction

In the previous chapter we concluded that in terms of adaptivity the Rothe method is
advantageous for the numerical solution of time-dependent PDEs. In the following, we
present an adaptive Rothe method that was introduced by Bornemann [8, 9] for the solution
of parabolic PDEs. The method is applied to solve the first-order linear PDE

∂

∂t
u = Au = −div(F · u) , u(0, ·) = u0 , (3.1)

which describes the evolution of a probability density function u : R × Rd → R under
deterministic dynamics F . As demonstrated previously, in Section 2.2.1, the Rothe method
first performs a semi-discretization in time, which yields stationary spatial problems. Let
u

(k)
t+τ := R

(k)
τ ut denote the exact solution of the stationary problem imposed by the rational

approximation R
(k)
τ to the strongly continuous semigroup of order k, i.e.

||εt(τ)|| =
∣∣∣∣∣∣ut+τ − u(k)

t+τ

∣∣∣∣∣∣ = O(τk+1) , as τ → 0 ,

where u(0)
t+τ := ut. Further let

∆u(k−1)
t+τ := u

(k)
t+τ − u(k−1)

t+τ , k ≥ 1 , (3.2)

denote the difference or correction between two solutions of order k and k − 1. Since the
local errors of u(k) and u(k−1) decay with O(τk+1) and O(τk), the correction will have the
same asymptotic behavior as the true local error of u(k−1) (see Part A of the Appendix).
Consequently, the local temporal error is estimated by∣∣∣∣∣∣ε(k−1)

t (τ)
∣∣∣∣∣∣ =

∣∣∣∣∣∣∆u(k−1)
t+τ

∣∣∣∣∣∣ = O(τk) , as τ → 0 . (3.3)

In the adaptive setting, time steps τj are chosen in each integration step tj ∈ [0, T ],
j = 0, 1, . . ., such that the estimate ε(k−1)

tj
remains below a specified tolerance. A source

of problems with this procedure is the possibility of numerical cancellation in the above
estimation (3.3). To prevent this, the corrections ∆u(i)

tj
for i = 0, . . . , k − 1, are computed

recursively, in a multiplicative fashion.

In the following we introduce the temporal semi-discretization scheme with multiplicative
error correction as in [8]. Later, in Section 3.2, we discuss the influence of spatial pertur-
bations (caused by the spatial discretization of u(k)) to the adaptive selection of time steps
and spatial discretization.
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3.1 Semi-discretization in time

To construct temporal semi-discretization schemes of a certain order, we first consider a
spatially unperturbed solution of the PDE on a time interval [0, T ] and a fixed time step
τ > 0. Without loss of generality, we assume that n · τ = T for some n ∈ N. The true
solution is described by the semigroup of Frobenius-Perron operators {Pt}t∈[0,T ] via

ut = Ptu0 , t ∈ [0, T ] .

The following results by Bornemann [8] show how to recursively construct L- and A-stable
rational approximations R(k)

τ to Pτ such that the discrete evolution at tj = j ·τ , j = 1, . . . , n,
defined by

u
(k)
tj

=
(
R(k)
τ

)j
u0 = R(k)

τ

((
R(i)
τ

)j−1
u0

)
,
(
R(i)
τ

)0
u0 = u0 , j = 1, . . . , n , (3.4)

has consistency order1 k. Note that by Theorem A.1.6 L-/A-stability and consistency of
order k imply convergence of the discrete evolution to the analytical solution with order k,
see also [11].

Theorem 3.1.1 (A family of L-stable rational approximations, [8, Lemma 2.1]). Let

Li(x) =
ex

i!
∂i

∂xi
(
xi · e−x) (3.5)

denote the Laguerre polynomial of order i. Then, the discrete evolution defined in (3.4)
with R(k)

τ := r
(k)
L (τA) and

r
(k)
L (z) =

1
1− z ·

k∑
i=0

Li(1)
(

z

1− z
)i

(3.6)

has at least consistency order k. Moreover,

(i) r
(k)
L (z) is L-stable, and

(ii) r
(k)
L (z) can be computed recursively if Li(1) 6= 0 for 2 ≤ i ≤ k − 1:

r
(1)
L (z) :=

1
1− z

r
(i)
L (z) := r

(i−1)
L (z) + ϑ

(i−1)
L (z), i = 2, . . . , k, (3.7)

where

ϑ
(1)
L (z) := − z2

2 · (1− z)2
· r(1)
L (z),

ϑ
(i−1)
L (z) := −γ(i)

L ·
z

1− z · ϑ
(i−1)
L (z) , with γ

(i)
L :=

Li+1(1)
Li(1)

, i = 2, . . . , k . (3.8)

1see Appendix, Part A for definitions of L-/A-stability, consistency and convergence.
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The above recursion allows us to compute the corrections

∆u(i)
tj

= u
(i+1)
tj

− u(i)
tj
, i = 0, . . . , k − 1,

multiplicatively, which, as mentioned previously, is favorable to avoid numerical cancella-
tion. Constructing rational approximations R(i)

τ = r
(i)
L (τA) according to Theorem 3.1.1

yields solutions
u

(i)
t+τ = R(i)

τ ut , i = 1, . . . , k . (3.9)

By recursion (3.7) we have

u
(i+1)
t+τ = R(i+1)

τ ut

=
(
R(i)
τ + ϑ

(i)
L (τA)

)
ut , i = 2, . . . , k − 1 . (3.10)

Combining (3.9) and (3.10), the correction ∆u(i)
t+τ can be computed multiplicatively by

∆u(i)
t+τ = ϑ

(i)
L (τA) ut , i = 2, . . . , k − 1 , (3.11)

and by recursion (3.8), this becomes

∆u(i)
t+τ = −γ(i)

L (Id− τA)−1(τA) ∆u(i−1)
t+τ , i = 2, . . . , k − 1 . (3.12)

Semi-discretization in time yields stationary spatial problems. To illustrate their formula-
tion, we consider the third-order L-stable solution u

(3)
t+τ obtained by the rational approxi-

mation R
(3)
τ = r

(3)
L (τA),

r
(3)
L (z) =

1
1− z ·

(
1− 1

2
z2

(1− z)2
+

2
3

z3

(1− z)3

)
. (3.13)

Using the recursion for r(3)
L we get

u
(1)
t+τ = (Id− τA)−1 ut

⇒ (Id− τA) u(1)
t+τ = ut , (3.14)

(the implicit Euler approximation) and subsequently

∆u(0)
t+τ = u

(1)
t+τ − ut ,

which allows us to compute the next corrections for i = 1, 2 by

∆u(1)
t+τ = −1

2
(Id− τA)−2(τA)(Id− τA)−1(τA) ut

= −1
2

(Id− τA)−2(τA) ∆u(0)
t+τ

⇒ (Id− τA)2 ∆u(1)
t+τ = −1

2
(τA) ∆u(0)

t+τ (3.15)
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Chapter 3 A Rothe method with multiplicative error correction

and

∆u(2)
t+τ =

2
3

(Id− τA)−2(τA)(Id− τA)−2(τA)2 ut

= −4
3

(Id− τA)−1(τA) ∆u(1)
t+τ

⇒ (Id− τA) ∆u(2)
t+τ = −4

3
(τA) ∆u(1)

t+τ . (3.16)

Solution of the stationary spatial problems

(Id− τA) u(1)
t+τ = ut (3.17)

(Id− τA)2 ∆u(1)
t+τ = −1

2
(τA) ∆u(0)

t+τ

(Id− τA) ∆u(2)
t+τ = −4

3
(τA) ∆u(1)

t+τ .

yields the corrections, which are used to compute the solution up to order k = 3 and which
can subsequently be used for error estimation and the adaptive selection of time steps.

In case a second-order approximation is required, only u
(1)
t+τ and ∆u(1)

t+τ need to be solved
for. Note that relation (3.15) requires the computation of (Id− τA)2, where

(Id− τA)2 = Id− 2 · τA+ τ2A2

involves second derivatives of ∆u(2)
t+τ , the computation of which can become very costly.

Therefore we now consider an alternative semi-discretization scheme, which is A-stable and
avoids the computation of (Id− τA)2. A similar result to Theorem 3.1.1 can be found for
the construction of A-stable approximations:

Theorem 3.1.2 (A family of A-stable rational approximations,[9, Chapter 2]). The
discrete evolution defined in (3.4) with R(k)

τ := r
(k)
A (τA) and

r
(k)
A (z) = L0(1) +

k∑
i=1

1
i

d
dx
Li(1)

(
z

1− z
)i

, (3.18)

has at least consistency order k. Moreover,

(i) r
(k)
A (z) is A-stable, and

(ii) r
(k)
A (z) can be computed recursively if d

dxLi(1) 6= 0 for 2 ≤ i ≤ k − 1:

r
(1)
A (z) :=

1
1− z

r
(i)
A (z) := r

(i−1)
A (z) + ϑ

(i−1)
A (z) , i = 2, . . . , k , (3.19)

where

ϑ
(1)
A (z) := −1

2
· z2

1− z · r
(1)
A (z),

ϑ
(i)
A (z) := −γ(i)

A ·
z

1− z · ϑ
(i−1)
A (z) , with γ

(i)
A :=

Li+1(1)
Li(1)

, i = 2, . . . , k . (3.20)
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3.2 Adaptive time step control & spatial perturbations

As previously for the L-stable scheme, we illustrate the derivation of the stationary spatial
problems by means of the third-order A-stable solution u(3) obtained with Rτ := r

(3)
A with

r
(A)
A according to Theorem 3.1.2, i.e.

r
(3)
A (z) :=

1
1− z ·

(
1− 1

2
z2

1− z +
1
6

z3

(1− z)2

)
. (3.21)

The first-order solution u(1)
t+τ and its correction ∆u(0)

t+τ are computed as before. The correc-
tions ∆u(i)

t+τ , i = 1, 2, are computed recursively by

∆u(1)
t+τ = −1

2
(Id− τA)−2(τA)2 ut

= −1
2

(Id− τA)−1(τA) ∆u(0)
t+τ

⇒ (Id− τA) ∆u(1)
t+τ = −1

2
(τA) ∆u(0)

t+τ (3.22)

and

∆u(2)
t+τ =

1
6

(Id− τA)−1(τA)(Id− τA)−2(τA)2 ut

= −1
3

(Id− τA)−1(τA) ∆u(1)
t+τ

⇒ (Id− τA) ∆u(2)
t+τ = −1

3
(τA) ∆u(1)

t+τ . (3.23)

Therefore, the stationary spatial problems are

(Id− τA) u(1)
t+τ = ut (3.24)

(Id− τA) ∆u(1)
t+τ = −1

2
(τA) ∆u(0)

t+τ

(Id− τA) ∆u(2)
t+τ = −1

3
(τA) ∆u(1)

t+τ .

In case a second-order approximation is required, only the first two problems of (3.24) need
to be solved. Note that the A-stable methods defined by r(2)

A (z) and r
(3)
A (z) do not require

any computation of second-order derivatives.

The above results inform how to construct L- and A-stable semi-discretization schemes of
a specified consistency order k, which imply convergence of the discrete evolution to the
analytical solution of order k. Furthermore, the recursions given in Theorem 3.1.1 and 3.1.2
allow for a multiplicative computation of the corrections, i.e., the difference between two
solutions of different order. In the following, the corrections will be used to adjust the time
steps in each integration step.

3.2 Adaptive time step control & spatial perturbations

In the previous section we assumed τ > 0 to be fixed. In the adaptive setting, τj is adjusted
in each integration step tj . The procedure is analogous to the adaptive time step selection
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Chapter 3 A Rothe method with multiplicative error correction

for ODEs, see Part A of the Appendix or [25, 30]. Ideally the local temporal error, i.e.,
the error made in the current integration step, remains below a predefined tolerance TOLt,
thus ∣∣∣∣εtj (τj)∣∣∣∣ =

∣∣∣∣∣∣utj+τj − u(k)
tj+τj

∣∣∣∣∣∣ ≤ TOLt .
Since ut is unknown for t > 0, local errors are estimated by comparing solutions of different
consistency orders

ε
(k−1)
tj

(τj) := u
(k)
tj+τj

− u(k−1)
tj+τj

= ∆u(k−1)
tj+τj

, (3.25)

and an approximation u
(k)
tj+τj

is accepted if∣∣∣∣∣∣ε(k−1)
tj

(τj)
∣∣∣∣∣∣ ≤ TOLt . (3.26)

If ||ε(k−1)
tj

(τj)|| > TOLt, then τj is decreased in order to obtain a more accurate solution.
Otherwise, a time step τj+1 for the following integration step is suggested. In both cases a
new time step τ∗ is suggested by

τ∗ = k

√
TOLt

||ε(k−1)
tj

(τj)||
· τj . (3.27)

Consequences of spatial perturbations

So far we have assumed exact solutions of the stationary spatial problems. Now we focus
on how time steps have to be controlled in the presence of perturbations caused by spatial
discretization. Let

û
(i)
tj

= u
(i)
tj

+ δ
(i)
tj
, i = 1, . . . , k (3.28)

denote the spatially perturbed solutions of order i. The spatial errors, δ(i)
tj

comprise ap-
proximation errors as well as the propagation of previous approximation errors through the
recursion (3.17) or (3.24), respectively. In Part B of the Appendix it is shown how the
spatial error estimates [δ(i)

tj
] can be derived from the error estimates provided by the spatial

discretization scheme.

We aim at approximating the true solution such that the error in one integration step
remains below a specified tolerance, i.e.∣∣∣∣∣∣utj+τj − û(k)

tj+τj

∣∣∣∣∣∣ ≤ TOL . (3.29)

This error comprises the temporal and spatial error, i.e.∣∣∣∣∣∣utj+τj − û(k)
tj+τj

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣utj+τj − u(k)
t+τj

∣∣∣∣∣∣+
∣∣∣∣∣∣u(k)

tj+τj
− û(k)

tj+τj

∣∣∣∣∣∣ ,
=
∣∣∣∣εtj (τj)∣∣∣∣+

∣∣∣∣∣∣δ(k)
tj+τj

∣∣∣∣∣∣ . (3.30)

We demand that temporal and spatial errors each remain below tolerances TOLt and TOLx
that satisfy

TOLt + TOLx ≤ TOL .
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3.2 Adaptive time step control & spatial perturbations

With only spatially perturbed solutions available, the purely temporal error is not accessible.
The spatially perturbed error estimates

ε̂
(i)
tj

(τj) =
∣∣∣∣∣∣û(i+1)

tj+τj
− û(i)

tj+τj

∣∣∣∣∣∣ , i = 0, . . . , k − 1 , (3.31)

differ from the unperturbed estimates by

δ(i)
ε := ε̂

(i)
tj

(τj)− ε(i)
tj

(τj) , i = 0, . . . , k − 1 . (3.32)

The spatial perturbations δ(i)
ε of the temporal error estimates can also be estimated from

the error estimates provided by the spatial discretization scheme, see Appendix, Part B.
Therefore, although the unperturbed temporal error is inaccessible, the contribution of
the spatial error can be monitored, such that the adaptive selection of time steps is not
decisively compromised by the spatial errors.

Let [δ(i)
ε ], i = 0, . . . , k−1, denote the corresponding error estimates. The following algorithm

gives constraints for the temporal and spatial accuracy in each integration step, which
provide a basis for the decision how to adapt the temporal and spatial discretization.

Algorithm 3.2.1 (Adaptive integration, [8]). Suppose a local tolerance TOL > 0
is specified. Semi-discretization in time is performed as described above with

TOLt = ρ · TOL , 0 < ρ < 1 (3.33)

and a solution û
(k)
tj+τj

is accepted, if the following two conditions are satisfied:∣∣∣∣∣∣ε̂(k−1)
tj

(τj)
∣∣∣∣∣∣+

∣∣∣∣∣∣[δ(k)
tj+τj

]
∣∣∣∣∣∣ ≤ TOL (3.34)

∣∣∣∣∣∣[δ(k−1)
ε ]

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ε̂(k−1)

tj
(τj)

∣∣∣∣∣∣
4

. (3.35)

Remark 3.2.2 (Choice of the parameter ρ). In [8], it is further suggested to determine
the temporal and spatial tolerance TOLt and TOLx by choosing

ρ =
1

d+ 1

constant throughout integration. However, we will see later, in Chapter 6, that in the
case considered herein, a coupling of TOLx with the time step τ is necessary to ensure
convergence of the overall numerical scheme.
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Chapter 4

Approximate approximations

In this chapter we introduce the spatial discretization technique that will later be used to
solve the stationary spatial problems within the adaptive Rothe scheme that was described
in the previous chapter. Approximate approximations were first introduced by Maz’ya in
the early 1990s [64, 63]. Since then they have found a number of applications, for example
in the approximation of pseudodifferential operators [65], the solution of boundary [68]
and time dependent initial-boundary value problems [47, 48] and the approximation of
potentials [44]. A review of applications can be found in [81]. For a detailed survey on
approximate approximations, see [66].

The concept is based on a basis expansion, where the basis functions are obtained by shifting
and scaling a generating function that has to satisfy two conditions. Then, although the
basis functions are not necessarily orthogonal, the coefficients are explicitly computable. As
a trade-off, the approximation error does not fully vanish when the discretization is refined,
but reaches a saturation value. However, a precise description of the saturation error is
available and allows to select the scaling parameter such that the error becomes arbitrarily
small and thus negligible in practical applications.

Generating functions can be constructed such that the action of differential operators on
the approximate approximant can in many cases be computed analytically, see e.g. [47, 48,
65, 68]. Furthermore, a solid theory allows for the construction of approximants with high
approximation order. These features make the method particularly attractive for the use
in an adaptive Rothe context.

We start by presenting the general concept in Section 4.1 and show an alternative derivation
by means of kernel regression in Section 4.2. Asymptotic properties of the approximation
error are discussed in Section 4.3, where we will also see that a truncation of the summation
in the basis expansion yields similar approximation quality. The construction of high-order
approximants is then described in Section 4.4. Finally, in Section 4.5, we describe how the
approximation error can be estimated and how this information can be used for an adaptive
refinement of the discretization.

4.1 Sums of shifted and scaled basis functions

Suppose a function u : Rd → R has to be approximated. The idea of approximate approx-
imations is based on a representation of the function u as the weighted sum of a shifted
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Chapter 4 Approximate approximations

and scaled generating function η, where η has to satisfy two conditions: fast decay and
vanishing moments. The function u is then approximated by

u(x) ≈Mh,Du(x) := D−d/2 ·
∑
m∈Zd

u(mh) · η
(
x−mh√Dh

)
, D > 0 , (4.1)

where
{
mh,m ∈ Zd

}
forms a uniform grid on Rd with grid size h > 0. The shifted and

scaled function η generates a basis{
η

(
x−mh√Dh

)
, m ∈ Zd

}
for all approximants of the form (4.1). The parameter D scales the decay speed of the
basis functions and thereby their width. (Consider e.g. Gaussian basis functions, where D
corresponds to the variance.)

The approximation error is bounded by

||u−Mh,Du|| ≤ c(||u||) · hM + εsat(||u|| ,D) , as h→ 0 , (4.2)

i.e., the error decays with order M and saturates at εsat. We will see later, in Section
4.3, that the approximation order M depends on the smoothness of the function u and
the number of vanishing moments of η, whereas the saturation error is determined by the
scaling parameter D. Since the approximation error does not fully vanish, Mh,Du is called
approximate approximation of u.

To motivate the above approximation formula (4.1), let us consider d = 1 and a sum of
Gaussian basis functions with variance σ2 = D/2, i.e.

fD(x) =
∑
m∈Z

e−(x−m)2/D . (4.3)

It can be shown that for all x ∈ Rd, fD(x) ≈ √πD, oscillating around the value, and with
growing D the amplitude decreases [66]. Consequently,

f̄D(x) :=
1√
πD · fD(x) ≈ 1 , ∀x ∈ R ,

which is shown in Figure 4.1 for D = 0.4 (left), D = 0.5 (middle) and D = 2 (right). It
can be seen that the amplitude of the oscillations rapidly decreases as D is increased; for
D = 2, the function already appears constant.

A sum of smooth, nonnegative functions is called a partition of unity on R, if for all x ∈ R
the number of functions with support at x is finite and further the sum is identical to one.
Partitions of unity can be used to globally describe functions that are defined or known only
locally. Considering f̄D, the support of the Gaussian basis functions is infinite. However,
since for all x ∈ R and any δ > 0, only a finite number of summands exceeds δ, and since
further f̄D approximates one at any point x ∈ R, it forms an approximate partition of unity
on R. As a consequence, the approximate approximant

Mh,Du(x) =
1√
πD ·

∑
m∈Z

u(mh) · e(x−mh)2/(Dh2) . (4.4)
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4.2 Derivation from kernel regression
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Figure 4.1: Approximate partition of unity: the function f̄D(x) (solid line), a sum of Gaussian
basis functions (dotted grey), oscillates around one (dashed). The amplitude of the oscillations
rapidly decreases as D is increased, shown for D = 0.4, D = 0.5 and D = 2 (left to right),
which determine the width of the basis functions.

yields a smooth approximation of the function u, without interpolating the values u(mh),
m ∈ Z. Instead, the approximating function oscillates around the values u(mh) and is
therefore also referred to as an approximate quasi-interpolation.

An alternative, perhaps more intuitive, approach to deriving (4.4) is by considering the
Nadaraya-Watson kernel regression estimator as shown next.

4.2 Derivation from kernel regression

Kernel regression aims at finding a functional dependence of two random variables X and
Y and relies on the estimation of the corresponding density functions. An introduction to
kernel regression can be found e.g. in [34], and to density estimation in [88, 89]. Since X
and Y are random, dependence is captured by the conditional expectation of Y given X

E[Y |X] =
∫
y · f(y|X) dy = u(X) , (4.5)

where f(y|X) denotes the probability density function of Y conditional on X. As f(y|X)
can be expressed by the joint probability density function f(x, y) and the marginal density
of X, fX(x), (4.5) becomes

E[Y |X] =
∫
y
f(x, y)
fX(x)

dy . (4.6)

Estimating the conditional expectation can be regarded as a function approximation from
random data points. The marginal and joint probability density functions fX(x) and f(x, y)
are estimated and subsequently used to approximate the integral in (4.6).

Suppose a random sample {(x1, y1), . . . , (xN , yN )} drawn from the joint probability distri-
bution of X and Y is given. A natural approach to estimating fX at a point x0 is to count
the sample points in the vicinity of x0 and divide this number by the total number N of
sample points, i.e.

f̂X(x0) =
|Nλ(x0)|
Nλ

. (4.7)
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Chapter 4 Approximate approximations

Here, f̂ denotes the estimate of f , Nλ(x0) the set of points in some neighbourhood of x0

and |Nλ(x0)| the number of points in Nλ(x0). The size or width of the neighbourhood is
specified by the parameter λ. Clearly, as λ is increased, |N (x0)| approaches N for all x0.
Division by λ in (4.7) compensates for the whole term approaching one.

The estimator (4.7) is not continuous in x0. As continuity is a desirable feature of density
estimators, we replace the discontinuous definition of neighbourhood in (4.7) by a smooth
one. Instead of counting the points in the vicinity of x0 we specify a continuous kernel
function Kλ(x0, x) of width λ that assigns a weight to any point x. A kernel is any positive
function with Kλ(x, y) = Kλ(y, x) for all x, y, and

∫
Kλ(x0, x)dx = 1 for all x0.

Typically, Kλ(x0, x) only depends on the distance between x0 and x. Those kernel functions
Kλ(x0, x) = ϕλ (x− x0) are called radial kernels or radial basis functions. Common kernel
functions are shown in Figure 4.2.

Figure 4.2: From left to right: triangular, Epanechnikov, and Gaussian kernel.

The discontinuous estimator f̂X in (4.7) can then be replaced by

f̂X(x0) =
1
Nλ
·
N∑
i=1

ϕλ (x0 − xi) , (4.8)

which is called the Parzen estimator [72]. Analogously, the joint probability density function
f(x, y) can be estimated by

f̂(x, y) =
1

Nλ2
·
N∑
i=1

ϕλ (x− xi) · ϕλ (y − yi) . (4.9)

Applying (4.8) and (4.9) to estimate the densities in (4.6) yields∫
y
f̂(x, y)

f̂X(x)
dy =

Nλ∑N
i=1 ϕλ(x− xi)

· 1
Nλ
·
N∑
i=1

ϕλ(x− xi) ·
∫

y

λ
· ϕλ(y − yi) dy

=
Nλ∑N

i=1 ϕλ(x− xi)
· 1
Nλ
·
N∑
i=1

ϕλ(x− xi) ·
∫

(sλ+ yi) · η(s) ds

=
Nλ∑N

i=1 ϕλ(x− xi)
· 1
Nλ
·
N∑
i=1

ϕλ(x− xi) · yi .

For the first equality, we substituted s = y−yi
λ , and for the second equality, we used that

ϕ is symmetric around 0 and integrates to 1. Finally, we obtain the Nadaraya-Watson
estimator [69, 90]:

ûλ(x) =
N−1

∑N
i=1 yi · ϕλ (x− xi)

N−1
∑N

i=1 ϕλ (x− xi)
. (4.10)
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4.3 Asymptotics of the approximation error

We can identify the Nadaraya-Watson kernel regression estimator (4.10) with the approxi-
mate approximation (4.4), if:

1. The radial Kernel function ϕ denotes a Gaussian Kernel.

2. The width λ in (4.10) corresponds to D in (4.4).

3. The random sample {(xi, yi)}i=1,...,N is identified with the equally spaced points
{(mh, u(mh)}m∈Zd . While the number of sample points N is finite, the number of
grid points in (4.4) is infinite. However, for the denominator in (4.10) the limit

lim
N→∞

N∑
i=1

ϕλ (x− xi)

exists for all x, oscillating in x around 1√
πD .

4.3 Asymptotics of the approximation error

In this section we consider asymptotics of the approximation error of approximate approx-
imations with respect to h and D. Before stating the corresponding theorems, we need
to introduce some definitions and specify the two conditions on the generating function η.
Then, in Section 4.3.1, error bounds are given for approximate approximants of the form
(4.1). These error bounds account for approximate approximations with infinite sums. Sec-
tion 4.3.2 gives similar error bounds for approximate approximations where the summation
is truncated. The proofs of all theorems in this and the following section can be found in
[66].

Let us denote by α ∈ Nd a multi-index of length |α| := α1 + . . . + αd. Further we set
α! := α1 · . . . · αd, xα := xα1

1 · . . . · xαdd ,

∂αu(x) :=
∂|α|

∂xα1
1 . . . xαdd

u(x) ,

and
∇ku := (∂αu)|α|=k .

Sobolev spaces denote classes of functions that are closely related to Lp-spaces.

Definition 4.3.1 (Sobolev spaces). The Sobolev space WL
p (Rd), L ∈ N, denotes the space

of all functions u ∈ Lp(Rd) whose generalized or weak derivatives ∂αu up to order |α| = L
also lie in Lp(Rd), i.e.

WL
p (Rd) :=

{
u ∈ Lp(Rd) : ∂αu ∈ Lp(Rd) , for all α with 0 ≤ |α| ≤ L

}
.

The conditions that the generating function η has to satisfy are the following:

Condition 4.3.2 (Decay Condition). Suppose that for all α ∈ Nd, 0 ≤ |α| ≤ bd2c + 1,
the partial derivatives ∂αη are continuous. A function η : Rd → R is said to satisfy the
decay condition, if there exists an A > 0 and K > d such that

|∂αη(x)| ≤ A · (1 + |x|2)−K , ∀x ∈ Rd .
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Chapter 4 Approximate approximations

In other words, the Decay Condition requires η, and its continuous derivatives up to order
(bd2c+ 1), to decay faster than A · (1 + |x|)−K , for some constants A and K.

Condition 4.3.3 (Moment Condition). A function η : Rd → R is said to satisfy the
moment condition of order N , if

(i)
∫

Rd
η(x) dx = 1 , and

(ii)
∫

Rd
xα · η(x) dx = 0 , ∀α, 1 ≤ |α| < N .

Thus, all moments up to the (N − 1)-th moment vanish except for the 0-th moment, which
is equal to one.

Remark 4.3.4 (Gaussian generating functions). A Gaussian generating function is
infinitely continuously differentiable, and all its derivatives decay exponentially, i.e. faster
than any order K > 0. Further, if the mean is zero, it satisfies the Moment Condition of
order N = 2.

4.3.1 The approximation error on infinite grids

We can now state a pointwise result for the approximation error of approximate approxi-
mants of the form (4.1).

Theorem 4.3.5 (Pointwise error estimate for approximate approximations, [66,
Theorem 2.17]). Assume u ∈WL

∞(Rd). Let further η satisfy the Decay Condition with decay
exponent K and the Moment Condition of order N , where K > N + d. Then for any ε > 0
there exists D′ > 0 such that for all D > D′ and h > 0 the approximation error can be
bounded pointwise by

|u(x)−Mh,Du(x)| ≤ cη ·
(√
Dh
)M · ||∇Mu||L∞ + ε ·

M−1∑
k=0

(√
Dh
)k · |∇ku(x)| , (4.11)

where M := min(L,N), and the constant cη is independent of u, h and D.

The first term of the right hand side of (4.11) decays with O
(

(
√Dh)M

)
as h vanishes and

is thus of order M in h. The second term,

εsat := ε ·
M−1∑
k=0

(√
Dh
)k · ||∇ku(x)||L2

,

is called the saturation error. It can be shown that the saturation error has the represen-
tation

M−1∑
j=0

(
i
√Dh
2π

)j
·
∑
|α|=j

∂αu

α!
·
∑

m∈Zd\0

∂αFη
(√
Dm

)
· e 2πi

h
·〈x,m〉 ,

where Fη denotes the Fourier transform of η and 〈·, ·〉 is the common scalar product.
The inner sum consists of fast oscillating functions, which become arbitrarily small for D
sufficiently large [66].
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4.3 Asymptotics of the approximation error

Theorem 4.3.5 conveys that for D > 0 fixed and h vanishing, Mh,Du(x) approximates
any function value u(x), u ∈ WL

∞, with order M up to the saturation error. Since for D
sufficiently large, the saturation error becomes arbitrarily small, it means that effectively—
i.e. in practical computations—Mh,Du(x) approximates u(x) with order M . The following
theorem provides a similar bound for the global approximation error.

Theorem 4.3.6 (Global error estimate for approximate approximations, [66, The-
orem 2.28]). Let η satisfy the Decay Condition with decay exponent K and the Moment
Condition of order N . Further, assume that u ∈ WL

p (Rd), 1 ≤ p ≤ ∞, with d/p < L < K.
Then for any ε > 0 there exists D′ > 0 such that for all D > D′ and h > 0 the approximation
error can be bounded by

||u−Mh,Du||Lp ≤ cη ·
(√
Dh
)M · ||∇Mu||Lp + ε ·

M−1∑
k=0

(√
Dh
)k · ||∇ku||Lp , (4.12)

where M := min(L,N), and the constant cη is independent of u, h and D.

Consequently, for D > 0 fixed and vanishing h, the global approximation error exhibits
similar asymptotics to the pointwise error: a decay with O

(
(
√Dh)M

)
in h and saturation

at a value that becomes arbitrarily small for D sufficiently large.

Remark 4.3.7 (Upper bound for h). In order to guarantee the convergence in the
pointwise and global error, a natural bound on h > 0 arises as

h <
1√D ,

such that
√Dh < 1.

4.3.2 Truncation of summation

The approximate approximant Mh,Du(x) defined in (4.1) uses an infinite sum to approx-
imate a function u at a point x ∈ Rd. Since the support of the generating function η is
generally unbounded, theoretically an infinite number of summands contributes to the value
of Mh,Du at any point x ∈ Rd. However, in practical applications, the summation can be
truncated, since the generating functions are chosen to decay fast [44].

Let Bκ(x) :=
{
y ∈ Rd, |y − x|2 ≤ κ

}
be the set of points in a closed ball with radius κ

around x. The truncated approximant

M(κ)
h,Du(x) := D−d/2 ·

∑
m∈Zd

mh∈Bκ(x)

u(mh) · η
(
x−mh√Dh

)
(4.13)

only takes into account points mh within the neighborhood of x defined by Bκ(x). Con-
sequently, the uniform grid {mh,mh ∈ Bκ(x)} is finite. The difference of the approximant
defined in (4.1) and the truncated approximant can be bounded by∣∣Mκ

h,Du(x)−Mh,Du(x)
∣∣ ≤ sup

m∈Zd
mh/∈Bκ(x)

|u(mh)| · D−d/2 ·
∑
m∈Zd

mh/∈Bκ(x)

∣∣∣∣η(x−mh√Dh

)∣∣∣∣ (4.14)

≤ gD(κ/h, η) · ||u||L∞ (4.15)
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Chapter 4 Approximate approximations

with

gD(ζ, η) := sup
x∈Rd

D−d/2 ·
∑
m∈Zd,
|x−m|>ζ

∣∣∣∣η(x−m√D
)∣∣∣∣ . (4.16)

Since η satisfies the Decay Condition with constant A and decay order K > d, gD can be
bounded by

gD(ζ, η) ≤ A · sup
x∈Rd

D−d/2 ·
∑
m∈Zd,
|x−m|>ζ

(
1 +
|x−m|√D

)−K

= A · D−d/2 · sup
x∈Rd

∑
m∈Zd,
|x−m|>ζ

DK/2 ·
(√
D + |x−m|

)−K

≤ A · D(K−d)/2 · sup
x∈Rd

∑
m∈Zd,
|x−m|>ζ

|x−m|−K

= A · D(K−d)/2 · sup
x∈Rd

∞∑
j=0

∑
m∈Zd,

ζ+j<|x−m|≤ζ+j+1

|x−m|−K .

Since the number of integers m ∈ Zd, for which j ≤ |x−m| ≤ j+1, is bounded by Ĉ ·(j)d−1

with Ĉ > 0, this becomes

gD(ζ, η) ≤ A · D(K−d)/2 · Ĉ ·
∞∑
j=0

(ζ + j)d−1−K

≤ C · D(K−d)/2 · ζd−K = C ·
(

ζ√D

)d−K
for a constant C > 0, which depends on η and d. Hence, using (4.15) the difference between
the truncated and the non-truncated approximant can be bounded by

∣∣Mκ
h,Du(x)−Mh,Du(x)

∣∣ ≤ C ·(√Dh
κ

)K−d
· ||u||L∞ . (4.17)

If κ is proportional to h, so κ = νh with ν > 0, h cancels out in (4.17), and thus, the bound
is independent of h. The truncated approximate approximant then only considers terms for
which |x/h−m| ≤ ν, i.e. the number of summands is independent of h. The approximation
error of such truncated approximate approximations can be bounded as follows.

Corollary 4.3.8 (Pointwise error estimate for truncated approximate approxi-
mations, [66, Corollary 2.20]). Assume u ∈ WL

∞. Let η satisfy the Decay Condition and
the Moment Condition of order N . Then for any ε > 0 there exist D′ > 0 and ν > 0 such
that for all D > D′, h > 0 and κ ≥ νh∣∣∣u(x)−M(κ)

h,Du(x)
∣∣∣ ≤ cη ·

(√
Dh
)M · ||∇Mu||L∞ +

ε ·
(
M−1∑
k=0

(√
Dh
)k · |∇ku(x)|+ ||u||L∞

)
(4.18)
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4.4 Construction of high-order approximants

for all x ∈ Rd, where M := min(L,N), and the constant cη only depends on η.

As compared to the pointwise error (4.11) of the non-truncated approximant, the saturation
error in (4.18) contains an extra term ε·||u||L∞ . However, the first term of (4.18) still decays
with order O

(
(
√Dh)M

)
for D fixed and h→ 0.

A similar bound is given for the global error of the truncated approximant on a domain
Ω ⊂ Rd:

Corollary 4.3.9 (Global error estimate for truncated approximate approxima-
tions, [66, Lemma 2.30]). Let η satisfy the Decay Condition and the Moment Condition of
order N. Furthermore, let Ω ⊂ Rd and u ∈WL

p (Ω), 1 ≤ p ≤ ∞ with d/p < L. Then for any
ε > 0 there exists a D′ > 0 and κ > 0 such that for all D > D′ and h > 0

∣∣∣∣∣∣u−M(κ)
h,Du

∣∣∣∣∣∣
Lp(Ωκh)

≤ cη ·
(√
Dh
)M ·||∇Mu||Lp(Ω)+ε ·

M−1∑
k=0

(√
Dh
)k ||∇ku||Lp(Ω)︸ ︷︷ ︸

=:εsat

, (4.19)

where Ωκh := {x, Bκh(x) ⊂ Ω}, and the constant cη is independent of u, h and D.

Note that the norms in the global bound (4.19) are restricted to the domain Ω ⊂ Rd.
From Theorems 4.3.8 and 4.3.9 we conclude that the truncated approximate approximant
(4.13) has similar approximation quality to the non-truncated approximant. In fact, the
approximation order M is conserved (up to the saturation error).

4.4 Construction of high-order approximants

Functions that satisfy the Moment Condition 4.3.3 of arbitrary order can be constructed
from other functions satisfying the Decay Condition 4.3.2. Using those functions as gener-
ating functions yields high-order approximate approximations. This is shown in detail in
[66] and more briefly for radial generating functions in [28]. Here we concentrate on radial
generating functions. The following theorem shows how to construct generating functions
that yield high-order approximate approximations.

Theorem 4.4.1 (Construction of generating functions for high-order approxi-
mants, [66, Theorem 3.5]). Let

L γ
k (x) :=

x−γ

k!
· ex ·

(
d

dx

)k (
xk+γe−x

)
, γ > −1 , (4.20)

denote the generalized Laguerre polynomials. A d-dimensional approximant of the form
(4.1) with generating function

η(2M)(x) := π−
d/2 ·L (d/2)

M−1(|x|22) · e−|x|22 , (4.21)

has approximation order 2M .
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Chapter 4 Approximate approximations

Example 4.4.2. Suppose x ∈ R, so d = 1. For M = 1, 2, 3, the generalized Laguerre
polynomials are

L
1/2
0 (x) ≡ 1 ,

L
1/2
1 (x) =

3
2
− x ,

L
1/2
2 (x) =

1
2
·
(

15
4
− 5x+

x2

2

)
.

The corresponding generating functions are given by

η(2)(x) =
1√
π
· e−x2

, (4.22)

η(4)(x) =
1√
π
·
(

3
2
− x2

)
· e−x2

, (4.23)

η(6)(x) =
1√
π
· 1

2
·
(

15
4
− 5x2 +

x4

2

)
· e−x2

. (4.24)

Note that η(2) is a Gaussian generating function with variance σ2 = 1/4. The three gener-
ating functions are shown in Figure 4.3.

�� �� � � �

���

�

Figure 4.3: Generating functions for approximate approximations of order 2,4 and 6.

2

Besides high approximation orders, approximate approximations that are constructed ac-
cording to Theorem 4.4.1 possess another desirable property. The structure of the gener-
ating function allows us to obtain analytical expressions for the action of the infinitesimal
generator A of the semigroup of Frobenius-Perron operators on the approximate approxi-
mant. These are shown in the Appendix C (where also explicit formulas for η(2), η(4) and
η(6) in the general case of d ≥ 1 are given). This fact will be exploited later in Chap-
ter 5, when approximate approximations are used to solve the stationary spatial problems
within an adaptive Rothe scheme. Furthermore, we exploit that approximate approxima-
tions straightforwardly provide error estimates without further computations necessary, as
will be shown next.
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4.5 Readily available error estimates

4.5 Readily available error estimates

In the previous sections we have discussed asymptotics of the approximation error. In this
section we concentrate on error estimates that, in an adaptive setting, allow us to make use
of the asymptotic properties to estimate optimal grid sizes.

Error estimation of many other approximation techniques (finite elements, finite differences
etc.) relies on the comparison of two solutions with different approximation orders (similar
to the estimation of temporal discretization errors, see Appendix, Part A.2). With approx-
imate approximations we can avoid the computation of a higher order solution. It turns
out that their feature of not interpolating points, but quasi -interpolating them, allows for
particularly accessible error estimates, since

||δ(h)|| = ||u−Mh,Du||Lp(Ω) =
(∫

Ω
|u(x)−Mh,Du(x)|p dx

)1/p

≈
(
hd ·

∑
m∈Zd,
mh∈Ω

|u(mh)−Mh,Du(mh)|p
)1/p

=: [δ] (h) , (4.25)

where the factor hd arises from the approximation of a d-dimensional integral. This means
that the global error can be estimated by a comparison of the coefficients u(mh) with the
approximate approximant Mh,Du(mh) evaluated at the grid points mh ∈ Ω. Since these
values are all readily available, we can avoid the comparison to a higher-order approxi-
mant, which is required for interpolation methods (since for those the above estimate is by
definition zero).

From the previous sections we further know that for fixed D > 0 and h decreasing, the
pointwise and global error estimates exhibit the same asymptotics: a decay with order
M and saturation at a value determined by D. Consequently, for a prescribed accuracy
TOL > 0, the estimate (4.25) allows us to use the asymptotics to estimate an optimal grid
size by

h∗ = σ · M
√
TOL

[δ](h)
· h , 0 < σ < 1 , (4.26)

such that the error estimate satisfies

[δ](h∗) ≈ TOL .

Note that the above procedure is analogous to the adaptive choice of time steps as shown
in Part A.2 of the Appendix.
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Chapter 5

Adaptive density propagation:
A Rothe method using approximate
approximations

This and the following chapter constitute the main contribution of the thesis. In this chapter
we present a method for the numerical solution of ODEs with random initial values. The
evolution of the probability density function associated with the random state variable is
described by the linear first-order PDE

∂

∂t
u = Au = −div(F · u) , u(0, ·) = u0 . (5.1)

The proposed method addresses the problem by numerically solving this PDE. Integration
is performed adaptively in both time and space, using the Rothe scheme with multiplicative
error correction and approximate approximations to solve the stationary spatial problems.
For a given order k, the solutions u(i)

tj
of order i, i = 1, . . . , k, are approximated at each

discrete time point tj ∈ [0, T ] by

û
(i)
tj

(x) =Mh,Du
(i)
tj

(x) = D−d/2 ·
∑
xn∈Gh

u
(i)
tj

(xn) · η
(
x− xn√Dh

)
, ∀x ∈ Ω ,

where Gh := {mh ∈ Ω, m ∈ Zd} is a finite uniform grid with grid size h on the spatial
domain Ω ⊂ Rd.

The generating function η is constructed according to (4.21) by the product of a Gaus-
sian and a Laguerre polynomial of order (M − 1), which implies that the approximate
approximations are of order 2M . This choice of η allows us to compute the action of the
differential operator A on η analytically for every x ∈ Ω and in particular for the grid points
xn ∈ Gh. As a consequence, the discretized stationary spatial problems can be restated as
systems of linear equations. Solution of the latter yields the coefficients of the approximate
approximations.

In this chapter we introduce an algorithmic realization of the method. The flowchart in
Figure 5.1 illustrates the algorithmic scheme. Roman numbers on the right indicate different
stages of the algorithm, which will be discussed in the following sections. These are:

I Semi-discretization in time & solution of the stationary spatial problems, Section 5.1.

II Error estimation & adaptivity, Section 5.2.

III Movement of the boundaries of the discretization domain Ω, Section 5.3.
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Chapter 5 Adaptive density propagation

Figure 5.1: Adaptive density propagation: flowchart of the algorithm.
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5.1 Semi-discretization in time & solution of the stationary spatial problems

The effects of different parameters of the algorithm on the output and performance are
discussed in Section 5.4. A convergence analysis and numerical simulations are postponed
to Chapters 6 and 7.

5.1 Semi-discretization in time & solution of the stationary
spatial problems

In each integration step tj+1 = tj +τj , j = 0, 1, 2, . . ., a time step τj > 0 and grid size hj are
given. As previously we denote by u(i)

t the solution of order i, and by ∆u(i)
t = u

(i+1)
t − u(i)

t

the difference of two solutions of order i + 1 and i, where the 0th-order solution is such
that u(0)

t+τ := ut for all τ > 0. Semi-discretization in time is carried out using the second- or
third-order scheme with multiplicative error correction introduced in Chapter 3. Depending
on the selected discretization method, the stationary spatial problems are given by (3.17)
for the L-stable discretization method, i.e.,

(Id− τA) u(1)
tj+1

= utj

(Id− τA)2 ∆u(1)
tj+1

= −1
2

(τA) ∆u(0)
tj+1

(Id− τA) ∆u(2)
tj+1

= −4
3

(τA) ∆u(1)
tj+1

or by (3.24) for the A-stable discretization method, i.e.,

(Id− τA) u(1)
tj+1

= utj

(Id− τA) ∆u(1)
tj+1

= −1
2

(τA) ∆u(0)
tj+1

(Id− τA) ∆u(2)
tj+1

= −1
3

(τA) ∆u(1)
tj+1

.

Spatial discretization of the stationary problems will be exemplified with the first-order
implicit Euler approximation

(Id− τA) u(1)
tj+1

= utj . (5.2)

Given h = hj , the approximate approximant of u(1)
tj+1

at the new time point tj+1 is

Mh,Du
(1)
tj+1

(x) = D−d/2 ·
∑
xn∈Gh

u
(1)
tj+1

(xn) · η
(
x− xn√Dh

)
. (5.3)

The coefficients u(1)
tj+1

(xn), xn ∈ Gh, are the unknowns to be determined. Inserting (5.3)
into (5.2) yields

(Id− τA)

D−d/2 · ∑
xn∈Gh

u
(1)
tj+1

(xn) · η
(
x− xn√Dh

) = utj (x) . (5.4)

Since A is linear and the sum over xn is finite, (5.4) is equivalent to

D−d/2 ·
∑
xn∈Gh

(
u

(1)
tj+1

(xn) · (Id− τA) η
(
x− xn√Dh

))
= utj (x) . (5.5)
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Chapter 5 Adaptive density propagation

For the Laguerre-Gaussian generating function η defined by (4.21), Aη(x) can be computed
analytically for every x ∈ Rd, see Appendix, Part C. Therefore, by evaluating (5.5) at all
N := |Gh| grid points xn ∈ Gh, (5.2) can be restated as a system of linear equations

A · u(1) = u(0) (5.6)

with u(0) ∈ RN , A ∈ RN×N and u(1) ∈ RN defined as

u(0) :=
(
utj (xn)

)
xn∈Gh

(5.7)

A := D−d/2
(

(Id− τjA) η

(
xm − xn√Dh

))
xm,xn∈Gh

(5.8)

u(1) :=
(
u

(1)
tj+1

(xn)
)
xn∈Gh

. (5.9)

Solution of (5.6) yields the coefficients u(1)
n = u

(1)
tj+1

(xn), n = 1, . . . , N , of the approximate

approximant (5.3). Thus, the fully discrete first-order solution û
(1)
tj+1

is given by

û
(1)
tj+1

(x) =Mh,Du
(1)
tj+1

(x) = D−d/2 ·
∑
xn∈Gh

u(1)
n · η

(
x− xn√Dh

)
. (5.10)

Subsequently, with

∆u(0)
tj+1

(xn) = u
(1)
tj+1

(xn)− utj (xn), xn ∈ Gh ,

the other spatial problems are solved analogously. Their solution yields the values ∆u(1)
tj+1

(xn)

and ∆u(2)
tj+1

(xn), xn ∈ Gh, which are used to compute the coefficients of û(2)
tj+1

and û(3)
tj+1

by

u
(2)
tj+1

(xn) = u
(1)
tj+1

(xn) + ∆u(1)
tj+1

(xn), xn ∈ Gh (5.11)

u
(3)
tj+1

(xn) = u
(2)
tj+1

(xn) + ∆u(2)
tj+1

(xn), xn ∈ Gh . (5.12)

The fully discrete solutions to (5.1) of order k = 2, 3 are then given by

û
(2)
tj+1

(x) = D−d/2 ·
∑
xn∈Gh

u
(2)
tj+1

(xn) · η
(
x− xn√Dh

)
(5.13)

and

û
(3)
tj+1

(x) = D−d/2 ·
∑
xn∈Gh

u
(3)
tj+1

(xn) · η
(
x− xn√Dh

)
. (5.14)

Remark 5.1.1 (Structure of the matrix A).

1. Note that for all but the second stationary problem in the L-stable discretization
scheme, the matrix A is defined by (5.8). For the second stationary problem of the
L-stable scheme, the matrix becomes

A(2) =
(

(Id− τA)2 η

(
xm − xn√Dh

))
xm,xn∈Gh

.

This has two disadvantages: First, the calculation of second-order derivatives is com-
putationally demanding, see Appendix, Part C. Second, if the matrix A remains con-
stant for all stationary spatial problems, the linear systems can be solved more effi-
ciently by a previous decomposition of the matrix.
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2. Further note that due to the results on approximate approximations with finite grids
shown in Section 4.3.2, a basis function η

(
x−xn√
Dh

)
needs not to be evaluated at all

grid points xm ∈ Gh. Since η is rapidly decaying, only points xm ∈ Bκ(xn) in a
neighborhood Bκ(xn) are considered, where κ = ν · h is proportional to h. Then, the
matrix A is sparse, i.e.

A =



∗ · · · ∗
... ∗ · · · ∗
∗ ...

. . . . . .
∗ ∗ · · · ∗

. . .
...

. . .
...

∗ · · · ∗



↑
ν
↓︸ ︷︷ ︸

← ν →
(assuming that the grid points are appropriately sorted). The parameter ν determines
the number of non-zero entries in each row and column—independent of h. Conse-
quently, the linear systems (5.6) can be solved using efficient algorithms for sparse
matrices.

5.2 Error estimation & adaptivity

In the multiplicative error control, an approximation û
(k)
tj+1

is accepted, if the conditions

[ε̂(k−1)
tj

](τj) + [δ(k)
tj+1

](hj) ≤ TOL (5.15)

[δ(k−1)
ε ] <

[ε̂(k−1)
tj

](τj)

4
(5.16)

are satisfied. The first condition is realized by requiring

[ε̂(k−1)
tj

](τj) ≤ TOLt , (5.17)

[δ(k)
tj+1

](hj) ≤ TOLx , (5.18)

where the temporal tolerance TOLt and the spatial tolerance TOLx are defined by

TOLt := ρ · TOL , (5.19)
TOLx := cτ :x · τ · (1− ρ) · TOL , (5.20)

with constants ρ, 0 < ρ < 1, and cτ :x > 0. Note that the definition of TOLx differs by
the factor cτ :x · τ from the one suggested in [8] (compare Algorithm 3.2.1, where TOLx is
defined independent of τ). The choice of the spatial tolerance will be discussed in more
detail in Chapter 6, where the convergence of the method is analyzed.

The grey shaded area in the flowchart in Figure 5.1 illustrates the order of verifying condi-
tions (5.16), (5.17) and (5.18): First, the spatial error estimates [δ(k−1)

ε ] and [δ(k)
tj+1

] have to
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Chapter 5 Adaptive density propagation

meet their accuracy conditions and subsequently the temporal error estimate [ε̂(k−1)
tj

]. This
is realized as follows:

1. Violation of condition (5.16) can have two sources:

(a) Spatial discretization is essentially accurate enough, but the temporal error
estimate [ε̂(k−1)

tj
] is considerably smaller than TOLt, i.e.,

[ε̂(k−1)
tj

](τj) < cε · TOLt with 0 < cε � 1 .

To avoid computationally expensive refinement of the spatial discretization,
the time step τj is increased in this case, and all steps described previously
are repeated with a larger time step τj = τ∗.

(b) The grid size hj is too large such that the spatial perturbation δ
(k−1)
ε of the

temporal error ε̂(k−1)
tj

may impair time step selection. In this case, hj is
decreased and all previously described steps are repeated with the reduced
hj = h∗.

2. In case the spatial tolerance condition (5.18) does not hold, the grid size hj is
decreased and all previous steps are repeated with the reduced hj = h∗.

3. Violation of the temporal tolerance condition (5.17) requires the decrease of the
time step τj and subsequent repetition of all previous steps with the reduced
τj = τ∗.

In case all accuracy conditions are satisfied, the approximate approximation û
(k)
tj+1

is ac-
cepted, i.e.,

j ← j + 1
tj ← tj−1 + τj−1

utj ← û
(k)
tj

and a new grid size h∗ as well as time step τ∗ is suggested for the next integration step. In
the following, we will treat the estimation of errors and the selection of h∗ and τ∗ in more
detail.

5.2.1 Spatial error estimates & grid size selection

We have seen in the previous chapter that approximate approximations provide easily ac-
cessible error estimates by the difference of the coefficients to the quasi-interpolating values,
i.e., the spatial discretization error in the solution of the first stationary problem can be
estimated by

[err(1)] :=

hd · ∑
xn∈Gh

|u(1)
tj

(xn)− û(1)
tj

(xn)|p
1/p

≈ err(1) (5.21)
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and for the second and third stationary problems by

[err(i)] :=

hd · ∑
xn∈Gh

|∆u(i−1)
tj

(xn)−∆û(i−1)
tj

(xn)|p
1/p

≈ err(i) , (5.22)

where err(i) denotes the true approximation error of the i-th stationary problem. The
spatial errors

δ
(i)
tj+1

(h) = û
(i)
tj+1
− u(i)

tj+1
, i = 1, . . . , k (5.23)

δ(i)
ε = ε̂

(i)
tj

(τj)− ε(i)
tj

(τj) , i = 0, . . . , k − 1 (5.24)

as defined in (3.28) and (3.31) comprise of the approximation errors err(i) as well as their
propagation through the recursion (3.17) or (3.24). They can be estimated recursively from
the err(i) using relation (B.17) or (B.16), as shown in Part B of the Appendix. Let [δ(i)

tj+1
]

and [δ(i)
ε ] denote the estimates of the norms of (5.23) and (5.24). A new grid size h∗ is then

suggested by

h∗ = min

{
σ · 2M

√√√√1
4

[ε(k−1)
tj

](τj)

[δ(k−1)
ε ]

· h︸ ︷︷ ︸
(a)

, σ · 2M

√
TOLx

[δ(k)
tj+1

](h)
· h︸ ︷︷ ︸

(b)

, ch · h , hmax

}
. (5.25)

Here, the first term (a) ensures that h∗ is decreased if condition (5.16) is not satisfied, and
that h∗ is adapted to the spatial perturbation [δ(k−1)

ε ] for the subsequent integration step,
in case (5.16) is satisfied. The same holds for the second term (b) with condition (5.18)
on the spatial error estimate [δ(k)

tj+1
]. The constant σ with 0 < σ < 1, is a safety factor.

The constant ch > 1 in the third term prevents h∗ from growing too quickly. Finally,
hmax < 1/

√
D ensures that h∗ remains within a convergence range (see Remark 4.3.7).

Remark 5.2.1 (Suggesting an initial grid size). The process of finding an initial grid
size h0 that satisfies the spatial tolerance condition (5.18) can be speeded up. Instead of
solving the linear systems with the user-specified grid size h0 and possibly repeating those
steps until h0 satisfies the conditions, the initial grid size can be refined previously such that
the spatial tolerance condition is satisfied for u0, i.e.

||u0 −Mh0,Du0|| ≤ TOLx(τ0) .

This procedure relies on the assumption that u0 ≈ uτ0 for τ0 sufficiently small.

5.2.2 Temporal error estimates & time step selection

As shown in Section 3.2 and Part A of the Appendix, the exact temporal error is estimated
by the comparison of û(k)

tj+1
with û

(k−1)
tj+1

,

ε̂
(k−1)
tj

(τj) := û
(k)
tj+τj

− û(k−1)
tj+τj

= ∆û(k−1)
tj+τj

. (5.26)
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Chapter 5 Adaptive density propagation

The integral is approximated on the grid points xn ∈ Gh and thus ε̂(k−1)
tj

is estimated by

[ε̂(k−1)
tj

] :=

hd · ∑
xn∈Gh

|∆û(k−1)
tj+τj

(xn)|p
1/p

≈
∣∣∣∣∣∣ε̂(k−1)

tj
(τj)

∣∣∣∣∣∣ . (5.27)

As derived in Section 3.1 and analogously to the grid size selection (5.25), a new time step
τ∗ is then suggested as

τ∗ = min

{
σ · k
√

TOLt

[ε̂(k−1)
tj

]
· τ︸ ︷︷ ︸

(c)

, cτ · τ , τmax

}
. (5.28)

The first term (c) ensures that τ∗ is decreased if the temporal accuracy condition (5.17) is
violated and that τ∗ is adapted to [ε̂k−1] if (5.17) is satisfied. The constant σ, 0 < σ < 1
is a safety factor, and cτ > 1 in the second term prevents τ∗ from growing too quickly.
Finally, the constant τmax prevents τ∗ from becoming too large. In contrast to hmax, τmax

needs to be specified in advance.

5.3 Moving the spatial domain

Moving the discretization region Ω = [xmin, xmax] ⊂ Rd, xmin, xmax ∈ Rd, with the solution
is a simple way to keep the number of basis functions small and hence reduce computational
costs. In each integration step tj ∈ [0, T ], new margins xmin and xmax are specified such that
Ω spans important regions of u. A region is considered important, if the approximation û(k)

tj
exceeds a certain threshold. We select this threshold proportional to the spatial tolerance
TOLx, i.e.

|û(k)
tj
| ≥ ω · TOLx , ∀x ∈ Ω , (5.29)

where the constant ω, 0 < ω < 1, is specified in advance. Note that, although u is a
probability density function and thus u ≥ 0 for all x ∈ Ω, t > 0, the numerical solution
û

(k)
tj

may be negative at certain points x ∈ Ω. Therefore, we require the absolute value to
exceed ω · TOLx in (5.29). For the same reason, an additional safety constant ζ > 0 is
added/subtracted, such that for d = 1, new margins are chosen by

xmin := min
{
xm ∈ Gh , |û(k)

tj
(xn)| ≥ ω · TOLx

}
− ζ ,

xmax := max
{
xm ∈ Gh , |û(k)

tj
(xn)| ≥ ω · TOLx

}
+ ζ . (5.30)

For d > 1, xmin and xmax are selected such that (5.29) holds in each dimension.
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5.4 Parameters & numerical aspects

In this section we present the relevant parameters of the algorithm and discuss their effect
on the performance of the method. Default values are also given.

The generating function η: With the Laguerre-Gaussian generating function η defined
in (4.21), the choice of η refers to the choice of M , where 2M is the approximation order
of the approximate approximation Mh,D. By increasing M , the computational costs grow
only due to the evaluation of the generalized Laguerre polynomial LM−1 of order M −1. In
contrast to other conventional spatial discretization methods such as finite element or finite
volume methods, an increase of the approximation order of approximate approximations
does not require any additional grid points. Therefore, the growth of computational costs
is negligible. Moreover, the linear systems are more likely to become ill-conditioned for
low M , see Figure 5.2. We therefore recommend to use generating functions with high
approximation order. Default: M = 3, which means η = η(6).

The parameter D of the approximate approximation: The constant D > 0 scales
the basis functions

η

(
x− xm√Dh

)
, xm ∈ Gh , (5.31)

and hence determines their width. Increasing D results in a decrease of the saturation
error εsat, see Theorems 4.3.6 and 4.3.9. As a consequence, more basis functions need to be
considered for the evaluation ofMh,D as shown in Section 4.3.2. This effects the sparseness
of the matrix A in (5.6) and thus causes higher computational costs for the solution of the
linear systems. Moreover, a large D denotes a large overlap of the basis functions, which
can cause the linear systems to become ill-conditioned for decreasing grid sizes, see Figure
5.2. We therefore recommend to choose D as small as possible such that (for sufficiently
smooth solutions u) the saturation error εsat is in the range of machine precision. Default:
D = 3.
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Figure 5.2: Condition of the matrix A depending on h and D for approximate approximations
of order 2, 4, 6 (left to right).

A- or L-stability: In Section 3.1 we introduced two semi-discretization methods, an L-
stable (3.17) and an A-stable method (3.24). L-stability allows us to select larger time steps
τ , which makes it favorable in terms of reducing the number of time steps. However, in
view of Remark 5.1.1, the A-stable method allows for a more efficient computation. Default:
A-stable.
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Chapter 5 Adaptive density propagation

The order k of semi-discretization in time: Due to a higher convergence rate of the
temporal error, larger time steps can be chosen with a high discretization order k. For
problems, where time steps become very small, the third-order scheme is recommendable.
This is in particular true, if time steps largely vary along integration. For slow temporal
dynamics with few variations, a lower-order scheme is favorable, because it requires the
solution of less stationary spatial problems. Default: k = 2, 3.

Local tolerance TOL: The local tolerance determines the local accuracy of temporal
and spatial discretization. Decreasing TOL results in smaller time steps τ and grid sizes
h, thus in a higher number N of grid points xm ∈ Gh. The choice of TOL also depends on
the accuracy required to study different problems. Computations shown in this thesis used
values of TOL ranging from 10−7 to 10−1.

Tolerance factor ρ: The factor ρ, 0 < ρ < 1, is used to split the local tolerance into
temporal TOLt and spatial tolerance TOLx, see (5.19) and (5.20). A small ρ accounts for
high temporal accuracy and less spatial accuracy. We recommend to choose ρ close to one.
Default: ρ = 0.9.

The spatial tolerance factor cτ :x: The role of the constant cτ :x will be discussed in
more detail in Chapter 6. It should be larger than the average time step. To realize
this, we recommend to choose the reciprocal of the specified maximal time step. Default:
cτ :x = 1/τmax.

Safety factor σ: In the adaptive selection of grid sizes h∗ (5.25) and time steps τ∗ (5.28),
σ serves as a safety factor. A small choice of σ accounts for a cautious choice of τ∗ and h∗

with higher computational costs as a consequence. Default: σ = 0.8 to 0.9.

Maximal step size τmax: In general it is recommended to choose a large maximal time
step and leave the choice of time steps to the adaptive scheme. However, due to cτ :x = 1/τmax,
a smaller value denotes less spatial discretization costs. We suggest to choose τmax large as
long as few knowledge about the dynamics is available. Default: τmax = 0.5.

Maximal grid size hmax: As shown in Section 4.3, for fixed D and decreasing h, the
approximation error of Mh,D decays with O

(
(
√Dh)2M

)
. Thus, the maximal step size is

determined by the choice of D such that
√Dh < 1. Default: hmax < 1/

√
D.

Parameters ω and ζ for the grid movement: The factor ω, 0 < ω < 1, determines the
cut-off value, at which the support of u is considered insignificant. Since the grid points at
the boundary of the discretization region have less neighboring grid points, the boundary
region yields a lower approximation quality. Large values of ut close to the boundary can
therefore impair the spatial accuracy. To avoid this, ω should be chosen small. In addition,
the static value ζ > 0 provides an extra safety margin. A large value ζ accounts for a
cautious grid movement. However, when the grid size becomes small, the grid may then
become computationally expensive, especially for d > 1. The choice of ζ depends on the
problem under study. Default: ω = 0.1, ζ = 0.05 to 0.5.
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Chapter 6

Convergence analysis

In this chapter we investigate the approximation error of the adaptive density propagation
scheme proposed in Chapter 5. We are interested in a bound for the global approximation
error ∣∣∣∣∣∣ut − û(k)

t

∣∣∣∣∣∣ (6.1)

in a compact interval t ∈ [0, T ]. In each integration step tj ∈ [0, T ], the numerical solution
û

(k)
tj

is obtained by semi-discretization in time and subsequent spatial discretization by
approximate approximation, i.e.

û
(k)
t1

=Mh0,D (Rτ0u0) , and û
(k)
tj+1

=Mhj ,D

(
Rτj û

(k)
tj

)
, (6.2)

where Rτ := r(τA) denotes an A-stable rational approximation of order k to the strongly
continuous semigroup describing the solution ut, andMh,D is the approximate approximant
defined in (4.13) with approximation order 2M .

We restrict the analysis of the global error to sufficiently smooth functions u ∈ U with

U :=
{
ut ∈ L1 ∩ C∞, ∀t ∈ [0, T ] : ∂iut ∈ L1, ∀i = 1, . . . , 2M

}
, (6.3)

i.e., functions u that for each t ≥ 0 are in L1, infinitely differentiable, and with spatial
derivatives up to order 2M also in L1. Errors are considered in the L1-norm, i.e. ||·|| := ||·||L1

throughout the chapter.

First, we fix the time step τ and grid size h to analyze the properties of the global error.
It is shown that the global error converges, if D = D(τ) and h = h(τ,D(τ)) are chosen
appropriately. This result allows us then to derive implications for the adaptive method,
where τ and h are adjusted in each integration step such that local errors remain below a
predefined tolerance TOL. To control both temporal and spatial local errors, the tolerance
is split into a temporal and spatial tolerance, where

TOLt + TOLx ≤ TOL .

We show that a coupling between the spatial tolerance TOLx and τ is necessary to guar-
antee convergence of the adaptive method up to an error that is caused by the saturation
error of the approximate approximations. Last we discuss the advantages of approximate
approximations in comparison to classical discretization techniques.
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6.1 Global approximation error with fixed discretization

Let τ > 0 and h > 0 be fixed. Then by (6.2), for any discrete time point tj = j · τ ,
j = 1, . . . , n, the numerical solution û

(k)
tj

is given by

û
(k)
tj

= (Mh,DRτ )j u0 =Mh,D

(
Rτ û

(k)
tj−1

)
. (6.4)

The global error at t = tn can be bounded by∣∣∣∣∣∣utn − û(k)
tn

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣Pτutn−1 − Pτ û(k)
tn−1

∣∣∣∣∣∣+
∣∣∣∣∣∣Pτ û(k)

tn−1
− û(k)

tn

∣∣∣∣∣∣
=
∣∣∣∣∣∣Pτ (utn−1 − û(k)

tn−1

)∣∣∣∣∣∣+
∣∣∣∣∣∣Pτ û(k)

tn−1
− û(k)

tn

∣∣∣∣∣∣ , (6.5)

where Pτ denotes the Frobenius-Perron operator describing the analytical solution. Since
Pτ is a Markov operator, i.e. ||Pτu|| = ||u|| for all u ∈ L1, this becomes∣∣∣∣∣∣utn − û(k)

tn

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣utn−1 − û(k)
tn−1

∣∣∣∣∣∣+
∣∣∣∣∣∣Pτ û(k)

tn−1
− û(k)

tn

∣∣∣∣∣∣ . (6.6)

Repeating the above steps for tj , j = n− 1, n− 2, . . . , 1, yields the estimate

∣∣∣∣∣∣utn − û(k)
tn

∣∣∣∣∣∣ ≤ n−1∑
j=0

∣∣∣∣∣∣Pτ û(k)
tj
− û(k)

tj+1

∣∣∣∣∣∣ . (6.7)

Thus, the global error is bounded by the sum of the local errors of each integration step. To
obtain an explicit error bound we closer investigate the local error. Using definition (6.4),
the error can be bounded by∣∣∣∣∣∣Pτ û(k)

tj
− û(k)

tj+1

∣∣∣∣∣∣ =
∣∣∣∣∣∣Pτ û(k)

tj
−Mh,D

(
Rτ û

(k)
tj

)∣∣∣∣∣∣
≤
∣∣∣∣∣∣Pτ û(k)

tj
−Rτ û(k)

tj

∣∣∣∣∣∣+
∣∣∣∣∣∣Rτ û(k)

tj
−Mh,D

(
Rτ û

(k)
tj

)∣∣∣∣∣∣
≤ || (Pτ −Rτ ) û(k)

tj︸ ︷︷ ︸
εtj (τ)

||+ || (Id−Mh,D)
(
Rτ û

(k)
tj

)
︸ ︷︷ ︸

δ
(k)
tj+1

|| , (6.8)

where εtj (τ) denotes the temporal error as defined in (A.4), and δ
(k)
tj+1

the spatial error
defined in (3.28). Hence, the local error is bounded by the sum of the temporal and the
spatial error.

By Theorem A.1.6, Rτ is of order k, and the temporal error in (6.8) is bounded by∣∣∣∣εtj (τ)
∣∣∣∣ =

∣∣∣∣∣∣(Pτ −Rτ ) û(k)
tj

∣∣∣∣∣∣ ≤ cr · τk+1 ·
∣∣∣∣∣∣Ak+1û

(k)
tj

∣∣∣∣∣∣ , 0 < cr <∞. (6.9)

Since û(k)
t is a finite sum of Gaussians multiplied with a polynomial, ||Ak+1û

(k)
t || < C <∞

for all t ∈ [0 , T ].

By Theorem 4.3.9, the spatial error can be estimated by∣∣∣∣∣∣δ(k)
tj+1

∣∣∣∣∣∣ ≤ cη · (√Dh)2M ·
∣∣∣∣∣∣∇2M

(
Rτ û

(k)
tj

)∣∣∣∣∣∣+ εsat(tj+1) . (6.10)
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Here, εsat(tj+1) denotes the saturation error at tj+1, which depends on derivatives of Rτ û
(k)
tj

.
Note that by Theorem 4.3.9, εsat becomes arbitrarily small for well-behaved functions ut ∈
W 2M

1 ⊂ U , t ∈ [0, T ], and sufficiently large D > 0.

Combining (6.8), (6.9) and (6.10) yields the local error bound∣∣∣∣∣∣Pτ û(k)
tj
− û(k)

tj+1

∣∣∣∣∣∣ ≤ cr · τk+1 ·
∣∣∣∣∣∣Ak+1û

(k)
tj

∣∣∣∣∣∣+
cη ·

(√
Dh
)2M ·

∣∣∣∣∣∣∇2M

(
Rτ û

(k)
tj

)∣∣∣∣∣∣+ εsat(tj+1) . (6.11)

The above bound implies that, for decreasing τ , the local error decays with order k + 1
until the spatial error is reached, and for decreasing h with order 2M until the temporal
plus saturation error is reached. This is illustrated in the following example.

Example 6.1.1 (Decay of the local approximation error). Consider d = 1 and a
linear ODE

ẋ = F (x) = α · x , α ∈ R .
With an initial Gaussian distribution u0, the analytical solution is computable and given by
(1.14). For given D, τ and h, we compute one time step

û(k)
τ =Mh,D (Rτu0) ,

where Mh,D is of approximation order 2M = 6. The numerical solution û
(k)
τ is then com-

pared to the analytical solution uτ . In Figure 6.1 and 6.2 local errors are shown for two
different scenarios:

1. Figure 6.1: D = 3 and h = 0.002 constant, but such that the contribution of the spatial
errors is expected to be small. The local error is shown for orders k = 1, 2, 3 (left to
right), and plotted against τ . As predicted, errors (blue solid line) and their estimates
(black dashed lines) decay with O(τk+1), indicated by red dotted lines, until the spatial
error is reached, which for this choice of D and h is close to machine precision.

The second- and third-order solutions (middle and right panel) exhibit an unexpected
loss of convergence order for time steps smaller than ≈ 10−4 (k=2) and ≈ 10−3

(k=3). So far we cannot explain this behavior, although we suspect that it is due to
error propagations through the recursion.
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Figure 6.1: Errors of the solutions û
(i)
τ with i = 1 (left), i = 2 (middle), and i = 3

(right) with D = 3 for h = 0.002 for τ → 0.
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2. Figure 6.2: D = 3, τ = 0.01 (upper panel) and τ = 0.001 (lower panel) constant. The
local error is shown for orders k = 1, 2, 3 (left to right), and plotted against h. The
error decays until the temporal error is reached indicated by highlighted coordinates,
which can be identified with the coordinates in Figure 6.1. The error estimates (black
dashed lines), defined in (3.28), only estimate the spatial error and therefore, do not
stagnate at the temporal error, but continue decaying until the saturation error is
reached < 10−10. The red dotted line shows that the error decays with order 6.
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Figure 6.2: Errors of the solutions û
(i)
τ of order i = 1 (left), i = 2 (middle), and i = 3

(right) for D = 3 and τ = 0.01 (upper panel), and τ = 0.001 (lower panel) for h→ 0.
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6.1 Global approximation error with fixed discretization

As a consequence of the local error bound (6.11), the global error, which, as in (6.7), is
composed of the sum of the local errors, is bounded by

∣∣∣∣∣∣utn − û(k)
tn

∣∣∣∣∣∣ ≤ n−1∑
j=0

(
cr · τk+1 ·

∣∣∣∣∣∣Ak+1û
(k)
tj

∣∣∣∣∣∣+
cη ·

(√
Dh
)2M ·

∣∣∣∣∣∣∇2M

(
Rτ û

(k)
tj

)∣∣∣∣∣∣+ εsat(tj+1)
)

≤ n · max
j=0,...,n−1

(
cr · τk+1 ·

∣∣∣∣∣∣Ak+1û(k)(tj)
∣∣∣∣∣∣+

cη ·
(√
Dh
)2M ·

∣∣∣∣∣∣∇2M

(
Rτ û

(k)
tj

)∣∣∣∣∣∣+∣∣∣∣∣∣Ak+1
∣∣∣∣∣∣ εsat(tj+1)

)
. (6.12)

Since the number of integration steps at tn = T is n = T
τ , this becomes

∣∣∣∣∣∣uT − û(k)
T

∣∣∣∣∣∣ ≤ T · ( ĉr · τk +
ĉη
τ
·
(√
Dh
)2M

+
ε̂sat

τ

)
, (6.13)

where the constants ĉη and ĉr depend on the norms at the time point tmax maximizing
(6.12) and ε̂sat := εsat(tmax). Note that for a fixed spatial discretization, the spatial errors
build up when τ is decreased. Intuitively, this is understandable since then the number of
time steps grows, and so does the number of times that the spatial problems have to be
solved. The error bound in (6.13) allows us to state the following convergence result.

Theorem 6.1.2 (Convergence of the global approximation error). Let u ∈ U and
û

(k)
T = (Mh,DRτ )n u0, where Rτ = r(τA) denotes an A-stable rational approximation of

order k to the strongly continuous semigroup describing the solution ut, and Mh,D is the
approximate approximant of order 2M as defined in (4.13). Then, for any given C > 0
there exist τ > 0, D > 0 and h > 0, such that the global approximation error at T is bounded
by ∣∣∣∣∣∣uT − û(k)

T

∣∣∣∣∣∣ ≤ C . (6.14)

Hence, the global error converges in τ , D and h.

Proof: We examine the different parts of the global error bound (6.13) separately. The
first term, ĉrτk, refers to the temporal error and vanishes as τ approaches 0. More precisely,
for Ct = C

3T there is a τ ′ > 0 such that for all τ < τ ′

ĉr · τk ≤ Ct . (6.15)

The second and third term are associated with the spatial errors that accumulate during
integration. As for the accumulated saturation errors, Theorem 4.3.9 ensures that for any
given τ > 0 and Csat = C

3T , there exists a D = D(τ) > 0 such that

ε̂sat

τ
≤ Csat . (6.16)
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Theorem 4.3.9 further implies that for any given τ > 0, D > 0 and Cx = C
3T , there is

an h′ = h′(τ,D(τ)) such that for all h < h′ the remaining accumulated spatial errors are
bounded by

ĉη
τ
·
(√
Dh
)2M ≤ Cx . (6.17)

Hence, according to inequality (6.13) we have∣∣∣∣∣∣uT − û(k)
T

∣∣∣∣∣∣ ≤ T · (Ct + Cx + Csat) = C .

2

Remark 6.1.3. As a consequence of the accumulated spatial errors, convergence is only
guaranteed if D and h depend on τ . Furthermore, h must satisfy

h < hmax :=
1√D . (6.18)

In the algorithm in Chapter 5, the parameter D is constant throughout integration and
chosen independently of τ . This implies that the error Csat inevitably grows as τ approaches
0. However, for D sufficiently large, the saturation error ε̂sat can be considered orders of
magnitudes smaller than the temporal error and the remaining spatial error. Thus, in
practical applications Csat is expected to be considerably smaller than Ct and Cx.

Due to the structure of the error bound (6.13) and the above remark, for D > 0 fixed and
τ and h(τ) decreasing, the global approximation error is expected to decay until, after a
possible transition phase, the error saturates, see Figure 6.3. We next closer examine the
order of decay before the saturation phase.

Figure 6.3: Behavior of the global approximation error for decreasing τ and h(τ).

Theorem 6.1.4 (Decay order of the global approximation error). Let the same
conditions as in Theorem 6.1.2 be satisfied. If D > 0 is fixed and if

h(τ) = c · τ k+1/2M , with c > 0 , (6.19)

then the global approximation error decays in τ with order k until the saturation error Csat

is reached, i.e. ∣∣∣∣∣∣uT − û(k)
T

∣∣∣∣∣∣ = O(τk) + T · Csat(D, τ) , as τ → 0 . (6.20)
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Proof: Using the global error bound (6.13) with h = h(τ) according to relation (6.19)
yields ∣∣∣∣∣∣uT − û(k)

T

∣∣∣∣∣∣ ≤ T · ( ĉr · τk + ĉη · τk ·
(
c ·
√
D
)2M

+
ε̂sat

τ

)
.

Then with
Csat(D, τ) :=

ε̂sat

τ
,

the claim follows.
2

We illustrate this result in the following example, where two scenarios are considered: (1)
error growth as τ and h→ 0, when τ and h are decreased independently, and (2) decay of
order k, when τ and h are decreased according to Theorem 6.1.4.

Example 6.1.5 (Global approximation error using a fixed discretization). Con-
sider the same scenario as in Example 6.1.1: d = 1, F linear and an initial Gaussian
distribution.

We compute the second- and third-order solutions û(2)
T and û

(3)
T with fixed temporal and

spatial discretization for T = 1, and compare them to the analytical solution. This is
repeated for different choices of τ and h. Figures 6.4 and 6.5 show the global approximation
error for decreasing time steps and grid sizes plotted against the time steps.

1. Figure 6.4: time steps and grid sizes are decreased independently; τ is always halved,
and h is decreased linearly. As predicted by the global error bound (6.13), errors build
up with O(τ−1), indicated by the red dotted line, although both τ and h are decreased.
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Figure 6.4: Growing approximation error for h and τ decreased independently.

2. Figure 6.5: τ is decreased and h is determined via relation (6.19). Results show that,
in accordance with Theorem 6.1.4, the global approximation error decays with O(τk),
indicated by the red dotted lines.
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Figure 6.5: The global approximation error decays with order k for h as in (6.19).

6.2 Global approximation error of the adaptive method

From the previous results we inferred how to choose a grid size h such that the convergence
order of the temporal discretization scheme is maintained. In the adaptive setting, τj and hj
are adjusted in each integration step tj , j = 0, . . . , n−1, such that the local error estimates
remain below their specified tolerances TOLt and TOLx, respectively. We investigate how
the spatial accuracy TOLx must be chosen to guarantee a global error decay with respect to
a specified local tolerance TOL > 0. Ideally, the error should decay with the same order as
expected in the absence of spatial errors. For the latter case, the following lemma describes
the decay of the global approximation error.

Lemma 6.2.1 (Global approximation error without spatial perturbations). As-
sume u ∈ U , and let Rτ = r(τA) denote an A-stable approximation of order k to the strongly
continuous semigroup describing the solution ut. Suppose a local tolerance TOL > 0 is
given. Let the discrete evolution of u at time points tj+1 = tj + τj be defined by

u
(k)
t1

= Rτ0u0 , u
(k)
tj+1

= Rτju
(k)
tj
, j = 1, . . . , n− 1 . (6.21)

Assume that the local error estimates adequately approximate the true local errors, i.e.

||εtj (τj)||
||ε(k−1)

tj
(τj)||

≤ θ , θ ≤ 1, j = 0, . . . , n− 1 . (6.22)

If the time steps τj are chosen optimally, i.e.∣∣∣∣∣∣ε(k−1)
tj

(τj)
∣∣∣∣∣∣ = TOL , j = 0, . . . , n− 1 , (6.23)

then there is a constant C > 0 such that the global approximation error at T = tn is bounded
by ∣∣∣∣∣∣uT − u(k)

T

∣∣∣∣∣∣ ≤ C · T · TOL k−1
k . (6.24)
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Proof: As before in the non-adaptive setting, the global approximation error is bounded
by the sum of the local errors, i.e.

∣∣∣∣∣∣uT − u(k)
T

∣∣∣∣∣∣ ≤ n−1∑
j=0

∣∣∣∣εtj (τj)∣∣∣∣ ≤ θ ·
n−1∑
j=0

∣∣∣∣∣∣ε(k−1)
tj

(τj)
∣∣∣∣∣∣ = n · θ · TOL . (6.25)

The number of integration steps depends on the accuracy TOL. To replace n, we consider
the dependency between the time steps and TOL. Since Rτ is A-stable and of order k,
we know that ||εtj (τ)|| = O(τk+1). The estimates ε(k−1)

tj
, computed by the difference of

solutions of order k and k − 1, then decay with O(τk). Together with assumption (6.23)
this implies

TOL =
∣∣∣∣∣∣ε(k−1)

tj
(τj)

∣∣∣∣∣∣ ≤ cj · τkj , cj > 0 , j = 0, . . . , n− 1 ,

⇒ τ−1
j ≤ TOL− 1

k · c
1
k
j .

Summation and division by n yields

1
n
·
n−1∑
j=0

τ−1
j ≤ TOL− 1

k ·
 1
n
·
n−1∑
j=0

c
1
k
j

 . (6.26)

We define the mean time step τ̄ as

τ̄ =
1
n
·
n−1∑
j=0

τj ⇒ τ̄ =
T

n
.

Since the function τ 7→ τ−1 is convex, Jensen’s inequality can be applied, i.e.

τ̄−1 ≤ 1
n
·
∑
j=0

τ−1
j .

Combining the above inequality with (6.26), it then follows that

τ̄−1 ≤ C1 · TOL− 1
k , with C1 :=

 1
n
·
n−1∑
j=0

c
1
k
j

 . (6.27)

Finally, replacing n = T/τ̄ in (6.25) yields∣∣∣∣∣∣uT − u(k)
T

∣∣∣∣∣∣ ≤ θ · T · TOL
τ̄

≤ C · T · TOL k−1
k , with C := θ · C1 .

2

Remark 6.2.2. The different convergence orders of εt(τ) and ε(k−1)
t (τ) justify the assump-

tion that θ ≤ 1. If 1 < θ <∞, the claim still holds.
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Therefore, in the best case, without spatial errors, the global approximation error decays
with O(TOL

k−1
k ) as TOL is decreased. In the presence of spatial errors, the adaptive

scheme chooses a grid size hj in each integration step tj such that the spatial errors remain
below the spatial tolerance, i.e. ∣∣∣∣∣∣δ(k)

tj
(hj)

∣∣∣∣∣∣ ≤ TOLx .
In view of the results from the previous section, the spatial accuracy may depend on the
current time step, i.e. TOLx = TOLx(τ). Imposing a local tolerance TOL that accounts
for temporal and spatial errors, i.e.

TOLt + TOLx ≤ TOL ,

we now want to derive a constraint on TOLx that guarantees the same decay order of the
global error in TOL (before the saturation phase is reached, see Figure 6.3) as previously
derived in the absence of spatial errors. We will assume that D > 0 is fixed, but sufficiently
large, such that the saturation errors εsat(tj), which are part of δ(k)

tj
, are negligible as

compared to the remaining spatial errors. As in previous chapters, let δ(k)
ε (h) := ε̂

(k)
t − ε(k)

t

denote the spatial perturbation of the temporal error estimate. The following theorem
provides conditions for the error estimates such that the global error decays with the same
order as in the absence of spatial errors.

Theorem 6.2.3 (Global approximation error of the fully adaptive scheme). As-
sume u ∈ U . Further let Rτ = r(τA) denote an A-stable approximation to the strongly
continuous semigroup of order k, and Mh,D the approximate approximant of order 2M as
defined in (4.13). Suppose a local tolerance TOL > 0 is given, then let

TOLt = ρ · TOL , 0 < ρ < 1 ,

and let TOLx = TOLx(τ) > 0.

For constant but sufficiently large D > 0, let the discrete evolution of u be defined by

û
(k)
t1

=Mh0,D (Rτ0u0) , û
(k)
tj+1

=Mhj ,D

(
Rτj û

(k)
tj

)
(6.28)

at time points t0 = 0 < t1 < . . . < tn = T . Assume the unperturbed temporal error estimates
provide adequate approximations to the true errors, i.e.

||εtj (τj)||
||ε(k−1)

tj
(τj)||

≤ θ , θ ≤ 1, j = 0, . . . , n− 1 . (6.29)

If the time steps τj = tj+1 − tj and the sequence of grid sizes hj > 0 satisfy

(i) ||ε̂(k−1)
tj

(τj)|| = TOLt

(ii) ||δ(k)
tj+1

(hj)|| ≤ TOLx(τj)

(iii) ||δ(k−1)
ε (hj)|| ≤

||ε̂(k−1)
tj

(τj)||
4
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6.2 Global approximation error of the adaptive method

for all j = 0, 1, . . . , n− 1, and if further

(iv)
1
n
·
n−1∑
j=0

TOLx(τj) ≤ (1− ρ) · TOL ,

then there is a constant C > 0 such that the global approximation error is bounded by∣∣∣∣∣∣uT − û(k)
T

∣∣∣∣∣∣ ≤ C · T · TOL k−1
k . (6.30)

Proof: The global approximation error at T = tn is bounded by the sum of the local
errors, i.e.

∣∣∣∣∣∣uT − û(k)
T

∣∣∣∣∣∣ ≤ n−1∑
j=0

(∣∣∣∣εtj (τj)∣∣∣∣+
∣∣∣∣∣∣δ(k)

tj+1
(hj)

∣∣∣∣∣∣)

≤
n−1∑
j=0

(
θ ·
∣∣∣∣∣∣ε(k−1)

tj
(τj)

∣∣∣∣∣∣+
∣∣∣∣∣∣δ(k)

tj+1
(hj)

∣∣∣∣∣∣)

≤
n−1∑
j=0

(∣∣∣∣∣∣ε(k−1)
tj

(τj)
∣∣∣∣∣∣+

∣∣∣∣∣∣δ(k)
tj+1

(hj)
∣∣∣∣∣∣) . (6.31)

Condition (iii) is equivalent to

4
5
·
∣∣∣∣∣∣ε(k−1)

tj
(τj)

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣ε̂(k−1)
tj

(τj)
∣∣∣∣∣∣ ≤ 4

3
·
∣∣∣∣∣∣ε(k−1)

tj
(τj)

∣∣∣∣∣∣ . (6.32)

Combining (6.31) and (6.32) yields

∣∣∣∣∣∣uT − û(k)
T

∣∣∣∣∣∣ ≤ n−1∑
j=0

(
5
4
·
∣∣∣∣∣∣ε̂(k−1)

tj
(τj)

∣∣∣∣∣∣+
∣∣∣∣∣∣δ(k)

tj+1
(hj)

∣∣∣∣∣∣) ,

which together with (i), (ii) and (iv) becomes

∣∣∣∣∣∣uT − û(k)
T

∣∣∣∣∣∣ ≤ 5
4
·
n−1∑
j=0

(TOLt + TOLx(τj))

=
5
4
·
n · TOLt +

n−1∑
j=0

TOLx(τj)


≤ 5

4
· n · (ρ · TOL+ (1− ρ) · TOL) =

5
4
· n · TOL . (6.33)

As in the proof of Lemma 6.2.1, n can be replaced, since Rτ is A-stable and of order k,
which together with condition (i) implies

τ̄−1 ≤ C1 · TOL− 1
k , with C1 := ρ−

1
k ·
 1
n
·
n−1∑
j=0

c
1
k
j

 . (6.34)
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The constants cj are determined via∣∣∣∣ε̂tj (τj)∣∣∣∣ ≤ cj · τj , j = 0, . . . , n− 1 .

Finally, replacing n = T/τ̄ in (6.33) and combining it with (6.34) yields∣∣∣∣∣∣uT − û(k)
T

∣∣∣∣∣∣ ≤ 5
4
· n · TOL =

5
4
· T · TOL

τ̄

≤ C · T · TOL k−1
k , C :=

5
4
· C1 .

2

The simplest way to realize the spatial accuracy constraint is by setting TOLx(τ) ≡ (1 −
ρ) · TOL constant, which implies that condition (iv) is satisfied with equality. However, in
Theorem 6.2.3 it is assumed that the time steps are chosen optimally, i.e.

ε̂
(k−1)
tj

= TOLt , j = 0, . . . , n− 1 .

In practice, we only demand that

ε̂
(k−1)
tj

≤ TOLt , j = 0, . . . , n− 1,

i.e., the actual realization of time steps is generally smaller than the optimal sequence of
time steps. A smaller choice of time steps will in this case cause an additional accumulation
of spatial errors, as observed in the previous section for a fixed discretization (see Figure
6.4). Accumulation of the spatial errors and the consequent loss of decay order for a constant
choice of TOLx are illustrated in the following example.

Example 6.2.4 (Loss of decay order by neglecting the impact of sub-optimal
time steps). Consider the same scenario as in the previous examples: d = 1, F linear and
an initial Gaussian distribution.

We adaptively compute the second- and third-order solutions û(2)
T and û(3)

T , where condition
(i) in Theorem 6.2.3 is violated, i.e., integration takes more time steps than necessary.
The spatial tolerance is constant throughout integration with TOLx ≡ (1 − ρ) · TOL. The
numerical solutions are then compared to the analytical solution.
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Figure 6.6: Loss of decay order for TOLx(τ) ≡ (1− ρ) · TOL.

76



6.2 Global approximation error of the adaptive method

Figure 6.6 shows the global approximation errors of the second- (blue) and third-order so-
lutions (green). Comparison with the red dotted lines indicates a loss of decay order.

2

In order to account for possible additional accumulation of spatial errors, due to sub-
optimally chosen time steps τ , we suggest the following choice of TOLx:

TOLx(τ) := cτ :x · τ · (1− ρ) · TOL , cτ :x :=
1

τmax
, (6.35)

where τmax denotes the prescribed maximal step size. The spatial accuracy constraint (iv)
in Theorem 6.2.3 is satisfied, since τj/τmax ≤ 1 for all j = 0, . . . , n − 1. Furthermore, this
choice of TOLx accounts for possible accumulations of the spatial errors in the order of
O(τ−1)—as observed for the non-adaptive integration scheme in the previous section—by
requiring the contributions of the spatial errors to the global error to be equidistributed
over the interval [0, T ], independent of the actual choice of time steps. An error bound of
the global approximation error is then as follows.

Corollary 6.2.5 (Spatial tolerance depending on τ ). Assume the same conditions
are satisfied as in Theorem 6.2.3, and let TOLx be defined as in (6.35). Then there are
constants Ct > 0, Cx > 0 such that the global approximation error can be bounded by∣∣∣∣∣∣uT − û(k)

T

∣∣∣∣∣∣ ≤ T · (Ct · TOL k−1
k + Cx · TOL

)
. (6.36)

Proof: The proof is analogous to the proof of Theorem 6.2.3, only the contributions of
the spatial errors change, i.e.

∣∣∣∣∣∣uT − û(k)
T

∣∣∣∣∣∣ ≤ 5
4
·
n−1∑
j=0

(TOLt + TOLx(τj))

=
5
4
·
n · ρ · TOL+ cτ :x · (1− ρ) · TOL ·

n−1∑
j=0

τj


=

5
4
· n · (ρ · TOL+ cτ :x · (1− ρ) · TOL · τ̄) .

Replacing n by T/τ̄ and using the bound (6.34) for τ̄−1 yields∣∣∣∣∣∣uT − û(k)
T

∣∣∣∣∣∣ ≤ 5
4
· T · C1 ·

(
ρ · TOL k−1

k + cτ :x · (1− ρ) · TOL
)

The claim follows with Ct := 5
4 · C1 · ρ and Cx := 5

4 · C1 · cτ :x · (1− ρ).

2

The above corollary guarantees that, using a more careful choice of TOLx that depends
linearly on the time steps, the decay order of the global approximation error preserves
the convergence order of the spatial discretization scheme, even if time steps are chosen
sub-optimally. This is illustrated in the following example.
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Example 6.2.6 (Decay of the global error in the adaptive scheme). Consider
the same scenario as in the previous examples: d = 1, F linear and an initial Gaussian
distribution.

We adaptively compute the second- and third-order solutions û(2)
T and û

(3)
T , and compare

them to the analytical solution. As previously in Example 6.2.4, time steps are chosen sub-
optimally, i.e., condition (i) in Theorem 6.2.3 is violated. The spatial tolerance is given by
relation (6.35), where we choose τmax = 0.1 for the second-order scheme, and τmax = 0.25
for the third-order scheme, because the latter yields larger time steps.
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Figure 6.7: Global approximation error of the adaptive scheme.

Figure 6.7 shows the global approximation error at T = 1 for different local tolerances TOL.

• Comparison with the red dotted lines indicates that, after an initial phase (k = 2:
TOL > 10−4, k = 3: TOL > 10−5) of slightly different decay, the global approxima-
tion error decays with the expected order k−1

k .

• Figure 6.8 depicts the “mean” discretization chosen by the adaptive schemes: the mean
time step τ̄ (grey), mean grid size h̄ (black) and the mean number of grid points N̄
(green). We observe that the grid sizes in the second-order scheme (left) are generally
larger than those of the third-order scheme (right). This can be explained by the larger
choice of τmax, since cτ :x = τ−1

max determines TOLx. However, since the time steps
decrease faster in the second order scheme, the third-order scheme is less restrictive
(asymptotically).

• Further note that the mean time steps decay with O(TOL
1
k ), indicated by the red

dotted lines, which we expect if equality holds in the upper bound (6.34) for τ̄−1.

2

78



6.3 Discussion of the results

10−6 10−5 10−410−3

10−2

10−1

TOL

τ̄
&

h̄

 

 

100

200

300

τ̄(TOL)

h̄(TOL)

N̄(TOL)

10−7 10−6 10−5 10−410−3

10−2

10−1

TOL

 

 

0

100

200

300

400

500

N̄

τ̄(TOL)

h̄(TOL)

N̄(TOL)

Figure 6.8: Average time steps (grey), grid sizes (black) and number of grid points (green)
for k = 2 (left) and k = 3 (right) as they were chosen by the adaptive scheme.

6.3 Discussion of the results

In this chapter we proved convergence of the general integration scheme. Convergence is
guaranteed, provided that the grid size h and the scaling parameter D of the approximate
approximations are decreased dependent on the time steps. In practice, the parameter D is
fixed, which implies that the saturation errors obtained in each integration step inevitably
build up as time steps decrease. In the adaptive setting, this means that the local tolerance
cannot be chosen arbitrarily small; the spatial tolerance must remain larger than the satura-
tion error. However, for sufficiently large D, the saturation errors are expected to be orders
of magnitudes smaller than the remaining errors (compare with Figure 6.1, where the error
stagnates at about 10−15). Their contribution to the local and global errors is thus only
noticeable for very small choices of τ and h, or TOL, respectively. Furthermore, we think
that it is possible to include D in the spatial adaptivity to guarantee that the saturation
errors remain below the spatial tolerance. The grid size h and the scaling parameter D
could then be coupled such that the spatial accuracy conditions are satisfied, constrained
to minimizing the condition of the discretized stationary spatial problems (compare with
Figure 5.2).

We further investigated the speed of the global error decay before saturation errors become
dominant. It was shown how the spatial discretization must be adapted in order to maintain
the decay order of the temporal discretization scheme. Since the spatial accuracy constraints
impose a dependency on the current time step, they can become prohibitively restrictive
for small time steps. For an efficient solution of the spatial problems, satisfying these
constraints, a high approximation order of the spatial discretization scheme is required.

The results on the global approximation error of the adaptive scheme required few assump-
tions about the spatial discretization scheme. The spatial accuracy constraint must be
attainable, and the saturation errors must be small as compared to the remaining local er-
rors. Therefore, the results also hold in the case of no saturation errors as, e.g., for classical
spatial discretization techniques such as finite element or volume methods. Compared to
these methods, approximate approximations possess properties that make them favorable
despite the presence of saturation errors:
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In the algorithm introduced in Chapter 5 we exploit the fact that the action of the differ-
ential operator A on the approximate approximants can be computed analytically, see also
Part C of the Appendix. Furthermore, we showed in Section 4.5, how approximation errors
can be estimated by comparing the approximant (a linear combination of basis functions)
to its coefficients, i.e., using only information that is readily available. Error estimates for
classical discretization methods are typically based on comparing two solutions of different
approximation order, analogously to the estimation of temporal errors. With approximate
approximations, the computation of additional solutions can be avoided. Moreover, using
Theorem 4.4.1 we can construct approximate approximations of high approximation or-
der. In contrast to most classical methods, an increase of the approximation order does
not require the inclusion of additional grid points. Additional grid points would severely
impair the computational efficiency of the method, because the computation of the coeffi-
cients requires the solution of a linear system, the cost of which grows quadratically in the
number of grid points. In the case of approximate approximations, computational costs
for higher approximation orders increase due to the evaluation of a polynomial of a higher
order, cf. (4.21). Compared to the addition of grid points, this can be regarded a minor
increase. In summary, approximate approximations allow for an efficient solution of the
spatial accuracy constraints.

Most importantly, we prefer approximate approximations, because they provide the scope
of extending the adaptive framework to higher-dimensional problems. In high dimensions,
the main objective is to reduce the number of grid points. In view of that, a high ap-
proximation order is beneficial, since grid sizes can be chosen larger as compared to low
approximation orders. However this alone is not sufficient for an efficient solution of the
spatial problems in high dimensions. As concluded in Chapter 2, a meshfree setting is
most suitable to tackle high-dimensional problems. Approximate approximations based on
a meshfree discretization, or scattered grids, are a subject of current research [27, 44, 54].
Also a combination with sparse grids seems feasible and promising. A combination of the
adaptive scheme suggested herein with approximate approximations on sparse or scattered
grids is promising to efficiently extend the applicability to higher dimensions.
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Numerical examples

In the previous chapter, we illustrated the theoretical results with numerical examples for a
one-dimensional linear ODE, where the analytical solution was known. In the following we
demonstrate that the proposed method also yields good results for nonlinear ODEs even
when the solution gives rise to locally steep gradients or bimodal structures. Since no ana-
lytical solution is available for the considered systems, we compare the numerical solutions
to solutions obtained via the method of characteristics. The initial spatial discretization
for the method of characteristics, see Section 1.2.3, is chosen to be the final grid size of the
adaptive solution, and ODEs are solved using the Matlab solver ode15s.

7.1 Michaelis-Menten kinetics (steep gradients close to the
boundary)

Michaelis-Menten kinetics are common kinetics used to model a saturable enzymatic degra-
dation of a substance. Consider the substance X being metabolized by an enzyme E
according to

X + E
kon−→←−
koff

X : E kcat−→M + E ,

where X : E denotes the substance-enzyme complex, M denotes the metabolite of the
enzymatic reaction, and kon, koff , and kcat denote the corresponding rate constants. Let
x ∈ R+ denote the concentration of the substance X, and Etot the total concentration of
bound and unbound enzymes. Following the widely used Michaelis–Menten–approximation,
see, e.g., [18, 49], the temporal evolution of x is described by

ẋ = − Vmax

Km + x
· x , (7.1)

where the parameter Vmax = kcat·Etot is the chemical flux at saturation, while the Michaelis-
Menten constant Km = (koff + kcat)/kon denotes the concentration corresponding to the
half-maximal flux Vmax/2.

We consider an initial Gaussian distribution propagated through the nonlinear dynamics.
Figure 7.1 shows the initial distribution with mean µ = 2 and variance σ2 = 1/4, as well
as the right hand side of (7.1) for Km = 1 and Vmax = 2. As the concentrations cannot
become negative, we expect a skew output distribution.
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Figure 7.1: Michaelis-Menten model: initial density and right hand side of the ODE.

Figure 7.2 (left) shows the second-order solution at t = 2 for a local tolerance of TOL =
10−4, a factor ρ = 0.9 determining the proportion of temporal and spatial tolerance, and a
maximal time step τmax = 0.1. The solution is in good agreement with the solution obtained
via the method of characteristics. Although the border of the discretization domain is close
to the steep region of the solution, the numerical solution shows an accurate resolution
of the steep front. We further notice that the conservation of probability mass is almost
perfect. Figure 7.2 (right) shows the evolution of time steps and grid sizes and the local
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Figure 7.2: Michaelis-Menten model: T = 2, k = 3, TOL = 10−4, ρ = 0.9, τmax = 0.1.
Left: final density. Right: Evolution of time steps and grid sizes (upper panel), and of the local
error estimates (lower panel).

error estimates in each integration step. While time steps stabilize quickly, the grid size
first grows, because of a comparatively simple structure of the solution, and decreases
significantly when the solution develops the steep gradient close to the origin. It can be
seen that the initially prescribed values for τ and h were smaller than necessary. As soon
as the discretization is fully determined by the adaptive scheme (independent of initial
choices), the local error estimates stabilize close to the temporal and spatial tolerance.
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7.2 Hill kinetics (bimodality)

7.2 Hill kinetics (bimodality)

Hill kinetics are closely related to Michaelis-Menten kinetics. They arise when the en-
zyme has several binding sites for the substrate, see e.g. [18]. The temporal change of the
concentration of the substance is then described by the ODE

ẋ = − Vmax

Kn
h + xn

· xn , (7.2)

where n ∈ N, Vmax is the chemical flux at saturation, and Kh the concentration correspond-
ing to Vmax/2. We want to see how the adaptive density propagation scheme performs when
the problem gives rise to a bimodal solution. To do so, we artificially choose Vmax = −0.5
together with Kh = 2 and n = 10. Figure 7.3 depicts the right hand side of (7.2) for the
chosen parameter values. We consider an initial Gaussian distribution with mean µ = 2
and variance σ2 = 0.2, also shown in Figure 7.3.
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Figure 7.3: Hill model: initial density and right hand side of the ODE.

Figure 7.4 shows the third-order solution at time points t = 3.3, 6.6 and 10 computed with
TOL = 10−5, ρ = 0.9 and τmax = 0.1 in comparison with the solution obtained via the
method of characteristics. At all shown time points, both solutions coincide well except for
a slight deviation that develops next to the lower mode. This deviation is due to a sparse
coverage of grid points for the method of characteristics, which results in an impaired
interpolation (since the method of characteristics only yields a pointwise representation of
the final density). The steep front as well as the bimodality are accurately captured by the
solution obtained by the proposed scheme. The evolution of the time steps and grid sizes
selected within the adaptive scheme together with the estimated local errors are shown in
Figure 7.5. Both the discretization and the error estimates stabilize quickly and remain
roughly constant throughout integration.

7.3 A subcritical model (locally steep gradients)

The third example is a subcritical system that was analyzed in [60]. The system is described
by the ODE

ẋ = x · (α+ 2x2 − x4) , α ∈ R . (7.3)
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Figure 7.4: Hill model: density at t = 3.3, 6.6, 10 computed with k = 3, TOL = 10−5,
ρ = 0.9, τmax = 0.1.

0.03

0.04

0.05

τ
,

h

 

 

τ
h

0 2 4 6 8 10
10−7

10−5

t

 

 

[ ε̂t]
[δt] [δε]

Figure 7.5: Hill model: evolution of time steps and grid sizes (upper panel), and of the local
error estimates (lower panel).

For α = −1/2, the system has two stable fixed points and three unstable fixed points. These
are indicated by dots and circles in Figure 7.6, where the right hand side of (7.3) is shown.
We choose a Gaussian initial distribution centered around the unstable fixed point at x = 0
and with variance σ2 = 1/5, wide enough to cover all other fixed points.
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Figure 7.6: Subcritical model: initial density and right hand side of the ODE. Filled dots along
the x-axis indicate the stable fixed points and circles the unstable fixed points.

The subcritical model with this initial distribution yields a solution with locally steep gra-
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7.4 Michaelis-Menten kinetics with extended state space (two dimensions)

dients, which are challenging conditions for the adaptive scheme. Figure 7.7 (left) shows the
third-order solution at T = 0.5 for a local tolerance of TOL = 5 ·10−6, a temporal tolerance
factor ρ = 0.9, and a maximal time step τmax = 0.04. To ensure volume conservation, the
density is re-normalized after each integration step. The solution matches with that of the
method of characteristics. The steep gradients at the outer stable fixed points are accu-
rately resolved as well as the structure of the solution in between and beyond these points.
Figure 7.7 (right) depicts the evolution of time steps and grid sizes (left), as well as of the
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Figure 7.7: Subcritical model: T = 0.5, k = 3, TOL = 5 · 10−6, ρ = 0.9, τmax = 0.04. Left:
final density. Right: Evolution of time steps and grid sizes (upper panel), and of the local error
estimates (lower panel).

local error estimates (right). Time steps stabilize rapidly due to low temporal dynamics,
whereas the grid size continuously decreases as the structure of the solution becomes more
challenging.

7.4 Michaelis-Menten kinetics with extended state space (two
dimensions)

Last, we reconsider the first example of Michaelis-Menten kinetics. To demonstrate the
extension of the method to two-dimensional problems, we consider Vmax as an uncertain
parameter; the state space is extended by Vmax. Biologically, it makes sense to consider
Vmax variable, since with Vmax = kcat · Etot one can account for variability in the total
enzyme concentration. Assuming that Vmax is variable but constant in time, the extended
ODE is given by

ẋ = − Vmax

Km + x
· x

V̇max = 0 . (7.4)

Setting Km = 1, we start with an initial Gaussian distribution with mean and covariance
matrix chosen as

µ =
(

2
2

)
, Σ =

(
1/8 0
0 1/40

)
.
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Figure 7.8: Extended Michaelis-Menten model: contour lines denote the initial (left) & final
density (right) at T = 1, computed with k = 2, TOL = 0.05, ρ = 0.9 and τmax = 0.1. The
vector field of the ODE is shown with arrows.

Figure 7.8 (left) depicts the initial distribution by means of contour lines. The arrows
indicate the vector field imposed by the right hand side of (7.4). The second-order solution
is computed using TOL = 0.05, ρ = 0.9 and a maximal time step τmax = 0.1. The final
density at T = 1 is shown in Figure 7.8 (right). Since for larger maximal fluxes Vmax, the
substance X is degraded faster, the solution develops asymmetries.

In Figure 7.9, the solution is compared to the solution obtained via the method of char-
acteristics. The three-dimensional plot illustrates that the adaptive solution captures the
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Figure 7.9: Extended Michaelis-Menten model: comparison of the solutions obtained via
adaptive density propagation and the method of characteristics (indicated by black dots).
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7.4 Michaelis-Menten kinetics with extended state space (two dimensions)

structure of the solution well, but differs slightly around the mode of the distribution and
along the upcoming steep gradient. To quantify the difference, we evaluate our solution
at the points given by the method of characteristics. The difference of the two solutions
is illustrated by the heatmap in Figure 7.10 (left). The pointwise error remains below 0.4
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Figure 7.10: Extended Michaelis-Menten model. Left: heatmap of the difference between the
two solutions. Right: evolution of time steps and grid sizes (upper panel), and of the local
error estimates (lower panel).

and is considerably smaller at most of the points. Considering that the local tolerance
is TOL = 0.05, pointwise errors of that order or magnitude in the final density are well
acceptable.

The evolution of the time steps and grid sizes chosen by the adaptive scheme, as well as
the estimated local errors are shown in Figure 7.10 (right). The time steps continuously
increase, because temporal dynamics become slower as x decreases. Although this implies
less constraints on the spatial accuracy, grid sizes decrease in the course of integration due
to the development of steeper gradients as the distribution approaches the y-axis.

Concluding remarks In this chapter we examined nonlinear models that give rise to locally
steep and bimodal distributions. The method has provided highly satisfactory results.
Moreover, we note that in all the considered cases, the adaptive selection of time steps
and grid sizes was very stable in time. We thus conclude that the adaptive framework can
be applied to low-dimensional problems with high accuracy. An efficient extension of the
applicability to higher-dimensional problems requires a reduction of spatial discretization
costs, which will be a focus of upcoming work.
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Summary & Outlook

Summary In this thesis we developed a novel method for the global sensitivity analysis
of ODEs. Assuming that the uncertainty & variability in the model input is captured by a
known initial probability distribution, the problem can be recast as an ODE with random
initial values. In this setting, the evolution of the probability density function associated
with the random state variable is described by a first-order linear PDE. We exploited
the PDE-based formulation, which gives access to a solid theory and methodology, to
develop an error-controlled approach to sensitivity analysis. The presented method solves
the PDE by combining an adaptive Rothe scheme with approximate approximations for
spatial discretization. The Rothe scheme provides a framework for accurate error estimation
and an adaptive choice of temporal and spatial discretization.

Many numerical approaches have been developed for global sensitivity analysis of ODEs.
For higher-dimensional problems, these basically reduce to MC-based approaches or meth-
ods based on representations of the density in terms of heuristic Gaussian approximations.
Both approaches suffer from the lack of reliable error estimates to perform error control.
Our approach includes two main novelties: (1) The adaptive density propagation, i.e., an
error-controlled solution of the related PDE, constitutes a new approach to the global sen-
sitivity analysis of ODEs. (2) For the first time, approximate approximations were used
to solve a time-dependent PDE in an adaptive and error-controlled Rothe context. The
theoretical results obtained in this work clearly indicate how to implement the method
efficiently.

We established and implemented a framework for adaptive density propagation with ap-
proximate approximations and studied its asymptotic properties. The method was shown
to converge. Numerical examples in one and two space dimensions illustrated the theo-
retical results and showed that the method is applicable to nonlinear problems as well as
problems that give rise to solutions with steep gradients or bimodal structure.

Our analysis further revealed dependencies between temporal and spatial discretization, im-
posing strong constraints on the spatial accuracy. An efficient solution of these constraints
necessitates a high approximation order of the spatial discretization scheme. Compared to
classical discretization methods such as finite element or finite volume methods, approxi-
mate approximations offer three substantial advantages:

1. Error estimates are readily available (avoiding computations of solutions of different
approximation orders).

2. The approximation order can be increased at feasible computational costs, which
allows for an efficient solution of the spatio-temporal accuracy constraints.

3. Although in this work we considered approximate approximations with basis functions
positioned on a uniform grid, the concept is not restricted to those; it can be extended
to transformations of uniform grids as well as unstructured, scattered grids.
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This justifies our hope that the framework presented herein may constitute a first step
towards error-controlled sensitivity analysis of higher-dimensional models.

Outlook To make the error-controlled approach competitive with common (ODE-based)
sensitivity methods, even in higher-dimensions, costs of the spatial discretization have to
be reduced, i.e. the number of basis functions. One possibility to reduce costs, while
maintaining a uniform positioning of the basis functions, is a partitioning of the spatial
domain, as illustrated in Figure 7.11 (left & middle). Adaptive density propagation may
then be performed on each of the sub-domains with additional boundary conditions to
account for the flow of probability between two neighboring sub-domains. Alternatively,

Figure 7.11: Partitioning and transformation of unifrom grids. Level lines represent the
distribution, and the dotted box the discretization domain Ω. Left & middle: alternative
approximation of the distribution on the sub-domains Ωi ⊂ Ω, indicated by the dashed boxes.
Right: a linearly transformed uniform grid Ψ(Ω).

costs can be reduced using basis functions that are positioned at a transformation of a
uniform grid, see Figure 7.11 (right). Convergence results for approximate approximations
based on transformed uniform grids are available, see [66]. However a serious attempt
to extend the framework to high-dimensional problems can in our view only be based on
sparse or scattered grids (in a meshfree setting). The scattered grids may be more dense
in regions with fast dynamics or steep gradients, and sparse elsewhere. Such an approach
requires reliable error estimates of approximate approximations with scattered grids. The
derivation of those is a focus of ongoing research [44, 54].

Although the method has been developed in the context of global sensitivity analysis,
it may also be amenable for an application in model assessment or model selection, see
e.g. [34, 45, 59]. These tasks are generally complicated with deterministic models, since the
model output either coincides with experimental data or not. An exact match of the model
with the data is however unlikely, and a quantification of the mismatch remains a critical
problem. For probabilistic models, the likelihood, i.e., the probability of the data under
the specified model, is used to quantify a match or mismatch. Based on the likelihood,
a broad range of statistical methods is available for model assessment and selection, see
above references. The density propagation approach renders ODE models in a probabilistic
context and yields an estimate of the likelihood function. Therefore, the method provides
a link to the well-established methodology of statistical decision making.
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Uncertainty and variability in ODE models is a general problem, and there is demand for
numerical solutions that are applicable in high dimensions while maintaining a prescribed
approximation quality. The thesis provides a theoretical framework as well as a fundamental
understanding of adaptive density propagation based on a coupling of a Rothe method with
approximate approximations. We believe that this is a sound basis to proceed towards an
extension to higher-dimensional problems.

93



94



Appendix

95





Appendix A

Semi-discretization in time

In this chapter we introduce concepts for semi-discretization in time, which are based on
considering the time-dependent PDE as an ODE in a function space. This view allows for
applying the same discretization techniques as for ODEs. First, in Section A.1, we discuss
properties, which the discrete solution has to satisfy to guarantee convergence of the discrete
solution to the analytical solution. Then, in Section A.2, we show how temporal errors can
be estimated and how time steps can be adapted accordingly. Throughout the chapter we
assume spatially unperturbed solutions.

A.1 Approximation of the strongly continuous semigroup

We consider u : R× Rd → R and a PDE of the form

∂

∂t
u = Au , u(0, ·) = u0 , (A.1)

where A denotes a differential operator involving only spatial derivatives of u. Assume the
analytical solution ut = u(t, ·) is given by ut = Ptu0, where {Pt}t≥0 denotes the semigroup
of evolution operators—–in our case the semigroup of Frobenius-Perron operators. Analo-
gously to the discretization of ODEs, the evolution operator Pt is approximated for a small
time step t = τ > 0 using approximations r(z) to the exponential function, i.e.

Pτ ≈ Rτ := r(τA) , (A.2)

and the approximation quality of r(z) ≈ ez allows for conclusions on the approximation
quality of Rτ ≈ Pτ . A discrete solution is then obtained by a recursive application of the
discrete evolution operator Rτ via

Rjτu0 = Rτ
(
Rj−1
τ u0

) ≈ Pjτu0 , R0
τu0 := u0 , j = 1, . . . , T/τ . (A.3)

As τ vanishes, the discrete solution should converge to the analytical solution, where con-
vergence is understood on two levels: convergence of the errors made in each time steps,
the local errors, and convergence of the iterated application of Rτ , the global discretiza-
tion error. Ideally, these errors converge with a certain speed. To facilitate the following
definitions, we introduce the Landau symbol O:
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Definition A.1.1 (O-Notation). A function ν is said to be

ν(z) = O(g(z)) as z → z∗ ,

if for all ε > 0 there exists a constant c > 0 and z′ such that for all z, |z − z∗| ≤ |z′ − z∗|
ν(z) ≤ c · g(z) .

Generally, asymptotics for z∗ = 0 or z∗ =∞ are of interest.

Definition A.1.2 (Consistency). The local error

εt(u, τ) := Pτut −Rτut (A.4)

is called consistency error. The discrete evolution Rjτ , j = 1, . . . , T/τ, is called consistent,
if for all t ∈ [0, T ]

lim
τ→0
||εt(u, τ)|| = 0 . (A.5)

Furthermore, the discrete evolution has consistency order k, if for all t ∈ [0, T ]

||εt(u, τ)|| = O(τk+1) as τ → 0 . (A.6)

We will write εt(τ) instead of εt(u, τ), whenever the function u is clear from the context.

Definition A.1.3 (Convergence). The discrete evolution Rjτu(x, 0), j = 1, . . . , T/τ is
called convergent if the global approximation error vanishes, i.e.

max
j=1,...,T/τ

(
lim
τ→0

∣∣∣∣Ptju0 −Rjτu0

∣∣∣∣) = 0 , tj = j · τ . (A.7)

Furthermore, the discrete evolution has convergence order k, if

max
j=1,...,T/τ

∣∣∣∣Ptju0 −Rjτu0

∣∣∣∣ = O(τk) as τ → 0 . (A.8)

Thus, consistency of the discrete evolution refers to convergence of the local errors, whereas
convergence refers to the convergence of the global discretization error.

Definition A.1.4 (Discretization order). If the discrete evolution Rjτu0, j = 1, . . . , T/τ,
is consistent and convergent with order k, the semi-discretization scheme Rτ is said to have
discretization order k; we then denote the discrete solution by

u
(k)
tj+1

:= Rτu
(k)
tj
, u

(k)
0 := u0 . (A.9)

Definition A.1.5 (A-stability). An approximation r(z) to ez is called A-stable, if its
stability region {z ∈ C, r(z) ≤ 1} contains the stability region of of the exponential function,
i.e.

|r(z)| ≤ 1 , ∀ z ∈ C, <(z) ≤ 0 . (A.10)

The semi-discretization scheme Rτ defined by r(tA) is called A-stable, if r is A-stable.
Analogously, the discrete evolution Rjτu0 is called A-stable, if r is A-stable.

The following result by Brenner & Thomée [11] ensures convergence of the discrete evolu-
tion, if r is consistent and A-stable.
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A.2 Adaptive time step selection

Theorem A.1.6 (Rational approximation of semigroups, [11, Theorem 3]). Let A
generate a strongly continuous semigroup Pt = etA, t > 0, i.e.

lim
t→0
||Ptu− P0u|| = 0 , ∀u ∈ D(Pt) , (A.11)

and let further
||Pt|| ≤ 1 , ∀ t ≥ 0 . (A.12)

Then for any A-stable rational approximation r(z) to ez of consistency order k there is a
constant c > 0 such that for all u ∈ D(Ak+1)

||Ptnu−Rnτ u|| ≤ c · tn τk
∣∣∣∣∣∣Ak+1u

∣∣∣∣∣∣ , tn = n · τ, τ > 0, n ∈ N . (A.13)

Proof can be found in [11] (note that condition (A.12) refers to [11, Eq. (7)’] with C0 = 1
and ω = 0). The semigroup of Frobenius-Perron operators Pt, t ≥ 0, is strongly continuous,
see [55, Remark 7.6.2], and further condition (A.12) is satisfied, because Pt is a Markov
operator. Therefore, the above theorem ensures that a discrete solution converges with order
k to the analytical solution, if the rational function satisfies two conditions: consistency of
order k and A-stability.

Definition A.1.7 (L-stability). An A-stable approximation r(z) to ez that satisfies

lim
z→−∞

r(z) = 0 (A.14)

is called L-stable, and a semi-discretization scheme defined by Rτ = r(τA) is called L-
stable, if r is L-stable.

While A-stability ensures that the discrete solution Rjτu0 inherits properties of the ana-
lytical solution Pτnu0 for a small time step τ > 0, L-stability ensures that asymptotic
properties of the true solution in one, large time step are inherited. Therefore, L-stable
semi-discretization schemes allow for larger time steps.

A.2 Adaptive time step selection

So far we have considered a discrete evolution with a constant time step τ > 0. Now we
consider discrete solutions u(k) of order k that are computed using variable time steps τj > 0
in each integration step tj , j = 1, . . . , n, i.e.

u
(k)
tj+1

:= Rτju
(k)
tj
, u

(k)
0 := u0 .

Ideally, the time steps τj are chosen such that the local errors satisfy∣∣∣∣∣∣εtj (u(k), τj)
∣∣∣∣∣∣ =

∣∣∣∣∣∣Pτju(k)
tj
−Rτju(k)

tj

∣∣∣∣∣∣ ≤ TOLt , j = 0, . . . , n− 1 , (A.15)

where TOLt > 0 denotes a specified temporal accuracy or tolerance. Since Pτj is unknown,
the local errors have to be estimated, and the tolerance condition can only be satisfied for
the estimates. In the following we show how to estimate the local errors and adapt the time
steps during integration such that the estimates satisfy condition (A.15). We consider the
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standard time step selection strategy as presented in [30, Chapter II.4] and [25, Chapter
5].

Let u(k−1) denote a discrete solution of order k − 1 defined by

u
(k−1)
tj+1

:= Qτju
(k)
tj
,

where Qτ denotes a rational approximation to the strongly continuous semigroup of order
k − 1. Then the local discretization errors of u(k−1) are estimated by the difference of the
two discrete solutions of different discretization order, i.e.

ε
(k−1)
tj

(τj) := u
(k)
tj+1
− u(k−1)

tj+1
(A.16)

In terms of computational costs, a time step τ∗ is considered optimal with respect with to
the tolerance TOLt, if it satisfies condition (A.15) and∣∣∣∣∣∣ε(k−1)

tj
(τ∗)

∣∣∣∣∣∣ ≈ TOLt . (A.17)

Since u(k) and u(k−1) are consistent with order k and k−1, the error estimate (A.16) decays
with O(τk) as τ vanishes (same as the true local error of u(k−1)), which implies

c · τ∗k
c · τkj

≈ TOLt

||ε(k−1)
tj

(τj)||
,

for some constant c > 0. Consequently, the optimal time step τ∗ is given by

τ∗ = k

√
TOLt

||ε(k−1)
tj

(τj)||
· τj , (A.18)

where in practice, (A.18) is multiplied by a safety factor 0 < σ < 1.

In case τj does not satisfy the tolerance condition (A.15), the integration step is repeated
using τj = τ∗. In case the tolerance condition is satisfied, τj is accepted, and integration
proceeds with the next integration step using the time step τj+1 = τ∗.
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Derivation of spatial error estimates

In this chapter we show how the local spatial error of a solution û(k)
t can be estimated using

the error estimates that are given by the spatial discretization scheme used to solve each of
the stationary spatial problems. Using the corrections ∆u(k)

t , the solutions of order k are
given by

u
(k)
t = u

(k−1)
t + ∆u(k−1)

t . (B.1)

We first consider the A-stable scheme, where the corrections up to k− 1 = 2 are computed
multiplicatively by the recursion

(Id− τA) ∆u(0)
t = (τA) u(0)

t (B.2)

(Id− τA) ∆u(1)
t = −1

2
(τA) ∆u(0)

t

(Id− τA) ∆u(2)
t = −1

3
(τA) ∆u(1)

t .

The spatially perturbed solution û
(k+1)
t of order k + 1 can be written as

û
(k+1)
t = û

(k)
t + ∆û(k)

t = u
(k+1)
t + δ

(k+1)
t . (B.3)

Furthermore, the spatial perturbation of the local temporal error estimate is given by

δ(k)
ε (t) := ε̂

(k)
t − ε(k)

t = ∆û(k)
t −∆u(k)

t =: ∆δ(k)
t . (B.4)

(We denote the difference of the corrections by ∆δ(k)
t , since ∆û(k)

t −∆u(k)
t = δ

(k+1)
t − δ(k)

t .)
Hence, we estimate δε(t) by

[δ(k)
ε ](t) = ∆δ(k)

t . (B.5)
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Appendix B Derivation of spatial error estimates

Using the above relations, we can state the following identities for the perturbed correction
∆û(k)

t and k = 1, 2:

∆û(0)
t = (Id− τA)−1 u

(0)
t + err(1) = ∆u(0)

t + ∆δ(0)
t (B.6)

∆û(1)
t = −1

2
(τA)(Id− τA)−1 ∆û(0)

t + err(2) (B.7)

= −1
2

(τA)2(Id− τA)−2 u
(0)
t

−1
2

(τA)(Id− τA)−1 ∆δ(0)
t + err(2)

=
by (B.2) ∆u(1)

t −
1
2︸︷︷︸

γ
(1)
A

(τA)(Id− τA)−1 ∆δ(0)
t + err(2)

= ∆u(1)
t + ∆δ(1)

t ,

where err(k) denotes the approximation error in the solution of the k-th spatial problem.
Spatially perturbed corrections of order k ≥ 2 can be computed recursively by

∆û(k)
t = ∆u(k)

t + ∆δ(k)
t (B.8)

= γ
(k)
A (τA)(Id− τA)−1 ∆û(k−1)

t

+err(k+1) (B.9)

⇒ ∆δ(k)
t

=
by (B.2) γ

(k)
A (τA)(Id− τA)−1 (∆û(k−1)

t −∆u(k−1)
t )

+err(k+1) , (B.10)

which yields

∆δ(k)
t = γ

(k)
A ·

[
(τA)(Id− τA)−1

]
∆δ(k−1)

t err(k+1) . (B.11)

Consequently, we obtain the following recursion for the estimates of δ(k)
ε

[δ(k+1)
ε ] = |γ(k+1)

A | · [δ(k)
ε ] + [err(k+2)] , [δ(0)

ε ] = err(1) . (B.12)

Furthermore, the spatial errors δ(k+1)
t can be computed recursively by

δ
(k+1)
t

=
by (B.3) û

(k)
t − u(k+1)

t + ∆û(k)
t (B.13)

= u
(k)
t + δ

(k)
t − (u(k)

t + ∆u(k)
t ) + ∆û(k)

t

= δ
(k)
t + (∆û(k)

t −∆u(k)
t ) ,

such that

δ
(k+1)
t = δ

(k)
t + ∆δ(k)

t , δ
(0)
t = 0. (B.14)

and

[δ(k+1)
t ] = [δ(k)

t ] + [δ(k)
ε ] , [δ(0)

t ] = 0. (B.15)

Combining (B.12) and (B.15), explicit error estimates for k = 1, 2, 3 are as follows.
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Estimators explicitly for A-stable method:

δ
(0)
ε = err(1)

δ
(1)
ε = 1

2 · err(1) + err(2)

δ
(2)
ε = 1

6 · err(1) + 1
3 · err(2) + err(3)

δ
(1)
t = err(1)

δ
(2)
t = 3

2 · err(1) + err(2)

δ
(3)
t = 5

3 · err(1) + 4
3 · err(2) + err(3) .

(B.16)

The derivation of error estimates within the L-stable scheme is analogous and thus omitted.
For k = 1, 2, 3, the error estimates are explicitly given by

Estimators explicitly for L-stable method:

δ
(0)
ε = err(1)

δ
(1)
ε = 1

2 · err(1) + err(2)

δ
(2)
ε = 2

3 · err(1) + 4
3 · err(2) + err(3)

δ
(1)
t = err(1)

δ
(2)
t = 3

2 · err(1) + err(2)

δ
(3)
t = 13

6 · err(1) + 7
3 · err(2) + err(3) .

(B.17)
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Appendix C

Derivatives of the generating functions

The generating functions η(2)(x), η(4)(x) and η(6)(x) can be computed from Theorem (4.4.1)
as

η(2)(x) = π−d/2 · e−|x|22 , (C.1)

η(4)(x) = π−d/2 ·
((

1 +
d

2

)
− |x|22

)
· e−|x|22 , (C.2)

η(6)(x) = π−d/2 ·
(

1
2

(
2 +

d

2

)(
1 +

d

2

)
−
(

2 +
d

2

)
|x|22 +

1
2
|x|22
)
· e−|x|22 . (C.3)

From the definition of the generator A in (1.18), the following identities can be derived

Aη =− div (F ) · η − 〈F, ∇η〉, (C.4)

A2η =− div(F )2 · η + 2 · div(F ) · 〈F,∇η〉
− 〈F, DF T∇η〉+ 〈F, hess (η) · F 〉, (C.5)

where 〈·, ·〉 denotes the scalar product, div(F ) the divergence of F , ∇η is the gradient of
η(x), hess (η) the Hessian matrix of η(x), and DF the Jacobian of F (x). The action of
the generator A on the generating functions can be computed by using the above relations.
The first order partial derivatives of the generating functions are given by

∂

∂xi
η(2)(x) = −2xi · η(2)(x), (C.6)

∂

∂xi
η(4)(x) = −2xi ·

(
π−d/2e−|x|

2
2 + η(4)(x)

)
, (C.7)

∂

∂xi
η(6)(x) = −2xi ·

(
π−d/2e−|x|

2
2

(
2 +

d

2
− |x|22

)
+ η(6)(x)

)
. (C.8)

These derivatives can be used to compute Aη according to (1.18). The computation of A2η
requires the second-order mixed derivatives of the generating functions, which are given
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by:

∂2

∂xj∂xi
η(2)(x) = −δij · 2 · η(2)(x) + 4xixj · η(2)(x) (C.9)

∂2

∂xj∂xi
η(4)(x) = −δij · 2 ·

(
π−d/2e−|x|

2
2 + η(4)(x)

)
(C.10)

+ 4xixj ·
(

2 · π−d/2e−|x|22 + η(4)(x)
)

∂2

∂xj∂xi
η(6)(x) = −δij · 2 ·

(
π−d/2e−|x|

2
2

(
2 +

d

2
− |x|22

)
+ η(6)

)
(C.11)

+ 4xixj ·
(
π−d/2e−|x|

2
2 ·
(

5 + d− 2 · |x|22
)

+ η(6)(x)
)
,

where δij = 1, if i = j and 0 otherwise.

106



Zusammenfassung

Gewöhnliche Differentialgleichungen nehmen eine essentielle Stellung in der mathemati-
schen Modellierung ein. Als Voraussetzung für zuverlässige Resultate muss sowohl in der
Modellbildung als auch in der Analyse des Modells der Einfluss von Unsicherheit und/oder
Variabilität in den Eingabedaten berücksichtigt werden. Mit Hilfe von Sensitivitätsanalyse
wird untersucht, wie sich Unsicherheit und Variabilität durch die Modelldynamik ausbreiten
und sich somit auf die Ausgabedaten auswirken. Globale Sensitivitätsanalyse untersucht
die Auswirkungen von Abweichungen in den Eingabedaten, die sich möglicherweise über
den gesamten Zustandsraum erstrecken. Zwei Probleme, die die globale Analyse erschwe-
ren, sind hohe Dimensionen und eine Kontrolle der Genauigkeit, mit der die Ausgabeun-
sicherheit geschätzt wird. Die meisten numerischen Ansätze konzentrieren sich derzeitig
darauf, die Analyse von hoch-dimensionalen Problemen effizienter zu gestalten. Inwiefern
die geschätzte Ausgabeunsicherheit dabei der tatsächlichen Ausgabeunsicherheit entspricht,
bleibt jedoch meist unklar.

In dieser Arbeit wird ein neuer Ansatz zur globalen Sensitivitätsanalyse von gewöhn-
lichen Differentialgleichungen vorgestellt. Hauptmerkmal dieses Ansatzes ist eine adaptive
Schätzung der Ausgabeunsicherheit, bei der der Approximationsfehler automatisch kontrol-
liert wird. Dafür bedienen wir uns einer äquivalenten Formulierung des Problems, in der
die zeitliche Entwicklung der Wahrscheinlichkeitsdichte der unsicheren Zustandsvariablen
durch eine partielle Differentialgleichung beschrieben wird. Zur Lösung dieser Differen-
tialgleichung kombinieren wir neue Ansätze aus Numerik und Approximationstheorie. Die
hier vorgestellte Methode kontrolliert den Approximationsfehler, indem sowohl die Zeit- als
auch die Ortsdiskretisierung angepasst wird. Wir verwenden ein Rothe-Verfahren, das einen
angemessenen Kontext für die separate Schätzung von Zeit- und Ortsfehlern schafft, so dass
die Diskretisierung entsprechend adaptiert werden kann. Für die Ortsdiskretisierung ver-
wenden wir Approximate Approximations, eine neu eingeführte Approximationsmethode,
die hier zum ersten Mal im Rahmen eines adaptiven Rothe-Verfahrens eingesetzt wird.

Wir analysieren die Konvergenz des Verfahrens und untersuchen, wie sich Approximate
Approximations für die adaptive Lösung der Ortsprobleme eignen. Wir zeigen, dass das
Verfahren konvergiert. Darüber hinaus geben die theoretischen Resultate direkt Aufschluss
darüber, wie eine effiziente Implementierung realisiert werden kann. Die Ergebnisse wer-
den anhand von numerischen Beispielen illustriert, die auch zeigen, dass das Verfahren
eine hohe Genauigkeit bei der Schätzung der Ausgabeunsicherheiten erzielt. Desweiteren
erweisen sich Approximate Approximations als vorteilhaft innerhalb des adaptiven Ver-
fahrens, da sowohl Fehlerschätzer als auch Approximationen hoher Ordnung zu vertret-
baren Rechenzeiten verfügbar sind. Aktuelle Fortschritte in der Theorie von Approximate
Approximations, beruhend auf einer gitterfreien Diskretisierung, lassen außerdem darauf
hoffen, dass sich das in dieser Arbeit vorgestellte Konzept auch auf höher-dimensionale
Probleme übertragen lässt.
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Abbreviations & Notation

Abbreviations

FAST Fourier amplitude sensitivity test

MC Monte Carlo

ODE Ordinary differential equation

PDE Partial differential equation

TRAIL Trapezoidal Rule for Adaptive Integration of Liouville dynamics

Notation

A Infinitesimal generator of the semigroup of Frobenius-Perron operators

AK Infinitesimal generator of the semigroup of Koopman operators

| · | Vector norm, unless stated otherwise

∆u(k)
t Difference between two solutions of order k + 1 and k at time t

∆û(k)
t Difference between two spatially perturbed solutions of order k + 1 and

k at time t

δ
(k)
ε Spatial perturbation of the temporal error estimate for the kth-order

solution

δ
(k)
t Spatial perturbation of the kth-order solution at time t

εt(τ) True temporal error at time t+ τ

ε̂
(k)
t Spatially perturbed temporal error estimate of a solution of order k at

time t+ τ

û
(k)
t Spatially perturbed solution of order k at time t

Id Identity operator

Kt Koopman operator with respect to the evolution Φt

〈·, ·〉 Scalar product

Mh,Du(x) Approximate approximation of u(x)

Pt Frobenius-Perron operator corresponding to the evolution Φt
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L γ
k (x) Generalized Laguerre polynomial

µ(B) Measure of set B

||·||Lp(Ω) Lp-norm restricted to the domain Ω ⊂ Rd

P[B] Probability of set B

Φt Evolution operator

ε
(k)
t (τ) Temporal error estimate of a solution of order k at time t+ τ

F (x) Vector field of ODE with extended state space

Lk(x) Laguerre polynomial of order k

r(z) Rational approximation to ez

R
(k)
τ Rational approximation of order k to the semigroup of Frobenius-Perron

operators

TOL Local tolerance

TOLt Local temporal tolerance

TOLx Local spatial tolerance

u
(k)
t Solution of order k at time t

ut = u(t, ·) Probability density function of the random state variable Xt

Xt Random state variable at time t

||·|| Lp-norm, unless stated otherwise
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