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CHAPTER 1

Abstract

We begin this thesis by generalizing some results related to a recently proposed positive system model

of TCP congestion control algorithms. Then, motivated by a mean field analysis of the positive

system model, a novel, stateless, queue management scheme is designed: Multi-Level Comparisons

with index l (MLC(l)). In the limit, MLC(l) enforces max-min fairness in a network of TCP flows.

We go further, showing that counting past drops at a congested link provides sufficient information to

enforce max-min fairness among long-lived flows and to reduce the flow completion times of short-lived

flows. Analytical models are presented, and the accuracy of predictions are validated by packet level

ns2 simulations.

We then move our attention to efficient measurement and monitoring techniques. A small active

counter architecture is presented that addresses the problem of accurate approximation of statistics

counter values at very-high speeds that can be both updated and estimated on a per-packet basis.

These algorithms are necessary in the design of router-based flow control algorithms since on-chip

Static RAM (SRAM) currently is a scarce resource, and being economical with its usage is an impor-

tant task. A highly scalable method for heavy-hitter identification that uses our small active counters

architecture is developed based on heuristic argument. Its performance is compared to several state-

of-the-art algorithms and shown to out-perform them.

In the last part of the thesis we discuss the delay-utilization tradeoff in the congested Internet links.

While several groups of authors have recently analyzed this tradeoff, the lack of realistic assumption in

their models and the extreme complexity in estimation of model parameters, reduces their applicability

at real Internet links. We propose an adaptive scheme that regulates the available queue space to

keep utilization at desired, high, level. As a consequence, in large-number-of-users regimes, sacrificing

1-2% of bandwidth can result in queueing delays that are an order of magnitude smaller than in the

standard BDP-buffering case. We go further and introduce an optimization framework for describing

the problem of interest and propose an online algorithm for solving it.

8



CHAPTER 2

Introduction

The Internet is a large distributed network that has a huge impact on the modern world. A major

technical step that allowed the building of a variety of services in the Internet was the development of

the reliable, congestion-aware protocol for data delivery: the Transmission Control Protocol (TCP).

The current implementation of TCP is based on the AIMD paradigm proposed in [49]. Since then, a

number of enhancements have been proposed to improve network behavior in congested environments.

These enhancements include Active Queue Management (AQM), Differentiated Services architecture

(DiffServ), Explicit Congestion Notification (ECN), loss based and delay based TCP variants, and

many others.

Router-based mechanisms for congestion control that do not require explicit cooperation with

end-to-end users are particularly attractive since they potentially allow a diverse set of end-to-end

congestion control policies to coexist in the network. An important requirement that these router-

based congestion control schemes must posses is scalability. Line speeds in the Internet have increased

at a rate that is much higher than that of hardware components (such as packet buffer, network

processor, RAM, etc). Therefore, a scalable router-based congestion control algorithm should utilize

existing hardware devices in a manner that would enable operation at very high line speeds. In the

current Internet most very high-speed links are rarely congested, but with ever increasing demands for

bandwidth, we may not enjoy an over-provisioned best-effort Internet indefinitely. However, at times

of congestion, many existing router-based congestion control schemes that were designed for low line

speeds would become infeasible, and some efficient and computationally-lighter algorithms would be

needed. In this thesis several algorithms are designed to address this scenario by improving network

performance at very high speeds.

The main issues we are concerned with are fairness, Flow Completion Time (FCT) and in the latter

part of this thesis the interaction between utilization and queueing delays. The early algorithms for

enforcing fairness and small FCT usually require state information that is significantly beyond the
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abilities of the high-speed routers, which are built with very limited high-speed memory. In this thesis

we show that a very small amount of information is enough for enforcing fairness and small FCT by

designing the appropriate algorithms.

The interaction between queueing delays and link utilization has been an important research

problem in the networking community. Although many models exist in the literature that attempt

to capture this relationship, they are not directly applicable to real Internet links because of their

complexity and the lack of realistic assumptions on which the models are derived. In the last part

of this thesis we propose a measurement approach to the problem of interest rather than a modelling

approach. The proposed algorithms for regulating delay-utilization tradeoff can operate at arbitrary

line speeds, do not require expensive estimation techniques and are robust to the nature of traffic

patterns.

2.1 Structure and Contributions

In Chapter 3 we review a recently proposed positive system model [99] of a network of TCP flows. We

relax the assumptions made in [99] and characterize the asymptotic behavior of throughput of AIMD

users. The main tool for obtaining these results is nonnegative matrix theory. Using it we relate the

random matrix model to standard fixed-point theory.

A mean field analysis of random matrix model motivated us to consider a class of AQM algorithms,

that we call Power-Drop (PD) schemes. In Chapter 4 we will present a particular implementation

of PD scheme called Multi-Level Comparisons with index l (MLC(l)). A mean field analysis of

the random matrix model gave us some intuition on resource allocation established by PD schemes.

However, a flow-level Markov chain model is proposed to formalize the findings of the matrix-model

based mean-field analysis. The main feature of the scheme is the fact that it can enforce max-min

fairness on arbitrary network of TCP flows without any state information (other than packets that

are already in the queue).

In Chapter 5 we develop a computationally light and memory efficient scheme for enforcing fairness

called Markov Active Yield (MAY). The design of MAY is based on the following paradigm: Drop

proportionally to amount of past drops. Surprisingly, for an arbitrary set of elastic or inelastic users,

the resource allocation is max-min fair in a network of MAY queues. Keeping state only for dropped

packets (instead of arrived packets) can reduce computational/memory requirements by order(s) of

magnitude compared to existing fair-scheduling schemes.

Chapter 6 contains two randomized algorithms for efficient statistics-counters architecture that

maintains counters that can be both estimated and updated at a per-packet basis. In Chapter 7

we propose a scalable algorithm called Real-time Heavy-hitter Estimator (RHE) for heavy-hitter

identification. A small memory overhead, and only a few CPU cycles per packet, allow this algorithm

to scale with line speeds of up to 40Gbps. RHE exhibits superior performance compared to several

state-of-the-art per-flow traffic measurement tools: Multistage filters [28], CATE [44] and Landmark
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LRU [13]. Using RHE we design a FIFO queueing scheme called Heavy-hitter Hold (HH) that enforces

max-min fair resource allocation by simple identification of the heaviest flows and dropping packets

accordingly. The FIFO nature of HH is essential for very high speed (optical) routers where the usual

scheduling algorithms are not feasible since in the optical case there is no equivalent to electronic

buffering memory which is necessary for the implementation of fair schedulers.

The final problem of interest is the delay-utilization tradeoff. While several groups of authors

have recently analyzed this tradeoff, the lack of realistic assumptions in their models and extreme

complexity in estimation of model parameters reduces their applicability for real Internet links. In

Chapter 8 we propose an adaptive scheme that regulates the available queue space to keep utilization

at a desired, high level. As a consequence, in a large-number-of-users regime, sacrificing 1-2% of

bandwidth can result in queueing delays an order of magnitude smaller than in standard BDP-buffering

case. In Chapter 9 we go further and introduce an optimization framework to settle the problem of

interest. By defining the relative importance between utilization and queueing delay, one can formulate

the optimization problem of choosing the queueing-scheme parameter (available buffer space, drop

probability, virtual queue capacity, etc.) that maximizes overall benefit.

The papers contributing to chapter 3 are listed below.

• A. Leizarowitz, R. Stanojević, R. Shorten, “Tools for the analysis and design of communication

networks with Markovian dynamics”. Proceedings of IEE, Control Theory and Applications,

vol. 153(5), pp. 506-519, 2006.

• F. Wirth, R. Stanojević, R. Shorten, D. Leith. “Stochastic equilibria of AIMD communication

networks”. SIAM Journal on Matrix Analysis and Applications, vol. 28(3), pp. 703-723, 2006.

The paper contributing to chapter 4 is:

• R. Stanojević, R. Shorten. “Beyond CHOKe: Stateless fair queueing”. Proceedings of NET-

COOP 2007, Avignon, France, LNCS, Springer, vol.4465.

The paper contributing to chapter 5 is:

• R. Stanojević, R. Shorten. “Drop counters are enough”. Proceedings of IEEE IWQoS, Chicago,

USA, 2007.

The paper contributing to chapter 6 is:

• R. Stanojević. “Small active counters”. Proceedings of IEEE Infocom, Anchorage, USA, 2007.

The following two papers are related to the material presented in Chapter 8. The first one develops

the Active DropTail (ADT) algorithm while the second one uses ADT for performing the measurement

study of the router buffers.

• R. Stanojević, R. Shorten, C. Kellet. “Adaptive tuning of Drop-Tail buffers for reducing queueing

delays”. IEEE Communications Letters, vol. 10(7), July, 2006.
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• G. Vu-Brugier, R. Stanojević, D. Leith, R. Shorten. “A critique of recently proposed Buffer-

Sizing strategies”. ACM Computer Communications Review, vol. 37(1), January 2007.

The paper contributing to chapter 9 is:

• R. Stanojević, R. Shorten. “How expensive is link utilization?”. Proceedings of NET-COOP

2007, Avignon, France, LNCS, Springer, vol.4465.
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Part I

Matrix model
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CHAPTER 3

Matrix model

Abstract - In this chapter we review the random matrix model of the AIMD congestion control

algorithm proposed in [99]. Using the nonnegative structure of the model and powerful machinery of

Markov chain theory we extend the model from [99] in several directions.

3.1 Positive system model of AIMD congestion control algo-

rithms

Various types of models for AIMD networks have been developed by several authors, see for

example [102] or [59] and the references therein for an overview of this work. We base our discussion

on a recently developed random matrix model of AIMD dynamics that was first presented in [99].

This model uses a set of stochastic matrices to characterize the behaviour of a network of AIMD flows

that compete for bandwidth via a single bottleneck router (as depicted in figure 3.1).

While other similar random matrix models have been proposed in the literature [8, 9], the model

proposed in [99] has several attractive features. In particular, the authors use sets of nonnegative

column stochastic matrices to model the evolution of communication networks and results from

Frobenius-Perron theory to characterize the stochastic properties of such networks.

Suppose that the network under consideration has n flows, all of them operating an Additive

Increase Multiplicative Decrease (AIMD) congestion control algorithm, competing for bandwidth over

a bottleneck link which has a drop-tail queue. Then the current state of the network at times when

a packet is dropped at the bottleneck router (referred to as the k’th congestion event) is given by the

throughput of each network source at this time. We describe the network state at the k-th congestion

event by an n-dimensional vector W (k) = {wi(k)}n
i=1 where wi(k) is the i-th component of W (k),

which is equal to the throughput of the i’th source when this source is informed of network congestion.
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Figure 3.1: Network with single bottleneck router.

It has been shown in [99] that the sequence {W (k)}∞k=0 satisfies:

W (k + 1) = A(k)W (k), (3.1)

where W (k) = [w1(k), · · · , wn(k)]T , and

A(k) =




β1(k) 0 · · · 0

0 β2(k) 0 0
... 0

. . . 0

0 0 · · · βn(k)




+

1∑n
j=1 αjγj




α1γ1

α2γ2

· · ·
αnγn




[
1− β1(k), · · · , 1− βn(k)

]
. (3.2)

For every j ∈ {1, 2, . . . , n}, the constant αj > 0 in (3.2) is the Additive Increase parameter and

γj > 0 is the constant 1/RTT 2
j . Here RTTj is the round-trip time for a packet from the j-th flow just

before congestion, and either βj(k) = 1, which holds if the j-th flow didn’t lose any packet during the

k-th congestion event, or βj(k) is equal to the Multiplicative Decrease parameter β0
j ∈ (0, 1) if the

j-th flow did lose some packet(s) in the k-th congestion event.

Comment 3.1 We exclude the possibility that β1(k) = β2(k) = · · · = βn(k) = 1, since there is no

congestion event without losing at least one packet.

We denote by M the set of the possible values of the matrices A(k), so that

M = {M1,M2, . . . ,Mm}

for some m ≤ 2n − 1 and for all k. Then A(k) ∈ M for every k ≥ 0, and we remark that strict

inequality m < 2n − 1 may hold; namely that in the model which we consider, certain configurations

of packets’ loss cannot practically occur.
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Let I(k) = {j : βj(k) = β0
j } be the set of labels of flows which have experienced a loss of a

packet during the k-th congestion event. Note that for each k the matrix A(k) has a strictly positive

j-th column if and only if j ∈ I(k), and that for j 6∈ I(k), the j-th column of A(k) is equal to ej ,

the j-th column of the identity n× n matrix In. We denote by Σ the (n− 1)-dimensional simplex of

all the n-dimensional stochastic vectors. Recall that a vector v = (v1, . . . , vn) ∈ IRn is stochastic if

each one of its coordinates vi is nonnegative and v1 + · · ·+ vn = 1. It turns out that the matrices Mi

(1 ≤ i ≤ m) which compose M, are nonnegative and column-stochastic [11]. Therefore Mi(Σ) ⊂ Σ

holds for every 1 ≤ i ≤ m. By normalizing W (0) to belong to Σ we may therefore assume, with no

loss of generality, that W (k) ∈ Σ for every k ≥ 0.

For networks with routers employing a drop-tail queueing discipline, it is often assumed in the

networking community that congestion events may in some circumstances be modelled as sequences of

independent events [2, 8, 91, 99]. In terms of the model described above, this means that for networks

with a single bottleneck link and with a drop-tail queue the following holds:

Assumption (i) {A(k)}k∈N is a sequence of independent and identically distributed (i.i.d) ran-

dom variables A(k), and for every j ∈ {1, 2, . . . , n} the probability that the j-th flow detects a drop

in each congestion event is positive.

As we have already mentioned, in designing rules which determine how the network will react to

congestion, one can typically have two approaches. The first is the design of flow-based congestion

control algorithms and the second is the design of a queueing discipline. Here we concentrate on the

latter and propose two general queueing disciplines which we characterize by computing the stationary

statistics for the vector W (k) for each of these cases. We first consider queuing discipline with the

property that packets are dropped from the queue in such a manner that the following assumption is

valid:

Assumption (ii) {A(k)}k∈N is a stationary Markov chain on the finite set of matrices M with

transition matrix P ∈ IRm×m. Moreover we assume that for each j ∈ {1, 2, . . . , n} there exists a

matrix M ∈M with positive j-th column.

We note that as in the i.i.d. case, we must have the latter assumption in order to ensure that each

flow will see a drop at some point. We also remark that stationarity is assumed to avoid technical

difficulties and it is not essential. An additional assumption in Sections 3.2 and 3.3 (which is relaxed

in 3.4) is that the transition matrix P has strictly positive entries. Theorems 3.2 and 3.4 give the

asymptotic values of E(W (k)) and E[(W (k))(W (k))T ] in the limit where k tends to infinity, which we

denote V ∗ and D∗ respectively. Although we do not have explicit formulas for V ∗ and D∗, Theorems

3.1 and 3.3 provide iterative algorithms for computing them in a geometric convergence rate. In

section 3.4 we extend the results of the previous two sections to the case where the matrix P is merely

primitive and its entries are not necessarily strictly positive.

The second queueing discipline we propose here is the following: the probability that a certain

set of flows will detect a drop during the k-th congestion event depends only on the vector W (k).
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Formally we assume that the router drops packets from the queue when it is full in such fashion that

the following is true:

Assumption (iii) {W (k)}k∈N is a stochastic process in the set of stochastic vectors Σ, which

has the following property:

For every i ∈ {1, 2, . . . , m} and w ∈ Σ, the conditional probability of A(k) given W (k) is expressed

by

P [A(k) = Mi| W (k) = w] = pi(w)

for some positive Dini-continuous functions pi : Σ → IR+ which satisfy
∑m

i=1 pi(w) = 1 for all w ∈ Σ.

Again, for each i ∈ {1, 2, . . . , n} we require the existence of a matrix M ∈M with positive i-th column.

In view of the relation W (k + 1) = A(k)W (k), Assumption (iii) implies that the distribution of

W (k+1) is completely determined by the distribution of W (k). Section 3.5 is devoted to studying the

behavior of W (k) under Assumption (iii). It turns out that the study of the model under Assumption

(iii) can be reduced to its study under Assumption (ii). This enables us to establish the analogous

results concerning the asymptotic behavior of E(W (k)) and V ar(W (k)) for this case. In particular,

the latter can be computed by iterative methods producing schemes which converge at a geometric

rate.

3.2 The asymptotic expectation of W (N)

In this section we compute the equilibrium expected value of the window size variable W (N)

under Assumption (ii), and supposing that the transition probabilities Pij are positive:

Pij > 0 for every 1 ≤ i, j ≤ m. (3.3)

Denoting by ρ = (ρ1, ..., ρm) the unique equilibrium distribution corresponding to P , we associate

with Pij the backward transition probabilities matrix P̃ (see [81], Chapter 1.9) given by

P̃ij =
ρi

ρj
Pij =

P [A(k − 1) = Mi]
P [A(k) = Mj ]

P [A(k) = Mj |A(k − 1) = Mi] =

= P [A(k − 1) = Mi|A(k) = Mj ]. (3.4)

We interpret P̃ij as the conditional probability that the system occupied the state Mi at the previous

instant of time given that it is presently at state Mj , for the stationary Markov chain {Ak}.
Let Φ : (IRn)m → (IRn)m be the linear mapping given by:

Φ(V ) =

(
m∑

i=1

P̃i1MiVi, . . . ,

m∑

i=1

P̃imMiVi

)
(3.5)

where V = (V1, ..., Vm), Vi ∈ IRn and Mi ∈M for every 1 ≤ i ≤ m. We have the following result:
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Proposition 3.1 For an arbitrary W (0) = s ∈ Σ and all i = 1, 2, . . . , m, the following limits exist:

Vi = lim
k→∞

E[W (k)|A(k) = Mi], i = 1, 2, ..., m. (3.6)

Moreover, the vector V = (V1, ..., Vm) ∈ Σm whose components are defined in (3.6) satisfies the

fixed point equation

V = Φ(V ). (3.7)

Proof. The proof will be given after establishing Theorem 3.1.

Let S be the subspace of IRn defined by:

S =

{
x ∈ IRn :

n∑

i=1

xi = 0

}
.

It turns out that Φ has the following property:

Proposition 3.2 The mapping Φ is linear from Σm into itself, and from Sm into itself.

Proof: Both claims follow from the facts that if M is a column stochastic n×n matrix, then for

every x ∈ IRn we have
n∑

i=1

(Mx)i =
n∑

i=1

xi,

and that each Mi is a column stochastic matrix.

We know that any matrix in M can be written in the form

M = diag(β1, β2, ..., βn) + (δ1, . . . , δn)T ((1− β1), . . . , (1− βn))

where 0 < βk ≤ 1 for every 1 ≤ k ≤ n and not all of them are equal to 1. We denote β = (β1, ..., βn)T ,

δ = (δ1, ..., δn)T , and δ is a stochastic vector with positive entries. If the first q entries of β are equal

to 1, namely β1 = β2 = · · · = βq = 1 for some q < n, and the last n− q = r > 0 entries are all smaller

than 1, then our matrix M has the following form:

M =


 Iq M ′

0 M ′′


 . (3.8)

The matrix Iq in (3.8) is the q × q identity matrix, all the entries in the last r columns are positive,

and the sum of the entries in each of these columns is equal to 1.

The following result is the main technical tool that we employ in studying properties of Φ. We

denote by ‖·‖1 the L1 norm of vectors in IRn. We will prove it as Corollary 3.2 after having established

Lemma 3.3. A direct proof can be found in [118].

Lemma 3.1 Let M ∈M. Then for every x ∈ S we have

Mx 6= x ⇒ ‖Mx‖1 < ‖x‖1. (3.9)
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Proof: See the proof of Corollary 3.2.

Comment 3.2 The property which is established in Lemma 3.1 is referred to in the literature as the

paracontracting property; see [45] chapter 8 or [26]. We have thus showed that the matrices Mi are

paracontractive in S in L1 norm. We will again use the notion of paracontractivity in Section 3.5.

Lemma 3.2 Suppose that M ∈ M is such that the columns which contain zeros are indexed by

i1, i2, . . . , iq, and let x ∈ S be such that Mx = x. Then x belongs to the subspace spanned by the basic

vectors ei1 , ei2 , . . . , eiq
.

Proof: We suppose without loss of generality that the first q columns of M contain zeros and

the last r = n − q columns are positive, i.e. that M has the form given by (3.8). We will establish

that the last r coordinates of x are equal to 0. If r = 0 then there is nothing to prove. If r = n then

M is a stochastic matrix with strictly positive entries, and therefore it is a contraction on S, implying

that x = 0.

We now suppose that 0 < r < n, and let P be the r × r submatrix of M which is defined by

the last r rows and last r columns. If we denote by x′ the r-dimensional vector composed of the last

r coordinates of x, then Px′ = x′. But the sum of each column of P is smaller than 1 and P is

nonnegative, hence ‖Px′‖1 < ‖x′‖1 whenever x′ 6= 0, implying that x′ must vanish. This concludes

the proof of the lemma.

We define on (IRn)m the norm

‖V ‖ = ‖(V1, . . . , Vm)‖ = max
1≤i≤m

(‖Vi‖1),

and consider the subspace Sm and subset Σm of (IRn)m endowed with this norm. The next result

establishes that Φ2 is a contraction on the metric space Σm as well as on the normed space Sm.

Proposition 3.3 Let Φ be the mapping given by (3.5). We assume that (3.3) holds, so that in view

of (3.4), all the backward probabilities P̃ij are positive as well. Then there exists a constant θ < 1 such

that

‖Φ2(U)− Φ2(V )‖ ≤ θ‖U − V ‖ (3.10)

holds for all U, V ∈ Σ.

Proof: We will establish that for every pair U 6= V in Σm, the inequality ‖Φ2(U) − Φ2(V )‖ <

‖U − V ‖ holds. This will imply the assertion of the proposition in view of the compactness of Σm.

Thus let U = (U1, . . . , Um) and V = (V1, . . . , Vm) be any two different elements belonging to Σm.
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We have

‖Φ(U)− Φ(V )‖ = max
j
‖

m∑

i=1

P̃ijMi(Ui − Vi)‖1 (3.11)

≤ max
j

m∑

i=1

P̃ij‖Mi(Ui − Vi)‖1 (3.12)

≤ max
j

m∑

i=1

P̃ij‖Ui − Vi‖1 (3.13)

≤ max
j

m∑

i=1

P̃ij‖U − V ‖ = ‖U − V ‖. (3.14)

We will next check under which conditions equality ‖Φ2(U)− Φ2(V )‖ = ‖U − V ‖ can hold. We

thus assume that U 6= V are such that ‖Φ(Φ(U))− Φ(Φ(V ))‖ = ‖U − V ‖. It follows from

‖U − V ‖ = ‖Φ(Φ(U))− Φ(Φ(V ))‖ ≤ ‖Φ(U)− Φ(V )‖ ≤ ‖U − V ‖

that ‖Φ(U)−Φ(V )‖ = ‖U−V ‖. Thus in this situation all the inequalities in (3.11)-(3.14) are actually

equalities.

We now denote W = U − V ∈ Sm and we note that in view of (3.14), for some j,

m∑

i=1

P̃ij‖Wi‖1 = max
i

(‖Wi‖1) = ‖W‖. (3.15)

Since we suppose that all P̃ij are positive, (3.15) implies

‖Wi‖1 = ‖W‖ for every 1 ≤ i ≤ m. (3.16)

It then follows from (3.13) that

max
j

m∑

i=1

P̃ij‖Mi(Wi)‖1 = max
j

m∑

i=1

P̃ij‖Wi‖1 = ‖W‖,

which in view of ‖Mi(Wi)‖1 ≤ ‖Wi‖1 and the positivity of all the Pij , implies

‖Mi(Wi)‖1 = ‖W‖ (3.17)

for all i. It follows from (3.16), (3.17) and Lemma 3.1 that

Mi(Wi) = Wi (3.18)

for all i. We thus conclude from (3.12), (3.17) and (3.18) that there exist some j such that

‖
m∑

i=1

P̃ij(Wi)‖1 =
m∑

i=1

P̃ij‖Wi‖1 = ‖W‖.

However, this can happen if and only if for every r ∈ {1, 2, . . . , n}, there does not exist 1 ≤ i, j ≤ m

such that the r-th coordinates (Wi)r and (Wj)r are of opposite signs.

By employing the above argument, and also the conclusion (3.18) to the equality ‖Φ(Φ(W ))‖ =

‖Φ(W )‖ rather than to ‖Φ(W )‖ = ‖W‖, we have that for all k ∈ {1, 2, . . . , m}

Mk

(
m∑

i=1

P̃ikWi

)
=

m∑

i=1

P̃ikWi. (3.19)
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Assumption (ii) of our model is such that for every r ∈ {1, 2, ..., n} there exists a matrix Mk ∈M
with positive r-th column. It follows from Lemma 3.2 and 3.19 that the r-th coordinate of

∑m
i=1 P̃ikWi

must vanish. But we have that there are no two indices i1 and i2 such that the r-th coordinates of

Wi1 and Wi2 have opposite signs. This fact implies that the r-th coordinate of the vector Wi must

vanish, and this is true for every 1 ≤ i ≤ m. Since r is arbitrary, we conclude that Wi = 0 for all i.

We have thus established that if U, V ∈ Σm are distinct then

‖Φ2(U)− Φ2(V )‖ < ‖U − V ‖.

The proof of the proposition is thus complete.

Theorem 3.1 There exists a unique solution V ? for equation (3.7), and the iteration scheme

V (k+1) = Φ(V (k)), k = 0, 1, 2, ...

with any starting point V (0) = V0 in Σm satisfies

lim
k→∞

V (k) = V ?. (3.20)

Proof: The existence and uniqueness of solutions of (3.7) follows directly from the contractive

property of Φ2 and generalized Banach fixed point theorem (see [85], Chapter C.6.3).

Proof of Proposition 3.1. Let Vi(k) = E[W (k)|A(k) = Mi]. The sequence of vectors V (k) =

(V1(k), . . . , Vm(k)) ∈ Σm satisfies

V (k + 1) = Φ(V (k)). (3.21)

From Theorem (3.1), {V (k)}∞k=0 converge and the existence of the limits in (3.6) follows. In view

of (3.21) these limits satisfy the fixed point equation (3.7). ¤
We have the following result which is actually Theorem 3.1 from [99]:

Corollary 3.1 Let Assumption (i) hold, so that the probability that A(k) = Mi is equal to ρi for

every k ≥ 0 and 1 ≤ i ≤ m. Then the asymptotic expected value of W (k) is the unique stochastic

eigenvector of
∑m

i=1 ρiMi which corresponds to the eigenvalue 1.

Proof: The sequence {A(k)} of i.i.d. random matrices can be seen as a Markov chain on the set

M = {Mi : ρi > 0} with the m ×m transition matrix P given by Pij = ρj . Since Pij is positive

for every i and j we have that P̃ij = ρiPij/ρj = ρi > 0. We look for a solution of equation (3.1) for

which all the components Vi are the same, say equal to V̄ . This yields the equation

V̄ =

(
m∑

i=1

ρiMi

)
V̄ ,

which implies the assertion of the corollary.
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Theorem 3.2 Under Assumption (ii), and assuming that the transition matrix P has strictly positive

entries, then the asymptotic behavior of the expectation of the random variable W (N) is given by:

lim
N→∞

E(W (N)) =
m∑

i=1

ρiV
?
i , (3.22)

where V ? = (V ?
1 , . . . , V ?

m) ∈ Σm is the unique solution of (3.7), and ρ = (ρ1, . . . , ρm) is the Perron

eigenvector of the transition probability matrix (Pij).

Proof: The proof is immediate:

lim
N→∞

E(W (N)) =

lim
N→∞

m∑

i=1

E[W (N) | A(N) = Mi]P [A(N) = Mi] =
m∑

i=1

ρiV
?
i .

3.3 The asymptotic variance of W (N)

The goal of this section is to compute the asymptotic value of the second order1 moment of W (N)

under Assumption (ii) and assuming a positive transition matrix P .

Define the linear mapping Ψ : (IRn×n)m → (IRn×n)m by:

Ψ(D1, . . . , Dm) =

(
m∑

i=1

P̃i1MiDiM
T
i , . . . ,

m∑

i=1

P̃imMiDiM
T
i

)
(3.23)

Suppose for a moment that for W (0) = s ∈ Σ the following limits exist:

Di = lim
k→∞

E[W (k)W (k)T |A(k) = Mi].

Comment 3.3 Note that each Di must be a symmetric nonnegative definite matrix, that it has non-

negative entries and it satisfies

Diu = lim
k→∞

E[W (k)W (k)T u | A(k) = Mi] =

lim
k→∞

E[W (k) | A(k) = Mi] = Vi, (3.24)

where u is the n-dimensional vector which satisfies ui = 1 for every 1 ≤ i ≤ n.

In view of (3.24) let D be the set:

D = {(D1, . . . , Dm) | Di ∈ IRn×n, Di = DT
i , Diu = Vi}. (3.25)

It turns out that Ψ maps D into itself. Indeed, (Ψ(D))j is symmetric whenever all Di are such.

Moreover, using (3.7) we obtain
m∑

i=1

P̃ijMiDiM
T
i u =

m∑

i=1

P̃ijMiDiu =
m∑

i=1

P̃ijMiVi = Vj ,

implying that Ψ(D) ∈ D for every D ∈ D. We have the following result:
1What we call variance, or second order moment is actually covariance matrix for the vector W (N):

E[(W (N))i((W (N))j)]− E[(W (N))i]E[(W (N))j ].
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Proposition 3.4 For arbitrary W (0) = s ∈ Σ and all i ∈ {1, 2, . . . , m} the following limits exist:

Di = lim
k→∞

E[W (k)W (k)T |A(k) = Mi]. (3.26)

The m-tuple D = (D1, ..., Dm) ∈ D defined by (3.26) satisfies the fixed point equation

D = Ψ(D). (3.27)

The proof will be given after having established Theorem(3.3)

Let

B = {C | C ∈ IRn×n, C = CT , Cu = 0}. (3.28)

Thus B is the vector space of all n×n symmetric matrices C such that all the columns of B belong

to S. A computation similar to the one preceding Proposition 3.4 implies that Ψ(Bm) ⊂ Bm. Since

the difference between any two elements from D belongs to Bm, then fixing any norm on (IRn×n)m, it

follows that the linear mapping Ψ is a contraction on the metric space D if it is a contraction on the

vector space Bm. We wish to establish the existence and uniqueness of solutions D ∈ D of equation

(3.27). To this end it is enough to find a norm in which the mapping Ψ2 is a contraction on the

complete metric space D.

Let ‖ · ‖ be the norm on IRn×n defined by :

‖A‖ =
n∑

i,j=1

|Aij | for A ∈ IRn×n.

The next result establishes a crucial connection between this norm and the mapping C 7→ MCMT

for C ∈ B and M ∈M. It is close in spirit to Lemma 3.1.

Lemma 3.3 Let M ∈M. Then the following relation

MC 6= C ⇒ ‖MCMT ‖ < ‖C‖ (3.29)

holds for every C ∈ B.

Proof: As in the proof of Lemma 3.2, we consider a matrix M which has the form (3.8) for some

0 ≤ q < n, and where the last r = n− q columns are positive. We then have

‖MCMT ‖ =
∑

i,j

|
∑

k,l

mikcklmjl| ≤
∑

i,j

∑

k,l

mikmjl|ckl| =

=
∑

k,l

|ckl|
∑

i

mik

∑

j

mjl =
∑

k,l

|ckl| = ‖C‖ (3.30)

since M is column stochastic. We have thus established

‖MCMT ‖ ≤ ‖C‖ (3.31)
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for any column stochastic matrix M and any matrix C. We will next prove that equality holds

in (3.31) only if MC = C. We remark that if MC = C, then in view of C = CT , we have

MCMT = CMT = (MC)T = CT = C,

implying that equality holds in (3.31) if MC = C.

We now suppose that M and C are such that ‖MCMT ‖ = ‖C‖. This is possible if and only if

for each pair 1 ≤ i, j ≤ n, the only inequality which appears in (3.30) is actually an equality. This,

however, holds if and only if for every 1 ≤ i, j ≤ n the following holds:

Property S. There are no two pairs of indices (k, l) and (k′, l′) such that mikmjl and mik′mjl′

are both positive while ckl and ck′l′ have opposite signs.

For 1 ≤ i ≤ q let Λi = {cil | q < l ≤ n} = {cli | q < l ≤ n}, and denote Λ0 = {ckl | q < k ≤ n, q <

l ≤ n}. Using Property S for a pair i, j ∈ {1, 2, . . . , q}, and noting that for all k, l ∈ {q+1, q+2, . . . , n},
we have mikmjj > 0, miimjl > 0 and mikmjl > 0, and further we conclude that there are no two

elements in set Λij = Λi ∪ Λj ∪ Λ0 with opposite sign. Since for each pair of indices (k, l) and (k′, l′)

with max{k, l} > q and max{k′, l′} > q there is pair i, j ∈ {1, 2, . . . , q} such that both ckl and ck′l′

are contained in Λij , we conclude that either

ckl ≥ 0 whenever max{k, l} > q, (3.32)

or

ckl ≤ 0 whenever max{k, l} > q. (3.33)

For any integer q < l ≤ n the sum of the entries in the l-th column (or row) have the same sign

as the constant sign of its elements, namely nonnegative (non-positive) if (3.32) ((3.33)) holds. Since

this sum is zero, we conclude that all the entries ckl that are such that at least one of k > q and l > q

holds must vanish. Thus C must have the form:

C =


 C ′ 0

0 0




where C ′ ∈ IRq×q, and since M =


 Iq M ′

0 M ′′


, it follows that MC = C, concluding the proof of

the lemma.

Now we are able to present the following short proof of Lemma 3.1.

Corollary 3.2 Let M ∈ M. Then for every x ∈ S we have

Mx 6= x ⇒ ‖Mx‖1 < ‖x‖1. (3.34)
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Proof: Note that for x ∈ S, C = xxT ∈ B we can conclude that

‖MCMT ‖ = ‖MxxT MT ‖ = ‖Mx‖21 ≤ ‖C‖ = ‖x‖21

with equality if and only if MC = C. Moreover from the proof of the previous lemma we conclude

that for all j such that the j-th column of M is positive, the j-th column of C must be zero, which

also means that xj = 0. Thus ‖Mx‖1 = ‖x‖1 implies that Mx = x.

We wish to employ the Banach fixed point theorem to the mapping Ψ on the set D, with the

metric which is induced on D by the following norm

‖B‖ = ‖(B1, . . . , Bm)‖ = max
1≤i≤m

‖Bi‖ (3.35)

on (IRn×n)m. Given this, we are now ready to establish that Ψ2 is a contraction on the metric space

D.

Proposition 3.5 Let Ψ be the mapping given by (3.23) and we assume that the transition matrix P

is positive. Then there exists a constant η < 1 such that

‖Ψ2(D)−Ψ2(E)‖ ≤ η‖D − E‖ (3.36)

holds for all D,E ∈ D.

Proof: We will establish that for every nonzero B ∈ Bm we have ‖Ψ2(B)‖ < ‖B‖, which implies

that there exists a 0 < η < 1 such that

‖Ψ2(B)‖ ≤ η‖B‖, (3.37)

since B is a normed linear space. Clearly (3.36) follows from (3.37) since D − E ∈ D. We thus

consider any B = (B1, . . . , Bm) 6= 0 such that Bi ∈ B and compute

‖Ψ(B)‖ = max
j
‖

m∑

i=1

P̃ijMiBiM
T
i ‖ (3.38)

≤ max
j

m∑

i=1

P̃ij‖MiBiM
T
i ‖ (3.39)

≤ max
j

m∑

i=1

P̃ij‖Bi‖ (3.40)

≤ max
j

m∑

i=1

P̃ij‖B‖ = ‖B‖. (3.41)

We will next check under which conditions the equality ‖Ψ2(B)‖ = ‖B‖ can hold. We thus

assume that B 6= 0 is such that ‖Ψ(Ψ(B))‖ = ‖B‖. It follows from

‖B‖ = ‖Ψ(Φ(B))‖ ≤ ‖Ψ(B)‖ ≤ ‖B‖

that ‖Ψ(B)‖ = ‖B‖. Thus it follows in this situation that all the inequalities in (3.38)-(3.41) are

actually equalities.
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In view of (3.40) and (3.41), for some j

m∑

i=1

P̃ij‖Bi‖ = max
i

(‖Bi‖) = ‖B‖. (3.42)

Since we assume that all the P̃ij are positive, (3.42) implies

‖Bi‖ = ‖B‖ for every 1 ≤ i ≤ m. (3.43)

It then follows from (3.39) that

max
j

m∑

i=1

P̃ij‖MiBiM
T
i ‖ = max

j

m∑

i=1

P̃ij‖Bi‖ = ‖B‖,

which together with the positivity of all the P̃ij imply that

‖MiBiM
T
i ‖ = ‖B‖ (3.44)

for all i. In view of Lemma 3.3 it therefore follows from (3.43) and (3.44) that

MiBiM
T
i = BiM

T
i = (MiB

T
i )T = (MiBi)T = Bi,

namely the equalities

MiBi = Bi and MiBiM
T
i = Bi (3.45)

hold for all i. It follows from (3.38), (3.44) and (3.45) that there exist some j such that

‖
m∑

i=1

PijBi‖ =
m∑

i=1

Pij‖Bi‖ = ‖B‖.

However, this can happen if and only if the following property holds:

A sign condition. For every r, s ∈ {1, 2, . . . , n}, there don’t exist 1 ≤ i, j ≤ m such that the

(rs)-th coordinates (Bi)rs and (Bj)rs have opposite signs.

Employing the above argument, and the conclusion (3.45), to the equality ‖Ψ(Ψ(B))‖ = ‖Ψ(B)‖
it follows that for all k ∈ {1, 2, . . . ,m}

Mk

(
m∑

i=1

PikBi

)
=

m∑

i=1

PikBi. (3.46)

Now let l ∈ {1, 2, . . . , n} be arbitrary. Then by Assumption (ii) of our model, there exists

some matrix Mk ∈ M with positive l-th column. From (3.46) we can conclude that the columns of
∑m

i=1 PikBi are eigenvectors of the matrix Mk, which correspond to the eigenvalue 1. Moreover, they

are convex combination of vectors from S, hence they also belong to S. Using Lemma 3.2, we can

therefore conclude that the l-th column of the matrix
∑m

i=1 PikBi must vanish, and by employing the

above sign condition, it follows that corresponding entries of the various l-th columns of the matrices
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Mi don’t have opposite signs. This implies that all the entries in the l-th columns of the matrices

B1, . . . , Bm must vanish. Since l is arbitrary, we conclude that

B1 = B2 = · · · = Bm = 0.

This contradiction concludes the proof of the lemma.

Theorem 3.3 The spectral radius of the restriction of the mapping Ψ to Bm is smaller than 1. In

particular there exists a unique solution D? for equation (3.27), and the iteration scheme

D(k+1) = Ψ(D(k)), k = 0, 1, 2, ...

with the starting point D(0) = D0, satisfies

lim
k→∞

D(k) = D?

for every D0 ∈ D.

Proof: The proof of this theorem follows the same lines and uses the same arguments as those

employed in the proof of Theorem 3.1.

Proof of Proposition 3.4. Similarly to the proof of Proposition 3.1, let Di(k) = E[W (k)W (k)T |A(k) =

Mi] and D(k) = (D1(k), . . . , Dm(k)) ∈ (IRn×n)m. Then Di(k)u = E[W (k)W (k)T u|A(k) = Mi] =

E[W (k)|A(k) = Mi] = Vi(k) → Vi as k →∞ which means that

lim
k→∞

dist(D(k),D) = 0.

Let ε > 0 and let k0 ∈ N be such that ‖D(k0) − D̃‖ < ε for some D̃ ∈ D. Since the mapping Ψ is

nonexpansive in the norm given by (3.35) on all (IRn×n)m we have:

‖D(k0 + r)−Ψr(D̃)‖ = ‖Ψr(D(k0)− D̃)‖ ≤ ‖D(k0)− D̃‖ ≤ ε.

On the other hand since D̃ is in D,

lim
r→∞

Ψr(D̃) = D′

exists by the previous theorem. This means that there is k1 such that for all r > k1,

‖Ψr(D̃)−D′‖ ≤ ε.

Now we conclude that for all r > k0 + k1:

‖D(r)−D′‖ ≤ ‖D(r)−Ψr−k0(D̃)‖+ ‖Ψr−k0(D̃)−D′‖ ≤ 2ε.

The last relation means that the sequence {D(r)} is a Cauchy, and therefore limr→∞D(r) exists and

(3.26) follows. Having this, (3.27) follows from the continuity of the linear mapping Ψ. ¤

Theorem 3.4 Under Assumption (ii) and the positivity of the transition matrix P , the asymptotic

behavior of the variance

V ar(W (N)) = E[W (N)W (N)T ]− E[W (N)]E[W (N)]T
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is given by:

lim
N→∞

V ar(W (N)) =

=
m∑

i=1

ρiD
?
i −

(
m∑

i=1

ρiV
?
i

)(
m∑

i=1

ρiV
?
i

)T

(3.47)

where D? = (D?
1 , . . . , D?

m) ∈ D is the unique solution of (3.27), and ρ = (ρ1, . . . , ρm) is the Perron

eigenvector of the transition matrix (Pij).

Proof: We have the following equalities:

lim
N→∞

V ar(W (N)) =

lim
N→∞

E[W (N)W (N)T ]− lim
N→∞

E[W (N)]E[W (N)]T =

= lim
N→∞

m∑

i=1

E[W (N)W (N)T | A(N) = Mi]P [A(N) = Mi]

− lim
N→∞

E[W (N)]E[W (N)]T =

=
m∑

i=1

ρiD
?
i −

(
m∑

i=1

ρiV
?
i

)(
m∑

i=1

ρiV
?
i

)T

.

Corollary 3.3 Let Assumption (i) hold, so that the probability that A(k) = Mi is equal to ρi for

every k ≥ 0 and 1 ≤ i ≤ m. Then the asymptotic behavior of V ar(W (k)) is given by

lim
N→∞

V ar(W (N)) = D̄ − V̄ V̄ T , (3.48)

where V̄ is the unique stochastic eigenvector of the matrix
∑m

i=1 ρiMi, and D̄ is the unique solution

of the matrix equation
m∑

i=1

ρiMiDMT
i = D,

which satisfies Du = V̄ . Moreover, D̄ is the unique eigenvector corresponding to eigenvalue 1 and

satisfying Du = V̄ of the linear mapping

D 7→
m∑

i=1

ρiMiDMT
i (3.49)

defined on IRn×n.

Proof: The sequence {A(k)} of i.i.d. random matrices can be seen as Markov chain on the set

M = {Mi : ρi > 0} with the m×m transition matrix P given by Pij = ρj . Since P is positive for

every i and j, it follows that P̃ij = ρiPij/ρj = ρi > 0. We look for a solution of equation (3.27) for

which all the components Di are the same, say equal to D̄. This yields the equation

D̄ =
m∑

i=1

ρiMiD̄MT
i , (3.50)
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which implies the first assertion of the corollary.

For the second assertion we represent the linear mapping in (3.49) by an n2 × n2 matrix with

nonnegative entries, call it T , and apply Perron Frobenius Theorem to T . By Theorem 3.3 the spectral

radius of the restriction of T to B is smaller than 1, but by (3.50) we have that D̄ is an eigenvector

corresponding to the eigenvalue 1. Since the iterations of the mapping (3.49) converge to D̄, it follows

that 1 is the unique eigenvector satsfying D̄u = V̄ . The second assertion follows.

Example 3.1 In this example we illustrate how the previous results can be applied. We consider

a network where the bottleneck router operates according to Assumption(ii). In particular, con-

sider a network of 5 flows with additive increase parameters α = [5, 4, 3, 2, 1], multiplicative de-

crease parameters given by β = [1/3, 2/4, 3/5, 4/6, 5/7], and with corresponding vector γ given by

γ = [1/60, 1/70, 1/80, 1/90, 1/100]. We assume that at congestion events the router drops packets

from only one flow. Thus the set M has 5 elements:

M1 =




0.5054 0 0 0 0

0.1475 1.0000 0 0 0

0.1291 0 1.0000 0 0

0.1147 0 0 1.0000 0

0.1033 0 0 0 1.0000




M2 =




1.0000 0.1291 0 0 0

0 0.6106 0 0 0

0 0.0968 1.0000 0 0

0 0.0860 0 1.0000 0

0 0.0774 0 0 1.0000




M3 =




1.0000 0 0.1033 0 0

0 1.0000 0.0885 0 0

0 0 0.6774 0 0

0 0 0.0688 1.0000 0

0 0 0.0620 0 1.0000




M4 =




1.0000 0 0 0.0860 0

0 1.0000 0 0.0738 0

0 0 1.0000 0.0645 0

0 0 0 0.7240 0

0 0 0 0.0516 1.0000



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M5 =




1.0000 0 0 0 0.0738

0 1.0000 0 0 0.0632

0 0 1.0000 0 0.0553

0 0 0 1.0000 0.0492

0 0 0 0 0.7585




Let the transition matrix P to be given by:

P =




0.2667 0.2467 0.2133 0.1667 0.1067

0.2606 0.2424 0.2121 0.1697 0.1152

0.2526 0.2368 0.2105 0.1737 0.1263

0.2444 0.2311 0.2089 0.1778 0.1378

0.2370 0.2259 0.2074 0.1815 0.1481




Then

limk→∞E(W (k)) = V ? =




0.2359

0.2295

0.2124

0.1852

0.1370




The meaning of this result is that the first flow should expect to get 23.59% of bandwidth at a congestion

event, while the fifth flow should expect to get 13.7% of the bandwidth at a congestion event over the

bottleneck link. The asymptotic behavior of variance of W (k) in this example is given by:

limk→∞Var(W (k)) =



0.0144 −0.0061 −0.0042 −0.0027 −0.0013

−0.0061 0.0118 −0.0029 −0.0019 −0.0009

−0.0042 −0.0029 0.0089 −0.0012 −0.0005

−0.0027 −0.0019 −0.0012 0.0060 −0.0002

−0.0013 −0.0009 −0.0005 −0.0002 0.0030




.

The rate at which of V (k) and D(k) converge to their equilibrium values is depicted graphically in

Figures 3.2 and 3.3 respectively.

Comment 3.4 Note that the result from Theorem 3.1 refers to the resource allocation over congestion

events. Model presented here is not suitable for the analysis of the instantaneous (or time averaged)

resource allocation. We refer reader to the models presented in [7] and [98] which allow the analysis

of the time averaged resource allocation.

Comment 3.5 The paper [97] discusses the dynamics of higher order moments of the stochastic

process W (k) in the related matrix model.
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Figure 3.2: Evolution of ‖V (k) − V ?‖1.
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Figure 3.3: Evolution of ‖D(k) −D?‖.
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3.4 A useful extension

In this section we will extend the results of the previous sections in the following sense. We will

consider a transition probability matrix P which does not necessarily have positive entries, but is

rather primitive; namely P s > 0, for some integer s ≥ 1. We note here that if P is primitive then P̃

is primitive too since they have the same zero-nonzero pattern.

Lemma 3.4 If P is a primitive matrix such that P s > 0 for some positive integer s, then Φ2s is a

contraction on Σm.

Proof: We first note that for all k, j, l ∈ {1, 2, . . . , m}, there is sequence (i) = (i1, i2, . . . , i2s−1)

of indices which contains l, such that

P̃ki2s−1 P̃i2s−1i2s−2 · · · P̃i2i1 P̃i1j > 0.

Indeed, since P s > 0 there must exist sequences (i′) = (i′1, . . . , i
′
s−1) and (i′′) = (i′′1 , . . . , i′′s−1) such

that

P̃ki′s−1
P̃i′s−1i′s−2

· · · P̃i′2i′1 P̃i′1l > 0

and

P̃li′′s−1
P̃i′′s−1i′′s−2

· · · P̃i′′2 i′′1 P̃i′′1 j > 0,

implying the existence of a sequence (i) with the desired property.

As we noted in section 3.2, proving that Φ2s is a contraction on the metric space Σm is equivalent

to proving that it is a contraction on the vector space Sm, and here we establish the latter. Thus for

an arbitrary W ∈ Sm the j component of Φ2s(W ) has the form

(Φ2s(W ))j =

=
∑

(i)2s

P̃i2si2s−1 P̃i2s−1i2s−2 · · · P̃i1jMi1Mi2 · · ·Mi2sWi2s ,

where we denote by (i)2s a sequence of indices which has length 2s, and the summation is over

all possible sequences (i)2s. The sum in the last equality can be rewritten as follows:

(Φ2s(W ))j =
m∑

k=1

∑

(i)

P̃ki2s−1 · · · P̃i1jMi1 · · ·Mi2s−1MkWk. (3.51)

The inner sum in (3.51) is over all the sequences of indices (i) which have the length 2s − 1.
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Having this in mind we write:

‖Φ2s(W )‖ =

= max
j
‖

m∑

k=1

∑

(i)

P̃ki2s−1 · · · P̃i1jMi1 · · ·Mi2s−1MkWk‖1 (3.52)

≤ max
j

m∑

k=1

∑

(i)

P̃ki2s−1 · · · P̃i1j‖Mi1 · · ·Mi2s−1MkWk‖1 (3.53)

≤ max
j

m∑

k=1

∑

(i)

P̃ki2s−1 P̃i2s−1i2s−2 · · · P̃i1j‖Wk‖1 (3.54)

≤ max
j

m∑

k=1

∑

(i)

P̃ki2s−1 P̃i2s−1i2s−2 · · · P̃i1j‖W‖ = ‖W‖. (3.55)

We will next establish that ‖Φ2s(W )‖ = ‖W‖ implies that W = 0, which will conclude the proof of

the lemma. If W ∈ Sm satisfies ‖Φ2s(W )‖ = ‖W‖ then all the previous inequalities (3.52), (3.53) and

(3.54) are actually equalities. This means that there exists some j ∈ {1, 2, . . . ,m} for which all the

above maxima are attained at this j. For a k ∈ {1, 2, . . . ,m} and a sequence (i) of indices we denote

Qkj((i)) = P̃ki2s−1 P̃i2s−1i2s−2 · · · P̃i1j .

It follows from P 2s = (P s)2 > 0 that for each k ∈ {1, 2, . . . ,m} we have
∑

(i) Qkj((i)) > 0. From this

property together with

m∑

k=1

‖Wk‖1


∑

(i)

Qkj((i))


 = max

k
‖Wk‖1 = ‖W‖

and
m∑

k=1

∑

(i)

Qkj((i)) = 1

we can conclude that for every k ∈ {1, 2, . . . , m}

‖Wk‖1 = ‖W‖.

It follows from the equality

m∑

k=1

∑

(i)

Qkj((i))‖Mi1Mi2 · · ·Mi2s−1MkWk‖1 =

=
m∑

k=1

∑

(i)

Qkj((i))‖Wk‖1,

that for every sequence (i) such that Qkj((i)) > 0 the following holds:

‖Mi1Mi2 · · ·Mi2s−1MkWk‖1 = ‖Wk‖1,

which in turn implies

‖Mi1 · · ·Mi2s−1MkWk‖1 = ‖Mi2 · · ·Mi2s−1MkWk‖1 (3.56)

· · · = ‖Mi2s−1MkWk‖1 = ‖MkWk‖1 = ‖Wk‖. (3.57)
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Employing Lemma 3.1, we conclude that for all sequences (i) with Qkj((i)) > 0:

Wk = MkWk = Mi2s−1Wk = · · · = Mi1Wk. (3.58)

Recall now that for arbitrary k and l there exists a sequence (i) which contains l such that Qkj((i)) > 0.

Using (3.58) we conclude that

MlWk = Wk, ∀k, l ∈ {1, 2, . . . ,m}, (3.59)

and the relations (3.59) imply

W1 = · · · = Wm = 0. (3.60)

Indeed, for each h ∈ {1, 2, . . . , m} there exists a matrix Ml ∈ M with positive h column(by

Assumption (ii)) . Thus, Lemma 3.2 implies that the h coordinate of each Wk vanishes, and since h

is arbitrary, (3.60) follows. The proof of the lemma is complete.

The following result may be established by using the same arguments as those employed in proving

the previous lemma, and we will not repeat it here.

Lemma 3.5 If P is a primitive matrix, such that P s > 0 for some positive integer s, then Ψ2s is a

contraction on D.

Inspecting the proof of Theorem 3.1, we realize that we didn’t use any special properties of the

second power in deriving the proof while using the contractive property of Φ2. Namely for any positive

integer q, if Φq is contractive on Σm, then Theorem 3.1 follows. Similarly, if Ψq is contractive on D
for some positive integer q then Theorem 3.3 follows. As a consequence of the previous two Lemmas,

we have the following results.

Theorem 3.5 Let Assumption (ii) hold and suppose that the transition matrix P is primitive, so

that there exists an integer s ≥ 1 such that P s has positive entries. Then the spectral radius of the

restriction of Φ to Sm is smaller than 1. In particular there exists a unique solution V ? for equation

(3.7), and the iteration scheme

V (k+1) = Φ(V (k)), k = 0, 1, 2, ...

with any starting point V (0) = V0 in Σm

lim
k→∞

V (k) = V ?. (3.61)

Moreover, the asymptotic behavior of the expectation of the random variable W (N) is given by:

lim
N→∞

E(W (N)) =
m∑

i=1

ρiV
?
i , (3.62)

where V ? = (V ?
1 , . . . , V ?

m) ∈ Σm is the unique solution of (3.7), and ρ = (ρ1, . . . , ρm) is the Perron

eigenvector of the transition probability matrix (Pij).
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Theorem 3.6 Let Assumption (ii) hold, and assume that the transition probability matrix P is prim-

itive. Then the spectral radius of the restriction of the mapping Ψ to Bm is smaller than 1. In

particular there exists a unique solution D? for equation (3.27), and the iteration scheme

D(k+1) = Ψ(D(k)), k = 0, 1, 2, ...

with the starting point D(0) = D0 satisfies

lim
k→∞

D(k) = D?

for every D0 ∈ D. Moreover, the asymptotic behavior of the variance

V ar(W (N)) = E[W (N)W (N)T ]− E[W (N)]E[W (N)]T

is given by:

lim
N→∞

V ar(W (N)) =

=
m∑

i=1

ρiD
?
i −

(
m∑

i=1

ρiV
?
i

)(
m∑

i=1

ρiV
?
i

)T

(3.63)

where D? = (D?
1 , . . . , D?

m) ∈ D is the unique solution of (3.27), and ρ = (ρ1, . . . , ρm) is the Perron

eigenvector of the transition matrix (Pij).

3.5 R-model

In the previous sections we considered the process {(A(k), W (k))}∞k=0 under the assumption that

{A(k)}∞k=0 is a Markov process, and the distribution of W (k + 1) is determined by the value of A(k)

and the distribution of W (k). In this model, the emphasis is put on the process {A(k)}∞k=0, and

{W (k)}∞k=0 may be considered as a ‘shadow’ of it since the properties of {W (k)}∞k=0 are derived from

the distribution of {A(k)}∞k=0.

However, one can construct a router such that the probability that a packet will be dropped at the

k-th congestion event depends on the information provided by the vector W (k), whose j-th coordinate

is equal to the throughput of the j-th flow at the k-th congestion. We thus assume throughout this

section that Assumption (iii) holds, and we will describe it again below.

When we consider the model under Assumption (iii), which we call the R-model , we assume that

the value of W (k) at the k-th congestion event, say W (k) = w, determines the distribution of A(k).

Namely, there exist Dini-continuous functions w 7→ pi(w) ∈ IR+ on Σ such that

P [A(k) = Mi|W (k) = w] = pi(w)(∀1 ≤ i ≤ m)(∀w ∈ Σ) (3.64)

and
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m∑

i=1

pi(w) = 1 for every w ∈ Σ.

In order to ensure that each flow has nonzero probability to detect a drop we assume that for each

flow i there exists a matrix in M with positive i-th column.

We begin this Section by proving that for any initial distribution of W (0) almost all products

{A(k) · · ·A(0)}k∈N are weakly ergodic. Recall that a sequence {Qk}k∈N of column-stochastic matrices

is called weakly ergodic if

lim
k→∞

dist(Qk,R) = 0,

where we denote by R set of rank-1 column stochastic matrices. For any column stochastic matrix

Q, we know that Q(S) ⊂ S (see the proof of Proposition 3.2). Thus the restriction of Q to S is a

mapping to itself, and we denote this map by Q̃. It follows from the definition of weak ergodicity

given above that the sequence {Qk}k∈N is weakly ergodic if and only if

lim
k→∞

Q̃k = 0, (see [45]).

Recall also that a linear operator on a vector space V is called paracontractive with respect to

norm ‖ · ‖ if for all x ∈ V

V x 6= x ⇒ ‖V x‖ < ‖x‖.

The main tool in establishing almost sure weak ergodicity will be the following result which is

given in [26]:

Theorem 3.7 Let ‖ · ‖ be a norm on IRm and let F ⊂ IRm×m be a finite set of linear operators which

are paracontractive with respect to ‖ · ‖. Then for any sequence {Ak}k∈N ⊂ FN , the sequence of left

products {AkAk−1 . . . A1}k∈N converges.

Proposition 3.6 Let the random variable W (0) have arbitrary distribution on Σ. Under Assumption

(iii), the sequence of products {A(k)A(k − 1) · · ·A(0)}k∈N is weakly ergodic with probability 1, i.e.

lim
k→∞

Ã(k)Ã(k − 1) · · · Ã(0) = 0 almost surely. (3.65)

Proof: From the assumption of positivity and the continuity of the mappings pi on the compact

set Σ it follows that

η = inf{pi(s)| s ∈ Σ, i ∈ {1, . . . , m}} > 0.

This means that p(A(k) 6= Mi) ≤ 1 − η < 1 for every 1 ≤ i ≤ m. For every such i let Ti be a

matrix with positive i-th column. Then with probability 1 the matrix Ti appears infinitely often in

{A(k)}∞k=0. We will next establish that weak ergodicity holds for left products {Ak . . . A1A0}k∈N

whenever for all i there are infinitely many appearances of Ti in {Ak}∞k=0.

By Lemma 3.1, for all M ∈ M, M̃ is paracontracting on S with respect to the L1 norm. By

Theorem 3.7 it follows that the sequence {ÃkÃk−1 · · · Ã0}k∈N is convergent, and we claim that the
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limit is zero. To show this let s ∈ S. Then there exist a y ∈ S such that y = limk→∞ ÃkÃk−1 · · · Ã0s.

For any fixed i let {Ank
}k∈N be a subsequence of {Ak}k∈N with Ank

= Ti. Then

y = lim
k→∞

Ãnk
Ãnk−1 · · · Ã0s = Ti lim

k→∞
Ãnk−1 · · · Ã0s = Tiy,

hence Tiy = y. But by Lemma 3.2 i-th coordinate of y must be zero. Since i is arbitrary, it follows

that y = 0. We have thus established that limk→∞ ÃkÃk−1 · · · Ã0 = 0, which implies the assertion of

the proposition.

Comment 3.6 The previous proposition is also established in [118], under Assumption (i), i.e. when

all the functions pi are constant.

Note that in a sense, under Assumption (iii), the roles of {A(k)}∞k=0 and {W (k)}∞k=0 are in-

terchanged compared to their roles in the model under Assumption (ii): the emphasis is put on

{W (k)}∞k=0, and {A(k)}∞k=0 is considered as its shadow process.

We will henceforth restrict attention to stationary processes. The process {(A(k), W (k))}∞k=0 is

Markovian in the compact state space {1, 2, .., m}×Σ, and we will next establish that it has a unique

equilibrium distribution

{ρ1, ..., ρm} × (λ1(dw), ..., λm(dw)).

Namely the probability that A(k) = Mi and W (k) ∈ U is equal, in the limit where k →∞, to ρiλi(U).

We use the following result proved in [10] (see [103] for a nice survey of related results) that gives

a sufficient condition for the existence of unique equilibrium measure.

Theorem 3.8 (Barnsley et al. [10]) Let pi(x) be Dini-continuous and bounded away from zero. If

sup
x6=y

m∑

i=1

pi(x) log
‖Mix−Miy‖
‖x− y‖ < 0 (3.66)

then the Markov chain W (k) has an unique stationary probability measure.

The following proposition shows that condition (3.66) is satisfied in the R-model.

Proposition 3.7 In the R-model, (3.66) is true. Therefore the Markov chain W (k) has an unique

equilibrium measure.

Proof: Note that from Jensen’s inequality, for concave function log(t) we have:

log

(
m∑

i=1

pi(x)
‖Mix−Miy‖
‖x− y‖

)
≥

m∑

i=1

pi(x) log
‖Mix−Miy‖
‖x− y‖ .

Now we prove that for any x, y ∈ Σ., x 6= y implies

m∑

i=1

pi(x)
‖Mix−Miy‖
‖x− y‖ < 1. (3.67)
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Since Σ is a compact set this proves (3.66). Denote by w = x− y ∈ S. Then from Lemma 3.1 we

know that ‖Miw‖ ≤ ‖w‖ with equality if and only if Miw ≤ w. Thus

m∑

i=1

pi(x)
‖Miw‖
‖w‖ ≤ 1 (3.68)

with equality if and only if Miw = w for all i = 1, . . .m. From Assumption (iii) we know that

for any j ∈ {1, . . . , n} there exist matrix Mi(j) with positive j-th column, and from Lemma 3.2

Mi(j)w = w is possible only if j-th component of vector w is zero. Since j is arbitrary, we conclude

that
∑m

i=1 pi(x)‖Miw‖
‖w‖ = 1 if and only if w = 0.

The dynamics of {(A(k),W (k)}∞k=0 can be described as follows. For a vector W (k) = w at the

instant of time k, choose a matrix A(k) from M according to the distribution {pi(w)}m
i=1, and set

W (k + 1) = A(k)w. We then follow the steps

W (0) → A(0) → W (1) = A(0)W (0) → A(1) → · · ·
→ W (k) → A(k) → W (k + 1) = A(k)W (k) → · · · (3.69)

We restrict attention only to the terms W (k) in the chain of variables (3.69), and if W (0) ∼
(λ1, ..., λm) then {W (k)}∞k=0 turns out to be a stationary Markov process.

We now view the dynamics in a different manner, and this time we focus on the terms A(k)

in the above chain (3.69). If in the outset we restrict attention to stationary processes, then the

distribution of each variable W (k) is (λ1(dw), ..., λm(dw)). Assuming this we restrict attention only

to the variables A(k) in (3.69), which turns out to be a stationary Markov chain in M provided

that we take the initial distribution A(0) ∼ ρ. We thus suppose that W (k) ∼ (λ1, ..., λm), and that

A(k) = Mi for some 1 ≤ i ≤ m. This determines the distribution of W (k + 1) = MiW (k), as well

as the distribution of A(k + 1). More explicitly we define Pij = Epj(MiW (k)) where E denotes the

expectation operation with respect to the distribution λ(dw), namely

Pij =
∫

pj(Miw)λi(dw). (3.70)

Although we defined Pij = Epj(MiW (k)), actually Pij in (3.70) doesn’t depend on k since all the

variables W (k) have the same distribution λ. However, we have to verify that our construction does

yield this distribution to all W (k). But indeed, since ρ × (λ1, ..., λm) is an equilibrium distribution

for the Markov process {(A(k),W (k))}∞k=0, it follows that if we have A(k) ∼ ρ, then the distribution

of W (k + 1) is (λ1, ..., λm), and that of A(k + 1) is ρ.

We are interested in the asymptotic behavior of W (N) where N →∞, which in view of W (k+1) =

A(k)W (k) reduces to the study of the asymptotic distribution of the products

(
N∏

k=0

A(k)

)
W (0) (3.71)
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when N →∞. Since weak ergodicity holds for the matrix products ΠN
k=0A(k) it follows that the

asymptotic behavior of the expressions in (3.71) doesn’t depend on W (0) there, and we consider these

expressions with an arbitrary choice of W (0) ∈ Σ. We define

V N
i = E [A(N − 1)A(N − 2) · · ·A(0)W (0)|A(N) = Mi] , (3.72)

where the expectation is with respect to the measure in which {A(k)}∞k=0 is a stationary Markov

chain with the transition probability matrix P in (3.70). Associated with this P is the matrix P̃ of

backward probabilities, so that P̃ij is the probability of having A(k) = Mi given that A(k + 1) = Mj .

Thus assuming A(N + 1) = Mj , it follows from (3.72) that

V N+1
j = E [A(N)A(N − 1) · · ·A(0)W (0)|A(N + 1) = Mj ]

=

m∑
i=1

P̃ijE [MiA(N − 1) · · ·A(0)W (0)|A(N) = Mi, A(N + 1) = Mj ]

=

m∑
i=1

P̃ijMiE [A(N − 1) · · ·A(0)W (0)|A(N) = Mi] ,

where in the last equality we have used the Markov property. Equating the first and last terms and

using (3.72) we obtain the relations

V N+1
j =

m∑

i=1

P̃ijMiV
N
i , N ≥ 0. (3.73)

But we observe now that (3.73) is an iterations scheme for the fixed point equation (3.7). Thus

the results of the previous sections imply that the following limits exist

lim
N→∞

V N
i = V ?

i for every 1 ≤ i ≤ m, (3.74)

where V ? = (V ?
1 , ..., V ?

m) is the unique solution of (3.7). As a consequence of this discussion we

have the following:

Theorem 3.9 The conclusions of Theorems 3.5 and 3.6 hold true when we replace Assumption (ii)

there by Assumption (iii) where Pij is defined by (3.70).

3.6 Summary

In this chapter we consider the dynamics of AIMD-networks that evolve according to Markovian

dynamics. We have shown that such networks have well defined stochastic equilibria and provided

tools that can be used to characterize these equilibria. In particular, for routers that operate according

to Assumption (ii), we have developed tools for computing limk→∞E(W (k)) and limk→∞ V ar(W (k)).

We then extended these results to the R-model given by Assumption (iii).
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While developing these tools represent an important first step in studying such networks, much

work remains to be done. The results derived in this chapter provide tools to address the problem

of designing routers that achieve, in the long run, certain goals. By controlling the distribution of

the random variable A(0) in the i.i.d. case (i), or the transition matrix P in the Markov cases (ii)

and (iii), one can guarantee that in the long run, the asymptotic expected value of W (k) is close to a

certain prescribed vector V ?. A major objective of future work will be to investigate how this might

in fact be achieved.

Another interesting designing problem that is of great practical interest, and which may be

addressed in the setting provided by either Assumption (ii) or Assumption (iii), is the following. For

a prescribed vector V ?, consider all the transition matrices P for which

lim
k→∞

E(W (k)) = V ?, (3.75)

and among them pick one for which

lim
k→∞

Var(W (k)) = T ? (3.76)

is the smallest possible in a certain sense. Minimizing the variance makes it more likely that the

desired long-run behavior expressed by limk→∞E(W (k)) = V ? will be realized faithfully (although the

cost of this choice may be a slow network convergence or some other undesirable network behavior).

This goal defines a constrained optimization problem which may be addressed either numerically or

theoretically. We note that the minimization may be approached in various ways: either minimizing

a certain functional, e.g. the trace of T ?, or looking for a T ?
0 such that

T ?
0 ≤ T ?

in the positive definite sense, where T ?
0 and T ? correspond to certain matrices P0 and P such that

(3.75) and (3.76) hold.
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Part II

Resource allocation
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CHAPTER 4

Beyond CHOKe: Stateless fair queueing

Abstract - Making drop decisions to enforce the max-min fair resource allocation in network of

standard TCP flows without any explicit state information is a challenging problem. Here we propose

a solution to this problem by developing a suite of stateless queue management schemes that we refer

to as Multi-Level Comparison with index l (MLC(l)). We show analytically, using a Markov chain

model, that for an arbitrary network topology of standard TCP flows and queues employing MLC(l),

the resource allocation converges to max-min fair as l increases. The analytical findings are verified

experimentally using packet level ns2 simulations.

4.1 Introduction

Resource allocation in communication networks has been a topic of interest for some time. In the

current Internet most traffic uses TCP as the transport protocol, and most Internet routers do not

differentiate packets from different flows. In order to adjust the resource allocation amongst competing

users, one can do the following: (1) design the new end-to-end protocol(s) and leave the network

infrastructure (routers) unchanged [122, 58, 37]; (2) design the new end-to-end protocol(s) and network

support that will allow cooperation between end-users and network (routers) [55, 3, 120]; (3) leave

the end-to-end protocol(s) unchanged but design the network based scheme that determines desired

resource allocation [110, 18, 100].

Most current proposals have as their performance objective a resource allocation that is max-min

fair. In this chapter we propose a scheme that belongs to the third group listed above, and whose

performance goal is enforcing a max-min fair resource allocation. Its main features are the following.

1. No changes to end-to-end transport protocols are required.

2. The decision to drop (mark) a packet is made locally by each router;

3. No multiple queues or per flow counters are used.
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Thus, our goal is to design a stateless active queue management scheme that can enforce max-min

fairness in the network of TCP users. While there exists a large amount of work related to analysis

and design of distributed algorithms/architecture that enforce max-min fairness, to the best of our

knowledge, our algorithm is the first that attempts a stateless active queue management scheme to

enforces max-min fairness in the network of TCP users.

4.1.1 Chapter contributions

Why is reaching the goal stated above so hard? First, recall that in the max-min fair regime, a TCP

flow f experiences drops at one and only one link lf at its path (we say that f is bottlenecked at lf ),

and therefore must be protected at other links (that can be congested) by receiving lossless service.

Second, if two or more flows are bottlenecked at the same link they must receive nonuniform loss

rates that are function of their aggressiveness (round-trip times, queuing delays, delayed acks option,

etc). Assuming that the router has access to the individual flow rates, or the existence of multiple

queues that are appropriately scheduled, a number of solutions to these two problems exist, and are

described in previous works [110, 55, 88, 18, 100]. However, in our case (routers with no explicit state

information) it is highly nontrivial to make the drop (mark) decision without any explicit information.

The main contributions of this chapter are the following:

• A stateless queue management scheme, Multi Level Comparisons with index l (MLC(l)), which

makes the drop decision based on the structure of packets that are already in the queue (using simple

comparisons only).

• A Markov chain analysis of the randomized algorithm MLC(l) that shows that the resource

allocation of MLC(l) converge to the max-min fair, for arbitrary network topology and arbitrary set

of TCP users, as the index l grows.

• Packet level simulations that support the analytical findings.

4.2 Power-drop AQM schemes

It has been noticed in many studies that both drop tail and RED routers have large bias against large-

RTT flows. For example the authors of [71] have made the empirical observation that for a drop-tail

router and two flows with round trip times RTT1 and RTT2, the ratio of asymptotic throughput of the

first and the second flow is in the ratio (RTT2/RTT1)a for some a ∈ (1, 2). Similarly, it has also been

noticed in a number of studies, that oblivious (ones that do not differentiate packets from different

flows) AQM schemes (RED [40], BLUE [36], etc.) which attempt to estimate the loss probability

for a given traffic pattern and to drop packets according to this estimation, share bandwidth among
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competing users with round trip times RTT1 and RTT2 in the ratio RTT2/RTT1, [38, 1]. In this

section we will investigate RTT unfairness characteristics for more general AQM schemes we call

power-drop AQM schemes.

Definition 4.1 An AQM is power-drop if it drops a packet from a flow with current throughput1 U

with probability ρ0U
l−1, where ρ0 is a variable controlled by router and l a positive integer called the

index of the given power-drop AQM.

Comment 4.1 With l = 1 this corresponds to a router which drops packets with loss probability ρ0.

The case when l = 2 is similar to CHOKe [89] in the limit when the average queue size does not go

below minimum threshold, and in addition, when there is neither a RED nor an overflow drop. Indeed,

comparing a packet at the entrance of a queue with a packet from the queue and making drop-decision

based on this comparison is actually dropping a packet with probability which is proportional to current

throughput of the flow.

In this section we will describe a class of power-drop AQM’s called Multi Level Comparison

(MLC) AQM’s. In particular, we will describe and analyze the fairness characteristics of this queueing

discipline for TCP flows competing for bandwidth. We will see that the MLC scheme with index l

achieves 1/RTT 1/(l+1)-fairness2 under the assumption of low loss probability (Theorem 4.1). More

generally, Theorem 4.2 shows that increasing l leads resource allocation among TCP users arbitrarily

close to max-min fairness in general network topologies.

4.2.1 Description of MLC

The basic strategy in MLC(l) is to extend the core idea from CHOKe of comparing of a packet arriving

at the queue with packets which are already in queue; these stored packets are measure of the pro-

portion of bandwidth used by certain flow. MLC(l) maintains a variable hM which is used to control

the probability of dropping an arriving packet: at every packet arrival hM dropping trials are executed.

Dropping trial: Pick randomly l − 1 packets from the queue: if all l packets belong to the

same flow, then drop the arriving packet (If l = 1 the arriving packet is dropped by default).

If the arriving packet is not dropped after the execution of hM dropping trials then it is enqueued.

If hM is not an integer, the number of dropping trials is given as follows. For hM < 1 we execute 1

dropping trial with probability hM and 0 dropping trial with probability 1− hM . Similarly, hM > 1

we execute bhMc+ 1 dropping trials with probability {hM} = hM − bhMc and bhMc dropping trials

with probability 1− {hM}.

Proposition 4.1 For a given hM , MLC(l) is power-drop scheme with index l.

1Throughput is measured in packets per unit of time.
2Two flows with round trip times RTT1 and RTT2 which have a single bottleneck operating with MLC, obtain

bandwidth in ratio: (RTT1/RTT2)−1/(l+1).
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Proof: Let Uf be the throughput of a flow f , and U0 the aggregate throughput on the link. A

packet is dropped at one dropping trial with probability

q1 =
(

Uf

U0

)l−1

.

Probability that a packet is dropped after hM trials is 1-Prob[packet is not dropped at any of hM

trials] which is given by

q = 1− (1− q1)hM ≈ q1 · hM = U l−1
f

hM

U l−1
0

.

Taking ρ0 = hM

U l−1
0

we conclude that MLC(l) satisfies Definition 4.1.

The higher hM the more frequent the losses are. Consequently, if the link is under-utilized, hM

should be decreased in order to decrease probability of dropping packets. On the other hand if the

aggregate traffic on the link is greater than the link capacity then hM should be increased to reduce

traffic load.

Controlling the variable hM : MLC uses a parameter ∆0 to affect changes in the variable hM

(in our simulations ∆0 is set to 100ms). hM is adjusted once per ∆0 using a MIMD (Multiplicative

Increase - Multiplicative Decrease) scheme. The performance goal is to keep the utilization at a certain

level u0. Namely, if within the previous ∆0 the link utilization was less than desired u0, hM is set to

hM/γ for some γ > 1, otherwise hM is adjusted as hM := hMγ.

At this point it is important to emphasize a few differences between MLC and CHOKe. First,

note that CHOKe makes a comparison only when the average queue size becomes greater than minth

(RED minimum threshold), and therefore its performance (in terms of resource allocation between

TCP users) depends mainly on the number of users: a small number of TCP flows will affect the

synchronization of losses, while for large number of users, the number of CHOKe-drops will be much

less than number of RED-drops and therefore the effect of CHOKe on TCP fairness would be negligible.

Second, the design of CHOKe basically neglects the TCP fairness as a performance objective and

concentrates on reducing throughput of unresponsive flow(s) [112], while MLC is designed to improve

TCP fairness and neglects effects of unresponsive flows.

Our experiments indicate that the parameter ∆0 should be in the range of round trip times of

the connections using the link (in order to allow users to react to changes in hM ). The parameter γ

controls the speed of adaptation to changes in network traffic and should be set such that, for a given

∆0, hM can be doubled/halved within a few seconds.

4.2.2 Model and analysis of power-drop AQM

In this section we present a model of power-drop AQM’s servicing multiple TCP users. We present

results that characterize this situation for both a single bottleneck and for general network topologies.

Single bottleneck case: We consider N TCP-flows with heterogenous round trip times RTTi,

i = 1, . . . , N , traversing a single bottleneck link that employs power-drop AQM with an index l. If

we assume that ρ0 does not fluctuate much (so that we can model it as constant) and that the drop
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probability for a packet is small, then our analysis shows that the asymptotic rates achieved by TCP

users are proportional to 1

RTT
2/(l+1)
i

. This is the main result of this section and is given in Theorem

4.1.

Model : At the flow level, let ∆ be the length of sampling interval over which we evaluate

changes in throughput. If a flow with a round trip time RTT does not see a drop within interval of

length ∆, then its throughput will be increased by ∆/RTT 2. If a flow registers a drop within this

sampling interval then its throughput will be halved3. The probability that the first event will happen

is equal to probability that each of ∆U packets from the flow are not dropped. This probability is

given by:

η1 = (1− ρ0U
l−1)∆U ≈ e−∆ρ0U l

.

Clearly, the probability that a flow with current throughput U will see a drop within a sampling

interval of length ∆ is equal to

η2 = 1− (1− ρ0U
l−1)∆U ≈ 1− e−∆ρ0U l

.

The previous approximations are valid under the assumption of a small probability that a packet

will be dropped : ρ0U
l−1 ¿ 1. This assumption seems reasonable, since if this probability is not

small, a flow would suffer too many losses and therefore would not get a chance to enter the (AIMD)

congestion avoidance phase.

Let U
(ρ)
k be a stochastic process which describes the evolution of throughput of a TCP flow with

round-trip time RTT traversing over link with a power-drop AQM scheme with index l. Here ρ = ∆ρ0.

Since ∆ is fixed we can assume that ∆ is equal to one unit of time.

We model U
(ρ)
k as a Markov chain on [0,∞) defined by U

(ρ)
0 = 0 and:

U
(ρ)
k+1 = U

(ρ)
k +

1
RTT 2

with probability e−ρ(U
(ρ)
k )l

U
(ρ)
k+1 =

1
2
U

(ρ)
k with probability 1− e−ρ(U

(ρ)
k )l

.

The following theorem characterizes the time averaged throughput of a TCP flow with round trip

time given by RTT , running over power-drop queue management scheme with index l and its proof

is given in Appendix.

Theorem 4.1 The time averaged throughput of the i’th flow: 1
M

∑M
i=1 U

(ρ)
i converges almost surely

to:

lim
M→∞

1
M

M∑

i=1

U
(ρ)
i =: U

(ρ)
=

1

RTT
2

l+1 ρ
1

l+1
DMLC(l) +

1

ρ
1

l+1
S(ρ)

where DMLC(l) is a constant that does not depend on ρ or RTT and S(ρ) converges to 0 as ρ goes to

0.
3Throughout this chapter, variations in round trip times are neglected.
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Comment 4.2 The previous theorem is a generalization of well known square root formula. Indeed,

for l = 1, power-drop scheme is an oblivious AQM that drops packets with probability ρ = hM and

Theorem 4.1 says that time averaged throughput converges to 1
RTT

√
ρDMLC(1) + o( 1√

ρ ).

To conclude this section we prove that for a given network with routers employing a power-drop

AQM with index l, and assuming that the steady state throughput is given by the previous theorem,

we can find large enough l such that bandwidth allocation is arbitrary close to max-min fairness. The

following characterization of max-min fairness can be found in [102].

Lemma 4.1 A set of rates xr is max-min fair if and only if for every flow r there exists a link on its

path, such that the rates of all flows which traverse through that link are less or equal than xr.

With this characterization of max-min fair allocation in mind, we shall prove that increasing the

index of the MLC will result in allocation of bandwidth in such fashion that each flow will have link

on its path such that its asymptotic rate is “almost” the largest among all flows using that link.

Theorem 4.2 For any given network topology, and given ε > 0, there exists l such that if all queues

employ MLC with index l and loss probabilities are small then for every flow r there exist a link on

its path, such that the rates of all flows which traverse through that link are less than (1 + ε)xr (here

xr is steady state rate of flow r).

Proof: Let L be the number of links in the network and N the number of flows. We label flows

by i = 1, 2, . . . , N and links by s = 1, 2, . . . , L. By R we denote the routing matrix: Ris = 1 if flow

i uses link s otherwise Ris = 0. On each link s, a router drops a packet from the flow with current

throughput U with probability ρ(s)U l−1. Let M be the length (in number of links) of the path of the

flow with most links on its route and ν the ratio of the largest and the smallest round trip time in the

network. Choose l such that

ν
2

l+1 M
1

l+1 < 1 + ε.

For each flow r, let s
(r)
1 , . . . , s

(r)
w be links used by it and let s

(r)
max the most congested link on its

route in the following sense:

ρ(s(r)
max) = max{ρ(s(r)

j )| j = 1, . . . , w}. (4.1)

If the current rate of flow r is U , a packet from that flow will be dropped with probability λrU
l−1,

where λr =
∑w

j=1 ρ(s(r)
j ), and therefore the steady state throughput for flow r is given by

xr =
1

RTT
2

l+1
r λ

1
l+1
r

C0.

For any other flow t which uses the link s
(r)
max with λt =

∑
j:Rjt=1 ρ(lj) ≥ ρ(s(r)

max) the steady state

throughput is given by:

xt =
1

RTT
2

l+1
t λ

1
l+1
t

C0.
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Recall that we have defined the link s
(r)
max as the most congested link on route of flow r in the sense

of (4.1). This implies that λr ≤ Mρ(s(r)
max). Now

xt

xr
=

(
RTTr

RTTt

) 2
l+1

(
λr

λt

)
≤

(
RTTr

RTTt

) 2
l+1

(
Mρ(s(r)

max)

ρ(s(r)
max)

) 1
l+1

≤ ν
2

l+1 M
1

l+1 < 1 + ε.

Comment 4.3 Note that for a single bottleneck topologies resource allocation given by C

RTT
2/(l+1)
i

is

((RTT 2
i ), l + 1) proportionally fair [80, 102]. Indeed, for any resource allocation (xi), utility U(x) =

∑N
i=1

RTT 2
i

xl
i

, and link capacity c0 we have (using Holder’s inequality ):

(U(x))
1

l+1 · c
l

l+1
0 =

(
N∑

i=1

RTT 2
i

xl
i

)
· (

N∑

i=1

xi) =




N∑

i=1


RTT

2/(l+1)
i

x
l

l+1
i




l+1



1
l+1

·
(

N∑

i=1

(
x

l
l+1
i

) l+1
l

) l
l+1

≤

≤
N∑

i=1

RTT
2/(l+1)
i

x
l

l+1
i

· x
l

l+1
i =

N∑

i=1

RTT
2/(l+1)
i

U(x) is maximized if equality holds in the inequality above, which is equivalent to xi = C

RTT
2/(l+1)
i

for some constant C. Thus, while spectrum of delay-based end-to-end protocols [80] assume no coop-

eration from routers to converge to max-min fairness, MLC(l) does not require changes in end-to-end

protocol to enforce max-min fairness.

A similar interesting feature is shared between shuffling parameter γ > 0 of XCP [55] and index

l of MLC. Namely, in the recent paper [74] the authors proved that ”... given any network topology,

one can choose a shuffling parameter, γ, sufficiently small so that the resulting allocation is close to

max-min fairness. For any fixed γ > 0, however, there are topologies in which some flow rates can

be far away from their max-min allocations”. In the case of MLC, for given network topology we can

chose sufficiently large index l so that resulting allocations are close to max-min, but for any fixed l

there are topologies in which some flow rates can be far away from their max-min allocations.

4.3 Experimental results

In this section we briefly describe some ns2 simulations that demonstrate the behavior of proposed

AQM schemes.

4.3.1 Single bottleneck

The first set of simulations are designed to demonstrate the fairness properties of the MLC in single

bottleneck scenario. Specifically, we present results for a single link with service rate of 80Mbps that
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Figure 4.1: Scaled throughput for 100 flows over congested link employing RED, MLC(2).

services 100 long-lived TCP users with round trip times uniformly distributed in the range 40−440ms.

To provide baseline results, we include the performance of RED for the same scenario. Share of total

throughput taken by each of 100 flows assuming the bottleneck queue is managed by MLC(2) is

depicted in Figure 4.1.

It can be seen from Figure 4.1 that the fairness of RED is approximately proportional to the

inverse of RTT. This is in accordance with observations made in [1, 38]. It can also be observed that

the fairness of MLC with index 2 is proportional to 1/RTT 2/3 as predicted by Theorem 4.1. The

MLC parameters used in the simulation are: l = 2, ∆0 = 100ms, γ = 1.01, u0 = 0.98.

4.3.2 Multiple bottleneck topologies

Our second set of simulations demonstrate Theorem 4.2. The network topology that we considered

is given in Figure 5.7. Here, we consider a network of 24 nodes: n1 − n5, m1 −m5, p1 − p5, q1 − q5,

and c1, c2, c3, c4 and 30 flows traversing the network as follows: n(i) → p(i); n(i) → q(i), m(i) →
p(i); m(i) → q(i); n(i) → m(i); p(i) → q(i) where i = 1, 2, 3, 4, 5.

The delays on each of the links in ms are defined as follows:

ni → c1 : 40 · i + 1; pi → c3 : 40 · i + 1

mi → c2 : 40 · i + 1; qi → c4 : 40 · i + 1

and the delays c1− c2, c2− c3, c3− c4 are 10ms. The capacities of all links are 10Mbps. With this

topology, the max-min fair shares are 0.5Mbps for 20 flows that uses link c2−c3, and 1Mbps for other

10 flows (n(i) → m(i) and p(i) → q(i)).

Each flow uses the standard TCP-SACK algorithm, with a packet size 1000B. The aggressiveness

of each flow is mainly determined by its RTT. The behavior of the network is evaluated with each

link c1 − c2, c2 − c3 and c3 − c4 using: DropTail, RED, MLC(2), MLC(3), MLC(5), MLC(9), and

MLC(17) with a queue size of 100 packets. MLC(a) parameters are: l = a, ∆0 = 100ms, γ = 1.01,

u0 = 0.98.
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Figure 4.2: Network topology

The normalized Jain’s fairness index for vector that represents resource allocations U = (U1, . . . , UN )

in the network with max-min fair resource allocation given by vector Umm = (U1,mm, . . . , UN,mm) is

given by

j(U) =

(∑N
i=1

Ui

Ui,mm

)2

N
∑N

i=1

(
Ui

Ui,mm

)2 .

Its values for 7 schemes of interest are following:

j(UDTail) = 0.345, j(URED) = 0.731, j(UMLC(2)) = 0.846, j(UMLC(3)) = 0.884,

j(UMLC(5)) = 0.956, j(UMLC(9)) = 0.989, j(UMLC(17)) = 0.997.

We can see significant unfairness in the oblivious schemes( DropTail, RED). As we increase index

of MLC scheme, we obtain share of bandwidth very close to max-min share as expected by Theorem

4.2.

4.4 Summary

In this chapter we developed an AQM scheme for enforcing max-min fairness in TCP networks called

MLC(l). MLC(l) is a stateless scheme and belongs to class of queue management schemes that we

call power-drop. We showed analytically that by increasing index l, the resource allocation among

TCP users using network of MLC(l) queues converge to max-min fair. Presented analytical findings

are confirmed by packet level simulations.
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CHAPTER 5

Drop history is enough

Abstract - Small Flow Completion Time (FCT) of short-lived flows and fair bandwidth allocation of

long-lived flows have been two major, sometimes concurrent goals in the design of resource allocation

algorithms. In this chapter we present a framework that naturally unifies these two principles under

a single umbrella; namely by proposing resource allocation algorithm Markov Active Yield (MAY). By

exploiting a probabilistic strategy: “ drop proportional to the amount of past drops”, MAY achieves

very small FCT among short-lived TCP flows as well as good fairness among long-lived TCP flows,

using only a small amount of on-chip SRAM: roughly 1 bit per flow in Pareto-like flow size distri-

butions. Analytical models are analyzed and results are verified experimentally using packet level ns2

simulations.

5.1 Introduction

Resource allocation in communication networks has been a major topic of interest for some time.

Many current proposals have as their performance objective a resource allocation that is max-min

fair [110, 18, 100, 55, 3, 120]. However, from the user point of view, a major (and arguably the most

important) performance metric is Flow Completion Time (FCT) [24]. A number of schemes that

minimizes FCT exist in the literature [93, 4, 24, 42]; either requiring state for every arriving flow or

requiring cooperation from end-to-end users. Note that max-min fair proposals can harm FCT of

short-lived flows as their sending rate is limited by the fair share determined by the packet scheduler.

Our goal is the design of a queue management algorithm that will integrate the design principles

stated above: (1) max-min fairness of long-lived TCP flows and (2) small FCT short-lived flows

without use of explicit per-flow state.

Our design is based on the following idea Drop proportional to the amount of past drops. We

propose an implementation called Markov Active Yield (MAY), that satisfies both of our design

principles yet is simple to implement, uses first come first served queue, scales for speeds of over
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40Gbps, and requires roughly one bit per flow of on-chip SRAM in internet-like flow size distributions.

5.1.1 Chapter contributions

Why is reaching the goal stated above hard? First, recall that in the max-min fair regime, a TCP flow

f experiences drops at one and only one link lf along its path (we say that f is bottlenecked at lf ),

and therefore must be protected at other links (that can be congested) by receiving lossless service.

Second, if two or more flows are bottlenecked at the same link they must receive nonuniform loss rates

that are functions of their aggressiveness (round-trip times, queuing delays, etc). Assuming that the

router has access to the individual flow rates, or the existence of multiple queues that are appropriately

scheduled, a number of solutions to these two problems exist, and are described in previous works

[110, 55, 88, 18, 100]. However, in our case it is highly nontrivial to make the drop (mark) decision

without any explicit information. On the other hand, existing router-based algorithms for minimizing

of FCT, require either cooperation from the TCP sender [4], or full state information [93, 42] for every

arriving flow, making them not scalable at very high speeds.

The main contributions of this chapter are the following:

• A novel queue management scheme Markov Active Yield (MAY) that unifies two major design

principles: small FCT of short-lived flows and max-min fair bandwidth sharing of long-lived flows.

The only state information that is kept by MAY is a short history of already dropped packets.

• An analysis of the randomized algorithm MAY that shows that the resource allocation of the

long-lived TCP users in the network of MAY queues is max-min fair. On the other hand, nonelastic

CBR flows receive (virtually) lossless service if their sending rate is less than max-min fair share,

and asymptotic denial of service otherwise. Packet level simulations are presented to support our

analytical findings.

• Analysis and evaluation of the effects of MAY on the FCT of short flows. MAY can reduce the

FCT of TCP flows significantly compared to oblivious schemes (like RED) and instantaneously-fair

packet schedulers (like DRR), and is just slightly higher than those of LAS, a stateful scheme.

While the MAY algorithm is not completely stateless the only state that is kept is frequency

of drops. This can significantly reduce memory requirements, in heavy-tailed flow-size/rate environ-

ments, which are typical of Internet links. Namely, as we shall see, MAY memory requirements are

roughly one bit (of on-chip SRAM1) per flow in Pareto-like flow size distributions (see Section 5.3.4).

Since the computational complexity of the scheme is extremely low, MAY scales well at speeds greater

than 40Gbps and several dozens of millions of concurrent flows, with currently available hardware de-

vices and state-of-the-art implementations of hash tables [101] and statistics counters [106].

1Static RAM. Current implementations have access times of 2-6ns.
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5.1.2 Related work

Both of the problems we study in this chapter have been studied extensively in the recent literature.

Here we classify the existing proposals in two categories: (1) end-to-end transport protocols require

modifications to cooperate with the routers; (2) end-to-end transport protocols do not require any

modifications (routers are fully responsible for the resource allocation).

(1A) Resource allocation of long-lived end-to-end users that cooperate with intermediate routers

has attracted a large attention in the last decade [102]. Examples include XCP [55], REM [3], MaxNet

[120], etc.

(1B) The small FCT of short-lived flow has been a subject of interest of several recent studies.

In [24] the authors propose an end-to-end protocol for reducing the FCT of short-lived flows. On

the other hand the authors of RuN2C [4] propose a two-queue strategy, that cleverly exploits the

32-bit TCP-sequence-number space to reduce the FCT, by requiring a slight change in the TCP stack

(the initial TCP-sequence-number must be set to an appropriate value in order to be prioritized by

RuN2C).

(2A) Similarly to (1A), enforcing fairness “in the middle” without cooperation of end-to-end users

has been a very active research area. Various stateful algorithms exist: DRR [100], FQ [18], FRED

[73], CSFQ [110], AFD [88], PD-RED [77] etc.

(2B) Size-aware scheduling policies like Shortest Job First (SJF), Shortest Remaining Processing

Time (SRPT) or Least Attained Service (LAS) [60] have been used extensively in the area of operating

systems to favor short jobs. However, in Internet links, strategies that require knowledge of flow (job)

sizes (such as SJF or SRPT) are not suitable, since that information is generally unavailable. On the

other hand, stateful approaches have been shown to significantly improve FCT of short lived flows

[93, 42].

5.2 Markov Active Yield (MAY)

In order to enforce fairness among long-lived users with different levels of aggressiveness, and respon-

siveness, it is clear that more aggressive and less responsive users must be punished more than others.

The question is “by how much” and how this strategy should be implemented in an efficient manner.

We would also like to have some kind of protection for “short-lived” flows. Before we proceed we need

to define the notion of short-lived flow:

Definition 5.1 A flow is called short-lived if it contains not more than S0 packets.

Ideally, for a given S0, all short-lived flows should be protected at a congested link, by receiving

a lossless service. On the other hand, flows with more than S0 packets should receive nonuniform

loss rates that will result in fair bandwidth share. However, this is hardly feasible at high speeds

(≥ 10Gbps) since it would require keeping state information for each flow (strictly). The basis for our
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discussion is the following idea that can reduce state information needed for by more than two orders

of magnitude, with minor performance degradation (in terms of FCT and max-min fairness):

(*) Drop proportionally to the amount of past drops

A queue management scheme that follows (*) is a positive feedback system: the more drops a

flow experiences the higher will be the drop probability of that flow in the future. Sometimes, positive

feedback systems can be unstable, but self-regulatory nature of TCP makes systems based on (*)

stable (in terms of drop probabilities); see Section 5.3.

We will call a flow f new if it has not experienced any loss until time t; otherwise we will say that

f is old. A natural question that arises is what happens with new flows under strategy (*). As we

said, ideally we would like that all flows with size smaller than S0 receive a lossless service, and that

all flows with size greater than S0 join the “battle” for fair bandwidth share. However, this requires

full-per-flow state information, and we use a probabilistic argument to keep short-lived flows virtually

lossless and enforce flows with length greater than S0 packets to receive most of the losses in congested

environments.

To this end, we keep track of all old flows, and drop a new-flow’s packets with probability q0 = 1
S0

.

This will be the input to the positive feedback system defined by (*). As we will see, this stateless

strategy for dropping a new-flow’s packets, enforces very few losses among flows with size less than S0.

On the other hand, an easily implementable strategy (*) makes bandwidth allocations among arbitrary

set of long-lived AIMD flows asymptotically independent of additive increase or multiplicative decrease

parameters.

Now we proceed with a detailed description of MAY. As we already said the basic idea is to keep

information of recently dropped packets and to use that statistics to regulate the drop probability for

each of the flows. Pseudo-code is given in Figure 5.1.

The data structure used is a hash table H that stores quadruples (FlowID, δ(FlowID), TS(FlowID),

ND(FlowID)) for flows that have experienced some drops. Here δ(FlowID) is the drop frequency of

the flow given by the identifier FlowID, TS(FlowID) is the time stamp that tracks the time of last

update of the given hash table entry and ND(FlowID) is the number of dropped packets from the

flow FlowID during the current update interval of length ∆. On each packet arrival its FlowID is

calculated. If there exists an entry in H that corresponds to FlowID, the arriving packet is dropped

with probability proportional to the frequency of past drops: νδ(FlowID). The frequency of losses

is calculated using weighted averaging (see line 24) with weight qw. Finally the control variable ν

determines the size of drop probabilities and therefore the utilization: if the current utilization is

less than a desired level (u0) ν should be decreased to allow lower drop probabilities and increase

utilization, while if current utilization is greater than u0, then ν should be increased to allow higher

drop probabilities and decrease utilization.

The following synthetic example can be helpful in understanding the motivation for MAY in

terms of bandwidth allocation.
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1 OnPacketArrival(pkt, F lowID)

2 if FlowID ∈ H

3 with probability νδ(FlowID) do

4 drop(pkt);

5 ND(FlowID) + +;

6 TS(FlowID) = now;

7 enddo

8 else with probability q0 do

9 create(FlowID, H)

10 p(FlowID) = 1;

11 ND(FlowID) = 1;

12 TS(FlowID) = now;

13 if CurrentUtilization > u0;

14 drop(pkt);

15 endif

16 enddo

17 Update(H)

18 if now − LastUpdate > ∆

19 ν = ν + κ(CurrentUtilization− u0);

20 for all FID in H

21 if now − TS(FID) > T0

22 remove(FID, H)

23 else

24 δ(FID) = (1− qw)δ(FID) + qwND(FID);

25 ND(FID) = 0;

26 endelse

27 endfor

28 LastUpdate = now;

29 endif

Figure 5.1: Pseudocode of MAY.
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u0 desired utilization

∆ length of update period

qw weighted average parameter

κ controller gain

T0 Timeout value

Table 5.1: Parameters of MAY.

Consider a single bottleneck topology, where the congested link services N TCP users with round-

trip times RTT1, . . . , RTTN . For an AQM scheme Γ, denote by σ(Γ) the set of serviced packets during

the unit of time, and by δ(Γ) the set of dropped packets during the unit of time. If we denote by Ui

and pi the throughput and the loss rate of flow i, then the proportion σi of packets from flow i in σ(Γ)

is equal to Ui · a1 and the proportion δi of packets from flow i in δ(Γ) is equal to Ui · pi · a2, for some

constants a1 and a2 independent of i. For the TCP flow i from the square root formula Ui = C0
RTTi·√pi

we conclude that

σi · δi =
A

RTT 2
i

, (5.1)

for some constant A that does not depend on i. For example if Γ is oblivious2, the loss rate for each

flow is constant (pi = p) and σi = A′
RTTi

and δi = A′
RTTi

, for A′ = 1∑N
j=1

1
RT Tj

. Consider now the positive

feedback system (δ(k)) depicted in Figure 5.2: the dropping probability for the flow i during the time

step t+1 is proportional to the number of dropped packets during the time step t. If we start with vec-

tor δ(1) = A′( 1
RTT1

, . . . , 1
RTTN

), at the end of time step 1, δ(2) will be equal to ( B(1)

RTT
3/2
i

, . . . , B(1)

RTT
3/2
N

).

Actually from the relation (5.1) we can deduce that δ(t) = ( B(t)

RTT
e(t)
i

, . . . , B(t)

RTT
e(t)
N

) where sequence e(t)

satisfies e(1) = 1, and the following recurrence equation

e(t + 1) = 1 +
e(t)
2

. (5.2)

By taking ê(t) = 2− e(t), (5.2) is equivalent to ê(t+1) = ê(t)
2 . Thus e(t) = 2− 2−(t−1), and from

(5.1), Ui(t) = C(t)

(RTTi)2
−(t−1) does not depend on RTTi for for large t, meaning that asymptotically all

flows achieve the same throughput.

5.2.1 Implementation issues

State-of-the-art algorithms for high-speed hash table implementations presented in [101] allow imple-

mentations that run on line speeds of 40Gbps (assuming that hash table is stored in on-chip SRAM).

In order to keep the whole hash table size small, we use the implementation of statistics counters

architecture proposed in [106]. The size of MAY hash table entry can be made to be 8 bytes: 12 bits
2An AQM scheme is oblivious if it does not distinguish the packets from different flows. RED, BLUE or PI are

examples of oblivious schemes.
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1 UpdateLossRates()

2 t = 1;

3 for i = 1 : N

4 δi(t) = A′
RT Ti

;

5 endfor;

6 while forever

7 pi(t) = ρδi(t);

8 Drop packet from flow i with prob. pi(t);

9 Control ρ such that utilization is u0

10 On the end of t-th time step do

11 for i = 1:N

12 δi(t + 1) = Number−of−Dropsi(t);

13 endfor;

14 t = t + 1;

15 enddo;

16 endwhile;

Figure 5.2: Example: Positive feedback loop for calculating drop probabilities pi.
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per counters δ(FlowID), TS(FlowID) and ND(FlowID)); 12 bits for FlowID fingerprint, and 16

bits for hash-table pointer. This would allow 16K hash-table entries on 1Mbit on-chip SRAM and

128K hash-table entries on 8Mbit SRAM.

5.3 Analysis of MAY

5.3.1 Resource allocation of long-lived elastic AIMD flows

We now prove that in steady-state an arbitrary set of AIMD flows [122] (flows with arbitrary linear

increase parameter and arbitrary multiplicative decrease parameter), asymptotically obtain equal

amount of throughput in a single bottleneck scenario. Formally, throughout this subsection we assume

the following.

Assumption 5.1 There are N long-lived flows f1, . . . , fN that use a congested link and all of them

employ AIMD congestion control algorithms with an additive increase parameter γi > 0 and a multi-

plicative decrease βi ∈ (0, 1), i = 1, 2, . . . , N .

Under the previous assumption we can prove that MAY stabilizes ν and δi = δ(fi) (frequency of

drops of flow fi) in the model presented below.

Let U
(i)
k be the throughput of flow fi measured after k units of time ∆0 (say a millisecond; We

assume that ∆0 ¿ ∆). Denote the loss probability for a packet from flow (i) in time step k, between

t-th and t + 1-st hash-table update (k∆0 ∈ (t∆, (t + 1)∆)), by µi(k) = δi(t)ν(t). Having this, we can

consider U
(i)
k as a Markov chain on R+ given by the transition:

U
(i)
k+1 = U

(i)
k + γi with probability e−δi(t)ν(t)U

(i)
k

U
(i)
k+1 = βiU

(i)
k with probability 1− e−δi(t)ν(t)U

(i)
k .

In the rest of the section we will use these tools to prove convergence of δi(k) and ν(k) as well as

the asymptotic independence of throughput of flow fi from AIMD parameters γi, βi.

From [25] we have that expected number of sent packets of flow i in time interval (t∆, (t + 1)∆)

is

Ū (i)(t) =
βi

1− βi

√
γi√

δi(t)ν(t)
·A (5.3)

for a constant A, that does not depend on i ((5.3) is a generalized version of square root formula).

Denote by δ̄i(t) the number of dropped packets of flow fi during time interval (t∆, (t + 1)∆). Each of

Ū (i)(t) packets is dropped with the same probability δi(t)ν(t). We use the mean field approximation

to estimate δ̄i(t):

δ̄i(t) = Ū (i)(t)δi(t)ν(t) =
βi

1− βi

√
γi√

δi(t)ν(t)
·Aδi(t)ν(t) =

βi

1− βi

√
γiA

√
δi(t)ν(t) = ai

√
δi(t)ν(t),
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(5.4)

where we denoted by ai = βi

1−βi

√
γiA. On the other hand, we know that ν(t) is regulated to

achieve utilization u0C, where C is the link capacity. Thus we have:

N∑

i=1

Ū (i)(t) =
1√
ν(t)

N∑

i=i

ai
1√
δi(t)

= u0C. (5.5)

From (5.4) and (5.5), we obtain

δ̄i(t) = ai

√
δi(t)

N∑

i=1

ai
1√
δi(t)

1
u0C

.

Since at the t + 1-th update we use the weighted averaging: δ(t + 1) = (1− qw)δ(t) + qw δ̄i(t), we

conclude that the evolution of δ(t) is given by:

δi(t + 1) = (1− qw)δi(t) + qwai

√
δi(t)

N∑

j=1

aj√
δj(t)

1
u0C

. (5.6)

Theorem 5.1 Suppose initially that δi(1) > 0 for all i = 1, . . . , N . Then in the mean field model,

presented above, the system (5.5)-(5.6) is stable.

Before we proceed, note that by setting zi(t) = δi(t)u0C
a2

i
system (5.6) becomes equivalent to

zi(t + 1) = (1− qw)zi(t) + qw

√
zi(t)

N∑

j=1

1√
zj(t)

(5.7)

Without loss of generality, we can order zi at time t = 1: z1(1) ≤ z2(1) ≤ · · · ≤ zN (1). Directly

from (5.7) we get that for all t ≥ 1

z1(t) ≤ z2(t) ≤ · · · ≤ zN (t).

Denote by r(t) = z1(t)
zN (t) , the ratio between the smallest and the largest component of vector z(t), and

by s(t) =
∑N

j=1
1√
zj(t)

. Our first technical lemma shows that r(t) is a nondecreasing function of t.

Lemma 5.1 Ratio r(t) = z1(t)
zN (t) is a nondecreasing function of t.

Proof: Since the order of zi is preserved we have that

r(t + 1) =
z1(t + 1)
zN (t + 1)

=
(1− qw)z1(t) + qw

√
z1(t)s(t)

(1− qw)zN (t) + qw

√
zN (t)s(t)

=
z1(t)
zN (t)




(1− qw) + qw
1√

z1(t)
s(t)

(1− qw) + qw
1√

zN (t)
s(t)


 ≥ z1(t)

zN (t)
= r(t)
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Lemma 5.2 The sequence zN (t) is bounded from above:

zN (t) ≤ zN (1) +
N√
r(1)

=: D.

Proof: First, note that
√

zN (t)
∑N

j=1
1√
zj(t)

<
√

zN (t) N√
z1(t)

= N√
r(t)

< N√
r(1)

. Now we prove

the lemma by mathematical induction. For t = 1, statement is clearly true. Suppose that it is valid

for t = m, then for t = m + 1:

zN (m + 1) = (1− qw)zN (m + 1) +
√

zN (m)
N∑

j=1

1√
zj(m)

≤

(1− qw)(zN (1) +
N√
r(1)

) + qw
N√
r(1)

< zN (1) +
N√
r(1)

= D.

Having that r(t) ≤ 1 and that r(t) is monotone, nondecreasing, we know that r(t) converges to

r∗ ≤ 1. Our next lemma shows that r∗ is indeed 1.

Lemma 5.3 The sequence r(t) converges to 1.

Proof: Suppose it is not true. Then there exist δ > 0, such that for all t, r(t) < 1− δ. From the

definition of r(t), we have:

r(t + 1) = r(t)


1 + qw

( 1√
z1(t)

− 1√
zN (t)

)s(t)

1− qw + qw
1√

zN (t)
s(t)




= r(t)


1 + qw

1√
zN (t)

( 1√
r(t)

− 1)s(t)

1− qw + qw
1√

zN (t)
s(t)




= r(t)


1 + qw

( 1√
r(t)

− 1)

(1−qw)
√

zN (t)

s(t) + qw




> r(t)


1 + qw

( 1√
r(t)

− 1)

(1− qw)zN (t) + qw




> r(t)

(
1 + qw

( 1√
1−δ

− 1)

(1− qw)D + qw

)
= r(t)E,

as the constant E is strictly greater than 1. Thus, assuming that r(t) < 1 − δ, for all t, implies

r(t) > r(1)Et−1 →∞ which is in turn a contradiction with r(t) ≤ 1.

Proof: (Theorem 5.1) Since z1(t)/zN (t) converges to 1, we have that for every i,
√

zi(t)s(t)

converges to N , and therefore, from (5.7) zi(t) converges to N . Now, from the definition of zi(t) we

obtain that

lim
t→∞

δi(t) = N
a2

i

u0C
= δ∗i .

From (5.5), we conclude that

lim
t→∞

ν(t) = lim
t→∞

(
1

u0C

N∑

i=i

ai
1√
δi(t)

)2

=
N

u0C
= ν∗.
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Corollary 5.1 In steady state, the expected throughput of flow fi does not depend on AIMD param-

eters, βi and γi.

Proof: From (5.3),

Ū (i)(t) =
βi

1− βi

γi√
δ∗i ν∗

·A =
ai√

N
a2

i

u0C
N

u0C

=
u0C

N

5.3.2 Resource allocation of non-responsive CBR flows

In the previous subsection we have seen that a set of N long-lived elastic AIMD flows bottlenecked at

link with throughput u0C with MAY queue receive asymptotically the same throughput u0C/N . In

this subsection we are going to explore the effect of MAY on the throughput of non-responsive CBR

flows. Suppose that a link is shared by N elastic AIMD flows with AIMD parameters γi > 0 and

βi ∈ (0, 1) and M non-responsive CBR flows with constant sending rate of xj packets per δ.

Theorem 5.2 In steady-state, the throughput of all AIMD flows is

U∗
i =

1
ν∗

. (5.8)

If δj(1)ν∗ ≥ 1 the throughput of CBR flow T ∗j is zero; otherwise:

T ∗j = xj if xj ≤ 1
ν∗

, (5.9)

T ∗j = 0 if xj >
1
ν∗

. (5.10)

Here ν∗ is the steady-state value of ν.

Proof: From the proof of the Theorem 5.1 we have (5.8). On the other hand denote by δj(t) the

weighted average of frequencies of drops from CBR flow cj , and by δ̄j(t) the amount of drops from the

same flow during the time step t. Then if δj(t0)ν∗ ≥ 1 for some t0, all packets starting after period t0

will be dropped and T ∗j = 0. If δj(t)ν∗ < 1 then

δj(t + 1) = (1− qw)δj(t) + qw δ̄j(t) =

= (1− qw)δj(t) + qwxjδj(t)ν∗ = δj(t)((1− qw) + qwxjν
∗)

Thus, for xj > 1
ν∗ , we have that ((1− qw) + qwxjν

∗) > 1 and δj(t + 1) is exponentially increasing

until it becomes greater than 1
ν∗ , and after that all packets from that flow are dropped. If xj < 1

ν∗ ,

δj(t + 1) → 0 as t → ∞, and therefore CBR flow gj receives asymptotically lossless service, and

T ∗j = xj .
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5.3.3 Max-min fairness of the elastic AIMD flows

The following lemma is a characterization of max-min fairness [102].

Lemma 5.4 A set of rates xr is max-min fair if and only if for every flow r there exists a link l on

its path, such that the rates of all flows which traverse through l are less or equal than xr.

The next theorem proves that in steady-state resource allocations of elastic AIMD users is max-

min fair.

Theorem 5.3 Let G be a network topology, with queues employing MAY and end users employing

AIMD congestion control. For every flow r with steady-state rate x∗r there exists a link on its path,

such that the steady-state rates of all flows which traverse through that link are less then x∗r.

Proof: Let L be the number of links in the network and N be the number of flows. We label

flows by i = 1, 2, . . . , N and links by s = 1, 2, . . . , L. By R we denote the routing matrix: Ris = 1

if flow i uses link s otherwise Ris = 0. By δ
(s)∗
i denote the frequency of drops of flow i at link s,

and by ν∗s steady-state value of ν at link s. Then for an arbitrary flow r there must exist a link l for

which δ
(l)∗
r > 0. On the other hand, from the definition of δ

(s)∗
r we have that it satisfies the following

equation.

δ(s)∗
r = (1− qw)δ(s)∗

r + qwx∗rν
∗
s δ(s)∗

r = δ(s)∗
r (1− qw + qwx∗rν

∗
s ). (5.11)

Since we picked l such that δ
(l)∗
r > 0, from (5.11) we conclude that 1 − qw + qwx∗rν

∗
l = 1, which

implies x∗r = 1
ν∗l

. Now, for any other flow r1 that uses link l, δ
(s)∗
r1 > 0 implies x∗r1

= 1
ν∗l

= x∗r while

δ
(s)∗
r1 = 0 implies x∗r1

< 1
ν∗l

(see proof of Theorem 5.2).

5.3.4 Memory consumption

Let the sizes of flows be distributed according to the distribution G(x):

P [|f | ≥ x] = G(x) =
∫ ∞

x

g(y)dy.

Then the number of hash-table entries needed for a population of n flows: (fi)1≤i≤k is given by

the random variable

Z(n) =
n∑

i=1

z(fi),

where:

z(fi) = 1 if flow fi has been hashed (experienced at least one loss)

z(fi) = 0 if flow fi has not been hashed (had no losses)

Denote by li the length of flow fi. The probability that z(fi) = 0 is:

P [z(fi) = 0] = (1− q0)li = (1− 1
S0

)li ≈ e−
li
S0 .
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Figure 5.3: Expected memory consumption (in bits per flow). Pareto shape k ∈ [1, 2], mean µ = 10,

500 ≤ S0 ≤ 10000

The expected memory consumption is then given by

E(Z(n)) = nE(z(f)) = n

∫ ∞

0

g(y)(1− e−
y

S0 )dy,

and the variance of Z(k) is:

V ar(Z(n)) = nV ar(z(f)) = n

∫ ∞

0

g(y)(1− e−
y

S0 )e−
y

S0 dy.

The expected memory consumption (EMC) in bits per flow is given by M(G) = 64E(Z(n))/n

(we assume that each hash-table entry have 8bytes = 64bits). Figure 5.3 contains EMC for Pareto

distributions, with Pareto shape in [1, 2] and mean 10 packets.

5.3.5 FCT of short-lived TCP flows

A major factor that determines the FCT of a flow f is the congestion control algorithm (and its

implementation) used by f . For example in standard TCP, the parameters that directly determines

FCT are: the slow start threshold (sstresh−), the advertised window, the maximum congestion win-

dow (maxcwnd−), the delayed acknowledgements option, etc. In the simplest case (without sstresh−

and maxcwnd− limitations), most of short flows will complete quickly (in slow start phase), if they

do not experience loss. In Pareto flow size environments, the proportion of short-lived flows that

experience loss is very small. Namely, in a population of k flows with Pareto distributed sizes, with

shape k ∈ [1, 2], and mean size µ the proportion of short-lived flows that do not experience drops is

L(k, S0) = Prob[z(f) = 0| |f | < S0].

The value of L(k, S0) is depicted in Figure 5.4.

To see how the FCT of TCP flows is affected by MAY one can consider a simple model of TCP

with delayed acknowledgements (one ack per two packets) and without (upper) limitation in cwnd−.
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Figure 5.4: Proportion of lossless short-lived flows. Pareto shape k ∈ [1, 2], mean µ = 10, 500 ≤ S0 ≤
10000.

Congestion window’s (cwnd−) evolution is given by the following equations, where updates are taken

once per RTT.

If rand(0, 1) < e−q0cwnd−

cwnd− = 3
2cwnd− if dropped == false and cwnd− < ssthresh−

cwnd− = cwnd− + 1
2 otherwise

otherwise

dropped = true

cwnd− = cwnd−
2

Figure 5.5 depicts the mean FCT of short-lived TCP flows (S0 = 1000) in three cases LAS, MAY

and FIFO with drop rate p0 = 0.01. Both ssthresh− = 2 and ssthresh− = ∞ are included. We can

observe a slight increase in FCT between MAY and LAS, which is the consequence of the (stateless)

probabilistic nature of MAY and price that must be payed for not keeping per-flow packet counters

as in LAS.

5.4 Experimental results

In this section we briefly describe results of packet level ns2 simulations that demonstrate the behavior

of MAY. We look at two issues:

• fairness of long-lived flows

• flow completion times of short-lived flows

To compare how far bandwidth allocations U = (U1, . . . , UN ) deviate from max-min fair band-

width allocations, Umm = (U1,mm, . . . , UN,mm), we use Jain’s fairness index [50] given by:

j(U) =

(∑N
i=1

Ui

Ui,mm

)2

N
∑N

i=1

(
Ui

Ui,mm

)2 . (5.12)
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Figure 5.5: Flow sizes versus FCT (measured in RTTs) in FIFO (with drop rate p0 = 0.01), MAY

(S0 = 1000) and LAS cases. Top plot has no slow start limitations, while the bottom plot corresponds

to sstrhesh− = 2.

Clearly, j(U) has a global maximum 1 that is attained at U = Umm and since it is a continuous

function, by measuring how far the index is from 1, one can get some intuition as to how far the vector

U is from Umm. The MAY parameters used in the experiments are: ∆ = 1s, u0 = 0.98, κ = 0.1,

qw = 0.05, T0 = 64sec. The DRR parameters are No−buckets− = 100, blimit− = 100Kbytes,

quantum− = 1000bytes. The self configuring Adaptive RED [39] is used to determine the RED

parameters.

5.4.1 Fairness - Single bottleneck

The first set of simulations are designed to demonstrate the fairness properties of the proposed AQM

schemes in single bottleneck scenario. Specifically, we present results for a single link with service rate

of 80Mbps that services 100 long-lived TCP users with round trip times uniformly distributed in range

40− 440ms, with a packet size 1000bytes. To provide baseline results, we include the performance of

RED and DDR for the same scenario. The share of the total throughput taken by each of 100 flows

in these 3 schemes is depicted in Figure 5.6.

Jain’s fairness indices for these three schemes are:

j(URED) = 0.606, j(UDRR) = 0.997, j(UMAY ) = 0.993.

It can be seen from Figure 5.6 that the fairness of RED is approximately proportional to the

inverse of RTT. This is in accordance with square root formula and observations made by others

[1, 38].
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Figure 5.6: Scaled throughput for 100 long-lived TCP flows over congested link employing RED, DRR

and MAY.
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Figure 5.7: Network topology

5.4.2 Fairness - Multiple bottleneck topology

Our second set of simulations demonstrate the fairness properties of MAY in network with multiple

bottlenecks. The network topology that we considered is given in Figure 5.7. Here, we consider a

network of 24 nodes: n1−n5,m1−m5, p1− p5, q1− q5, and c1, c2, c3, c4 and 30 flows traversing the

network as follows: n(i) → p(i); n(i) → q(i),m(i) → p(i); m(i) → q(i); n(i) → m(i); p(i) → q(i) where

i = 1, 2, 3, 4, 5.

The delays on each of the links in ms are defined as follows:

ni → c1 : 40 · i + 1; pi → c3 : 40 · i + 1

mi → c2 : 40 · i + 1; qi → c4 : 40 · i + 1

and the delays c1− c2, c2− c3, c3− c4 are 10ms. The capacities of all links are 10Mbps. With this

topology, the max-min fair shares are 0.5Mbps for the 20 flows that use link c2− c3, and 1Mbps for

the other 10 flows (n(i) → m(i) and p(i) → q(i)).

Each flow uses the standard TCP-SACK algorithm, with a packet size 1000B. The aggressiveness

of each flow is mainly determined by its RTT. The behavior of the network is evaluated with each

link c1− c2, c2− c3 and c3− c4 using: RED, DRR and MAY with a queue size of 100 packets. The

MAY parameters used in the experiment are same as in previous section.
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Figure 5.8: Bandwidth taken by each of 30 flows in multiple bottleneck topology. Congested links use

RED, DRR, MAY.

Figure 5.8 depicts 3 scenarios, one for each dropping scheme used. We plot the amount of through-

put taken by each of 30 flows. The doted line represents the max-min fair share of bandwidth. We

can see significant unfairness in oblivious (RED) scheme and close-to-max-min-fair resource allocation

in DRR and MAY case. Jain’s indices, defined by (9.17) are:

j(URED) = 0.731, j(UDRR) = 0.987, j(UMAY ) = 0.985

5.4.3 Throughput of a nonelastic flow

In this subsection we present simulations that support analytical findings from Theorem 5.2. The basic

setup is the following: N = 19 TCP flows with RTTs uniformly distributed in [20ms, 220ms] share a

MAY (the MAY parameters used are the same as in previous subsection) link with capacity 40Mbps

with a single CBR flow with sending rate x1. We varied x1 in the interval [0.5Mbps, 8Mbps] and

evaluate the throughput in each case. The results are presented in Figure 5.9. Each simulation lasted

for 5 minutes, with first minute neglected. In this context, fair share is simply xf = 40/20Mbps =

2Mbps. From Figure 5.9, we can see that for x1 less than xf = 2Mbps throughout is identical to the

sending rate, while for x1 > xf CBR flow is shut down, by receiving (almost) zero throughput.

5.4.4 Flow sizes versus FCT of short-lived flows

In this subsection we present results that show how the FCT of short-lived flows (here we use S0 =

1000) is affected by the queue management algorithm used at a congested link. The basic setup is the

following: 250 short-lived TCP flows share a 40Mbps bottleneck link with 50 long-lived TCP flows.

Each connection has no sthresh− nor cwnd− limitations, delayed acknowledgements are switched

on and packet sizes are 1000bytes. RTT’s of short-lived flows are 100ms (we use the same value in

order to compare the FCTs of different flows, which are RTT-dependent), and RTT’s of long-lived

67



0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

UDP sending rate (Mbps)

UD
P t

hro
ug

hp
ut 

(M
bp

s)
Figure 5.9: Sending rate versus Throughput of the nonelastic CBR flow.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

Flow size (in packets)

FC
T 

(in
 s

ec
on

ds
)

MAY
RED
DRR
LAS

Figure 5.10: Flow sizes versus FCT (measured in seconds) in RED, DRR, MAY and LAS cases.

flows are uniformly distributed in [20ms, 200ms]. The sizes of short-lived flows are picked randomly

with uniform distribution in the interval [1,1000] packets. We evaluated the FCT of short lived flows

obtained by four different queue management algorithms used by the bottleneck link: RED, DRR,

LAS and MAY. The results are depicted in figure 5.10. Numerically, the average FCT (AFCT) for

250 short-lived flows in this four cases are:

AFCTRED = 8.14s, AFCTDRR = 10.34s,

AFCTLAS = 1.26s, AFCTMAY = 1.72s.

Note the slight increase of FCT in MAY compared to stateful scheme - LAS. The oblivious scheme

(RED) and instantaneously fair packet scheduler (DRR) achieve significantly larger FCT. In RED no

packet is prioritized while in DRR the instantaneous sending rate is limited and most of short-lived

flows experience loss during the slow-start phase.

5.5 Discussion of MAY

Isolating the high-rate nonelastic flow. Nonelastic flows that have sending rate higher than responsive

flows bottlenecked at a given link would asymptotically get full denial of service by MAY. One may
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Figure 5.11: Share of traffic produced by short-lived flows (those with less than S0 packets) as function

of S0. Real Internet traces: Leipzig and Abilene.

argue that this is not desirable feature of MAY, but since the nonelastic flows (with high sending rate)

have few orders of magnitude higher drop rates compared to elastic flows they can be easily identified

and can receive additional processing by the router if required.

Estimating the fair share and the number of bottlenecked flows. From the analysis in section 5.3

we know that max-min fair share x∗ can be estimated with

x∗ =
1
ν∗

.

From the proof of Theorem 5.3, we also know that a flow f is bottlenecked at the link l if and only if

δ∗f is asymptotically positive. In practice, we can estimate the number of bottlenecked flows at link l

at time t as

NB(l) = #{f ∈ H : δf (t) > ε}

for some ε > 0.

Variable packet size. Throughout this chapter we assumed uniform packet sizes among the flows to

ease the exposition. The problem of variable packet size can be easily solved by employing byte-based

variable instead packet-based variables.

Control of ν. In the present implementation the control of ν is rate based, rather than queue-

based. This means that congestion indicator is arrival rate at the queue, rather than queue length.

Queue based control of ν is possible as well, without affecting the main features of MAY.

Definition of short-lived flow. In our terminology a flow is short-lived if it has length not greater

than S0 packets. The quantity S0 determines memory consumption as well as the amount of traffic

prioritized. The Figure 5.11 depicts the proportion of short-lived-flow traffic as function of S0 at

two real internet traces [84]: Leipzig and Abilene. We can see, for example, that picking S0 = 1000

corresponds to 10% of traffic in the Abilene trace and 24% in the Leipzig trace.

Parameter calibration. Initial tests show that MAY is highly robust to the choice of parameters.

The update interval ∆ should be taken to cover several “typical” RTT, thus to belong to interval
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[500, 5000]ms. The weighted average qw should be chosen to allow averaging over several update

intervals: qw ∈ [0.01, 0.1]. Timeout T0 depends on the definition of persistence of a flow. The

standard value used in the Internet measurements if T0 = 64sec and here we use the same value. Self

tuning of parameters is possible but is out of scope of the present chapter.

5.6 Summary

In this chapter we proposed a randomized framework for unifying two major principles for the design

of resource allocation algorithms at Internet links: small Flow Completion Time of short-lived flows

and max-min fair bandwidth sharing of long-lived flows. While both problems have been extensively

studied, over last two decades, no stateless solution exist for either of them. A powerful paradigm

“Drop proportionally to the amount of past drops”, allows us to develop a virtually stateless scheme,

called MAY which unifies two design principles using around 1 bit per flow of on-chip SRAM in

Internet-like flow size distributions. The light computational complexity allows implementation at

speeds greater than 40Gbps.

Our analytical work, shows that for elastic AIMD flows, the amount of bandwidth obtained by

each long-lived flow asymptotically does not depend on its aggressiveness (additive increase factor)

nor responsiveness (multiplicative decrease factor). The fairness level of MAY, evaluated using Jain’s

fairness index, is almost identical to one of DRR. On the other hand, increase of FCT for short-lived

flows compared to LAS is minimal (< 10%) and is a consequence of probabilistic nature of our scheme,

and price payed for avoidance of state information.
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CHAPTER 6

Small active counters

Abstract - The need for efficient counter architectures has arisen for the following two reasons.

Firstly, a number of data streaming algorithms and network management applications require a large

number of counters in order to identify important traffic characteristics. And secondly, at high speeds,

current memory devices have significant limitations in terms of speed (DRAM) and size (SRAM). For

some applications no information on counters is needed on a per-packet basis, and several methods have

been proposed to handle this problem with low SRAM memory requirements. However, for a number

of applications it is essential to have the counter information on every packet arrival. In this chapter

we propose two, computationally and memory efficient, randomized algorithms for approximating the

counter values. We prove that the proposed estimators are unbiased and also derive variance bounds.

A case study of Multistage Filters (MSF) on real Internet traces shows a significant improvement by

using the active counters architecture.

6.1 Introduction

Statistics counters are an essential element of most data streaming or sampling algorithms. Maintain-

ing them at high line speeds is a challenging research problem. Briefly, we need an architecture (1) to

store a large number of counters (say millions) and (2) to update a large number (say tens of millions)

of counters per second. While chip and large Dynamic RAM (DRAM) can easily satisfy condition (1),

DRAM access times of 50−100ns cannot accommodate the large number of counter-updates needed1.

On the other hand, expensive Static RAM (SRAM) with access times of 2 − 6ns allow much more

counter increments per second, but are not economical for large number of counters. Recently, several

solutions [94, 127, 95, 96] have been proposed that use a hybrid SRAM/DRAM architecture: for each

counter m-bit counter (m ¿ 64) is stored in SRAM, while a full counter is stored in DRAM. SRAM

1Moreover one cannot expect in the near future that the speeds of DRAM (which increase approximately 7% per

year) will reach the speeds of backbone links (which roughly double every 18 months)[30, 2].
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counters are updated on a per-packet basis and when some of them come close to overflow different

Counter Management Algorithms (CMA) decide which counters should be flushed to DRAM. These

approaches share a common feature: it is not possible to estimate a counter’s value without accessing

DRAM. We use the term Passive Counters to refer to such schemes. For a number of applications

it is essential to have an estimate of the counter on every packet arrival. For example, in Multistage

Filters (MSF) [30], the conservative update step requires knowledge of counters at each stage, and is

essential for good performance of MSF: [30] reports up to 100 times higher false-positive ratio without

conservative updates. Similarly, in Smart Sampling [22], the sampling probability depends on the cur-

rent estimate of the flow size. The algorithm for building a Spectral Bloom Filter [15], the algorithm

for online hierarchical-heavy-hitter identification [124], as well as efficient implementations of hash

tables [101] also require volume estimates on per-packet basis. We will use term Active Counters for

schemes that allow estimate of full counters on per-packet basis without DRAM access. Thus active

counters have to store enough information in fast memory. Storing the full-width counter in SRAM is

an example of an active counter. At high-speeds these counters would require up to 64 bits to prevent

overflow. The main objective of this chapter is the design of a small active counter architecture with

small errors between the small-counter-based estimate and the real volume. Having efficient small

active counters would reduce SRAM space needed for a number of applications; or equivalently, for

given SRAM space one can fit more small active counters than regular 32(or 64)-bit counters, which

in turn can significantly improve performance of data streaming algorithms with limited memory.

6.1.1 Related work

The design of an efficient statistics counter architecture has been identified as an important problem

by Shah et al. [96]. They propose a hybrid SRAM/DRAM architecture in which DRAM is used to

store the statistics counter while a small SRAM is used to enable counter updates at line rate. In other

words, suppose that we need to track n counters of size M bits, then n counters of full size M bits are

stored in DRAM and n counters of a smaller size m < M bits are cached in SRAM. The counters in

SRAM are updated on every packet arrival to keep track of the recent history of counter updates and

are periodically flushed to corresponding DRAM. The decision as to which counter should be flushed

to DRAM is made by a Counter Management Algorithm (CMA). By maintaining smaller SRAM

counters required SRAM space is reduced, while larger access times of DRAM are compromised by

accessing DRAM not too often. The size of SRAM counters, as well as the frequency of DRAM access

is determined by CMA. CMA decides which counters should be updated first. Different proposals

have different CMAs. The following features are shared by previous proposals:

• full counters are stored in slow DRAM.

• counters stored in DRAM are exact.
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In order to provide the exact values of DRAM counters CMA must ensure that no SRAM counter

overflows before updating to DRAM.

Shah et al. [96] propose a CMA called Largest Counter First (LCF). In LCF, an SRAM counter

with the largest value is flushed to DRAM. LCF is difficult to implement at high speeds for the following

two reasons. First, LCF requires a large amount of control memory: as LCF SRAM counters are 9

bits large control memory can take up to 20 bits per counter. Second, LCF requires finding the largest

of n counter values which is the main performance bottleneck of LCF.

In order to reduce the control memory consumption of LCF and expensive searching for the

largest counter value, Ramabhadran and Varghese [94] proposed a new CMA called Largest Recent

with threshold T , LR(T ). LR(T ) tracks the list of counters with values greater than the threshold

T and makes the decision as to which SRAM counter should be flushed to DRAM using only this

list. By doing this, the computational complexity of LCF is significantly reduced, while the usage of

the efficient data structure called aggregated bitmap requires only 2 bits per counter devoted for the

control memory. Compared to LCF (that consumes 29 bits per counter) LR(T ) requires only 11 bits

per counter.

Roeder and Lin [95] developed an extension to LCF and LR(T ) to reduce the memory require-

ments for nonuniform traffic patterns. Namely, if the frequency of updating fast memory counters is

not uniform over counters, then allocating more bits to SRAM counters with more frequent updates

would reduce the number of DRAM accesses; therefore the amount of fast memory space needed for

storing recent history counters can be reduced. They propose multiple levels of fast memory instead of

one: one level of SRAM and one or more levels of CAM (Content Addressable Memory) for storing the

partial counter values. Their enhancement can reduce the amount of equivalent fast memory storage

up to 28%.

A recent paper by Zhao et al. [127] removed the basic design objective of previous approaches

that does not allow SRAM-counter overflows. The key observation is, assuming that SRAM coun-

ters are large enough, counter overflows occur rarely enough so that a small buffer for storing this

overflowed counters would be sufficient to allow the exact tracking of DRAM counters with extremely

low probability of data loss2. The implementation of their proposal requires l(µ) = dlog2(
1
µ )e bits

for SRAM counters, and ε < 1 (say 0.01) bits per counter for buffer that keep track of overflowed

counters. Here µ represents the ratio between the access times of SRAM and DRAM. For currently

available SRAM/DRAM devices, µ is in the range [1/50, 1/10] which implies l(µ) ∈ {4, 5, 6}. We

believe that the multilevel SRAM/CAM/DRAM architecture, similar to those proposed in [95], can

further reduce equivalent fast memory storage.
2To quote [127] “However, in practice there is no need to worry about this probability, since it can be made so small

that even if router operates continuously for billions of years (say from Big Bang to now)), the probability that a single

loss of increment happens is less than 1 over a billion”.
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6.1.2 Chapter contributions

The current proposals for efficient counter statistics architectures belong to class that we call passive

counters: full counter information is stored in DRAM, and it is not possible to estimate the full

counter value without accessing DRAM. While for many applications passive counters are good enough

[63, 66], for a number of applications full counter value, or its estimate, is required on per-packet basis

[30, 15, 22, 124]. In these cases, at high speed links (say 10Gbps or more), it is necessary to have

enough information for estimation of full counter based on information stored in the fast memory.

The design of efficient active counter architecture is the main concern of this chapter.

Briefly, the main contributions of this chapter are the following:

• Two active counter architecture schemes, SAC and HAC, are proposed that have small per

counter memory requirements, as well as a small expected error.

• A proof of unbiasedness of presented estimators and the analysis of the expected error.

• A framework for the resource control of SAC and HAC, and a demonstration of the potential

benefit of proposed solutions is presented in a case study done with Multistage filters over real Internet

traces.

Both of our schemes are randomized and therefore give the estimate of total traffic rather than

exact values. Our first scheme called SAC uses only SRAM memory, with m bits per counter devoted

for tracking values in range [0, 2M ] where M > m. The standard error of this scheme is proportional

to 1√
2k+2k−r

, for some r < k < m. In order to reduce the error we developed the second scheme

called HAC which uses hybrid SRAM/DRAM architecture. In HAC the main counter information

is stored in SRAM, while DRAM is used for storing augmenting counters which are used to reduce

the standard error. Our analysis shows that if η is the relative frequency of accessing of DRAM, and

ĉ the estimate of the counter, then the standard error of HAC is proportional to η√
ĉ

(which can be

substantially smaller for large counter values).

We argue that in applications of statistics counters for firewall support, intrusion detection,

performance monitoring, flow control, packet schedulers, load balancing or traffic engineering, no need

for exact counters exist. We believe that small errors (of say 1%) are acceptable, so that all reasons

for design of existing passive counters apply to active counter architecture as well. We also believe

that storing counter information in on-chip SRAM can be beneficial for remote monitoring/control as

it would reduce latency of SMNP queries at heavily utilized network processors that usually have low

priority (and therefore high latency).

Throughout this chapter we use the following notation. For a real number x: by bxc we denote

the largest integer not greater than x by dxe we denote the smallest integer not less than x and by

{x} = x− bxc we denote the residuum of x modulo 1.
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6.2 Simple Active Counters (SAC) scheme

Suppose that we have q · n bits of SRAM allocated for n counters. Let Vi be real value of counter

i. Our goal is to develop scheme that estimates Vi using only q bits of SRAM memory. Our scheme

works as follows. We divide the available q bits of the i-th SRAM counter in two parts: l-bit exponent

part that we call mode[i], and the k-bit estimation part A[i]. We use the estimator

V̂i = A[i] · 2r·mode[i] (6.1)

Here r is the global parameter, and is determined by scale over which this set of counters run. To

update A[i] we use a randomized scheme. Suppose that we need to increment the counter i by value

inc. If inc ≥ 2r·mode[i] then we first increment A[i] by b inc
2r·mode[i] c and then increment A[i] by 1 with

probability given by normalized value of the residue: 1
2r·mode[i] (inc− b inc

2r·mode[i] c · 2r·mode[i]). Similarly,

for inc < 2r·mode[i] we increment A[i] by 1 with probability inc
2r·mode[i] .

The pseudocode of the scheme is given in Figure 6.1. A renormalization step moves counters to

a higher scale: r = r + 1.

Initially, we divide the available memory of q bits in two parts of size l and k such that l + k = q.

How to chose “right” allocation pair (k, l) depends on various factors, and we will discuss this in detail

in Section 6.5.

The analysis from Section 6.4 shows that the standard error of the scheme is approximately

proportional to 1√
2k+2k−r

. This error can be substantial for very small k. Intuitively, for large

counters, the frequency of updates is very small, which implies the large variance of the background

estimator. In the next section we present the architecture that will use augmenting DRAM counters

to reduce the variance of estimators.

6.3 Hybrid Active Counters (HAC) scheme

Suppose again that we have q bits per counter in SRAM, divided in two parts with sizes of k (A[i])

and l (mode[i]) bits. Assuming knowledge of the full counter value Vi, setting A[i] to round( Vi

2r·mode[i] )

would imply the lowest errors under this circumstances. However, knowledge of the exact value Vi

does not exist, so we have to find other ways to capture the top k bits of Vi. As we noticed, purely

SRAM solution exhibits O( 1√
2k

) errors. This is due to high variance of the background estimators.

To illustrate this, consider the following example: scale r = 2, mode[1] = 5, with all increments equal

to 1. In this setting, A[i] is incremented by 1 with probability 2−10. Suppose that the counter Vi

updates come with a rate of 1 per unit of time, this means that the time between the two consecutive

A[i] increments is given by the geometric random variable G(p0), with p0 = 2−10. The expected

value of G(p0) is 1/p0 = 1024, while the variance of G(p0) is 1−p0
p2
0
≈ 220. Suppose now that we have

available additional memory which can be accessed only occasionally, say once in 16 time units on

average. Let B[i] be the additional memory space and in the every time unit increment B[i] by 1 with
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1 UpdateCounter(i, inc)

2 A[i] = A[i] + b inc

2r·mode[i] c

3 With probability { inc

2r·mode[i] }: A[i] = A[i] + 1

4 if A[i] > 2k

5 mode[i] = mode[i] + 1;

6 p = {A[i]
2r };

7 A[i] = bA[i]
2r c;

8 With probability p: A[i] = A[i] + 1;

9 endif

10 if mode[i] == 2l

11 RenormalizeCounters(r)

12 r = r + 1;

13 endif

14 Initialize()

15 r = 1;

16 mode[i] = 0;

17 A[i] = 0;

18 RenormalizeCounters(r)

19 for s = 1 : n

20 old−mode = mode[i];

21 mode[i] = dmode[i] · r
r+1 e;

22 r1 = mode[i] · (r + 1)− old−mode · r;

23 p = {A[i]
2r1 };

24 A[i] = bA[i]
2r1 c;

25 With probability p: A[i] = A[i] + 1;

26 endfor

Figure 6.1: The pseudocode of SAC.
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1 UpdateCounter(i, inc)

2 if inc

2r·mode[i] > 1
η

3 A[i] = A[i] + b inc

2r·mode[i] c

4 With probability { inc

2r·mode[i] }: A[i] = A[i] + 1

5 else

6 With probability 1
η do

7 B[i] = B[i] + inc;

8 if B[i] ≥ 2r·mode[i]
η ;

9 A[i] = A[i] + 1;

10 B[i] = B[i]− 2r·mode[i]
η ;

11 endif

12 enddo

13 endelse

14 if A[i] > 2k

15 mode[i] = mode[i] + 1;

16 B[i] = RandomUniform[0, 2r·mode[i]
η ]

17 p = {A[i]
2r };

18 A[i] = bA[i]
2r c;

19 With probability p: A[i] = A[i] + 1;

20 endif

21 if mode[i] == 2l

22 RenormalizeCounters(r)

23 r = r + 1;

24 endif

25 Initialize()

26 r = 1;

27 mode[i] = 0;

28 A[i] = 0;

29 B[i] = 0;

30 RenormalizeCounters(r)

31 for s = 1 : n

32 old−mode = mode[i];

33 mode[i] = dmode[i] · r
r+1 e;

34 r1 = mode[i] · (r + 1)− old−mode · r;

35 p = {A[i]
2r1 };

36 A[i] = bA[i]
2r1 c;

37 With probability p: A[i] = A[i] + 1;

38 B[i] = RandomUniform[0, 2(r+1)·mode[i]
η ];

39 endfor

Figure 6.2: The pseudocode of HAC.
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probability p1 = 1/16. By incrementing A[i] when B[i] reaches 64, the time between two consecutive

A[i] increments is given by the random variable Z1 which is sum of 64 i.i.d. geometric random variables

G(p1). The expected value of Z1 is 64 · 1
p1

= 1024, while the variance of Z1 is 64 · 1−p1
p2
1
≈ 214, which

is approximately 26 times smaller than in the case without additional memory. We can think of B[i]

as of additional counters stored in the slower DRAM with rare accesses.

Our second scheme HAC formalizes the reasoning from the simple example presented above. The

basic SRAM architecture is the same as in SAC: a memory of n · q bits; each q bits counter is divided

in k bits estimate space A[i] and l bits mode[i]. The difference between SAC and HAC is in the way

they increment A[i]. In HAC, each of n counters have a shadow counter in DRAM, B[i]. Let η be

the allowable relative DRAM frequency: every η SRAM accesses we can have one DRAM access. We

update B[i] with probability 1
η , and increment A[i] when B[i] “overflows”.

Figure 6.2 contains the pseudocode of HAC. For low r and mode[i] (if statement in line 2 is

positive) there is no need for DRAM, which become beneficial only when r ·mode[i] is larger.

At low speeds, η can be equal to 1, which means that we can store full counters in DRAM.

However, in our case of interest, η > 1, for the moment we will assume that is manually configurable

constant. In Section 6.5 we will present a possible control strategy for η, that will take into consid-

eration the available system bus and DRAM bandwidth. In the case of constant η no need for the

renormalization of DRAM counters B[i] exists. However, in the case of dynamic η, the renormalization

of B[i] is necessary.

Compared to other existing counter architectures HAC does not have exact counter value, but

stores only its estimate. Note a paradigm shift: the main counter information is stored in SRAM

while DRAM is used to store information only from the recent history.

6.4 Analysis

In this section we provide an analysis of the proposed schemes: SAC and HAC. Throughout this

section we concentrate on a single counter, say (A[1],mode[1]), and denote it with (A,mode). Let

u1, u2, . . . be the sequence of increments of counter (A,mode). Denote Vj =
∑j

s=1 us. For each

j = 1, 2, . . . , denote by Aj the k-bit random variable A after j updates, by modej we denote the

random variable mode after j updates, and by rj the random variable that determines scale r after j

updates. In the next Theorem we show that the following estimator of Vj is unbiased:

V̂j = Aj · 2modej ·rj .

Theorem 6.1 The SAC estimator V̂j is unbiased:

E[V̂j ] = Vj .

Proof: Denote by (A′j ,mode′j , r
′
j),(A

′′
j ,mode′′j , r′′j ) and (A′′′j ,mode′′′j , r′′′j ) the values of (A,mode, r)

after execution of the lines 3, 9 and 13 of the SAC algorithm given in Figure 6.1 (Recall that index i

is omitted, and that inc = uj+1). We have that
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E[A′j · 2r′j ·mode′j |(Aj ,modej , rj)] =
(
Aj + b uj+1

2rj ·modej
c
)
· 2rj ·modej + { uj+1

2rj ·modej
} · 2rj ·modej =

Aj · 2rj ·modej + uj+1.

Thus

E[A′j · 2r′j ·mode′j ] = E[Aj · 2rj ·modej ] + uj+1. (6.2)

After the line 9 is executed, we have that either (A′′j ,mode′′j , r′′j ) is equal to (A′j ,mode′j , r
′
j) or mode′′j =

mode′j + 1 and

E[A′′j · 2r′′j ·mode′′j |(A′j ,mode′j , r
′
j)] =

⌊
A′j
2r′j

⌋
· 2r′j ·(mode′j+1) +

{
A′j
2r′j

}
· 2r′j ·(mode′j+1) = A′j · 2r′j ·mode′j .

Thus, in both subcases

E[A′′j · 2r′′j ·mode′′j ] = E[A′j · 2r′j ·mode′j ]. (6.3)

Similarly

E[A′′′j · 2r′′′j ·mode′′′j ] = E[A′′j · 2r′′j ·mode′′j ]. (6.4)

Since (A′′′j ,mode′′′j , r′′′j ) is equal to (Aj+1,modej+1, rj+1), from (6.2), (6.3) and (6.4) we conclude that

E[V̂j+1] = E[Aj+1 · 2rj+1·modej+1 ] = E[Aj · 2rj ·modej ] + uj+1 = E[V̂j ] + uj+1.

Now by a straightforward mathematical induction argument the assertion of the theorem follows.

The following Theorem establishes the same result for the HAC.

Theorem 6.2 The HAC estimator V̂j is unbiased:

E[V̂j ] = Vj .

Proof: Similarly, as in proof of Theorem 6.1 we denote by (A′j , mode′j , r
′
j),(A

′′
j ,mode′′j , r′′j ) and

(A′′′j ,mode′′′j , r′′′j ) values of (A, mode, r) after the execution of the lines 13, 20 and 24 of the HAC

algorithm (given in Figure 6.2) respectively; inc = uj+1.

From the proof of the Theorem 6.1 we have that the relations (6.3) and (6.4) are satisfied. Now

we prove that relation (6.2) is satisfied as well. We distinguish two cases:

1st Case: uj+1

2r·mode[i] > 1
η . Then HAC is identical to SAC and (6.2) follows.

2nd Case: uj+1

2r·mode[i] ≤ 1
η . First, note that if B is a random variable uniformly distributed in the

segment [0, a] then for any real number x, the random variable mod(B+x, a) = B+x−a·bB+x
a c ∈ [0, a]

is also uniformly distributed in [0, a]. This means that if we initialize the DRAM counter B with the

uniform distribution, it will remain uniform (in the appropriate segment [0, 2rj ·modej

η ]) after the updates
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(line 10). This implies that the probability of B +uj+1 > 2rj ·modej

η is given by uj+1

2
rj ·modej

η

. Thus counter

Aj is incremented by one (line 9) with probability

q0 =
1
η
· uj+1

2rj ·modej

η

=
uj+1

2rj ·modej
.

Formally

E[A′j · 2r′j ·mode′j |(Aj , modej , rj)] = (Aj + q0) · 2rj ·modej = Aj · 2rj ·modej + uj+1.

This implies

E[A′j · 2r′j ·mode′j ] = E[Aj · 2rj ·modej ] + uj+1.

6.4.1 Variance estimation

Suppose that a counter runs in scale r and mode m > 0. Then by definition the value A of k-bit

counter is in the range [2k−r, 2k − 1]. Denote by T (A, m) the random variable that represents the

amount of total traffic needed from the start of counting until the SAC (HAC) counter reaches the

state (A,m). In this section we evaluate the variance of T (A,m), assuming an uniform increment size

θ.

Theorem 6.3 Suppose that increments to the SAC counter are uniform and given by θ > 0. Then,

for the random variable T (A,m) defined above we have:

E[T (A,m)] = A · 2rm (6.5)

and

V ar[T (A,m)] = 2k−r

(
1 +

22rm − 1
2r + 1

− θ(2rm − 1))
)

+ (A− 2k−r)
(
22rm − θ2rm

)
. (6.6)

Proof: Recall that for a geometric random variable3 G(p): E[G(p)] = 1
p and V ar[G(p)] = 1−p

p2 .

For each s denote by W (r, s) the random variable that represents the amount of traffic needed to

make one increment of the counter (A,mode) when mode = s. The probability of incrementing the

counter (A,mode) in a single trial is ps = θ
2rs . Therefore, the number of trials before the increment

of (A, mode) is G(ps) and since each trial corresponds to θ of the total traffic we have

W (s) = θG(ps).

The time from the beginning of counting can be divided in m + 1 intervals, corresponding to each

mode s = 0, 1 . . . , m. In mode s = 0 A is incremented q0 = 2k times, for modes s = 1, 2 . . . , m− 1, we

have qs = 2k − 2k−r increments, while in mode s = m until the k-bit counter is A the number of its
3A geometric random variable represents the number of Bernoulli trials needed for the first success, when the success

of each trial has probability p.

80



increments is qm = A− 2k−r. Denote by Q(s) the total arrived traffic in each of these m+1 intervals.

Now for any s = 0, 1, . . . ,m

Q(s) =
qs∑

j=1

Wj(s),

where Wi(s) is the set of independent identically distributed (i.i.d.) random variables, with distribu-

tion given by W (s). Therefore:

E[Q(s)] =
qs∑

j=1

E[Wj(s)] = qs · θ 1
ps

= qs · 2rs.

and

V ar[Q(s)] =
qs∑

j=1

V ar[Wj(s)] = qs · θ2 1− ps

p2
s

= qs · 22rs(1− ps).

Now T (A,m) is given by:

T (A,m) =
m∑

s=0

Q(s).

The expected value of T (A,m) is now:

E[T (A,m)] =
m∑

s=0

E[Q(s)] = q0 +
m−1∑
s=1

qs ·2rs +qm ·2rm = 2k +(2k−2k−r)
m−1∑
s=1

·2rs +(A−2k−r) ·2rm =

2k−r +(2k−2k−r)
m−1∑
s=0

·2rs +(A−2k−r) ·2rm = 2k−r +(2k−2k−r)
2mr − 1
2r − 1

+(A−2k−r) ·2rm = A ·2rm.

And the variance

V ar[T (A, m)] =
m∑

s=0

V ar[Q(s)] = q0 +
m−1∑
s=1

qs · 22rs(1− ps) + qm · 22rm(1− pm) =

2k + (2k − 2k−r)
m−1∑
s=1

·22rs(1− θ

2rs
) + (A− 2k−r) · 22rm(1− θ

2rm
) =

2k−r + (2k − 2k−r)
m−1∑
s=0

·(22rs − θ2rs) + (A− 2k−r) · (22rm − θ2rm) =

2k−r + 2k−r(2r − 1)(
22mr − 1
22r − 1

− θ
2mr − 1
2r − 1

) + (A− 2k−r) · (22rm − θ2rm),

and (6.6) follows.

With δ(T (A,m)) we denote the Coefficient of variation:

δ(T (A,m)) =

√√√√E

[(
T (A,m)−A2rm

A2rm

)2
]

=

√
V ar[T (A,m)]
(E[T (A,m)])2

The following corollary characterizes the asymptotic behavior of δSAC(T (A,m)) at the beginning

of mode m: A = 2k−r.

Corollary 6.1 For SAC counters at the beginning of mode m (A = 2k−r):

δ2
SAC(T (A,m)) =

1
2k−r+2rm

(
1 +

22rm − 1
2r + 1

− θ(2rm − 1)
)

. (6.7)

When r ·m is large:

δSAC(T (A,m)) ≈
√

1
2k + 2k−r

.
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Proof: The equality (6.7) follows directly from (6.5) and (6.6). When r ·m is large

δSAC(T (A,m)) ≈
√

1
2k−r+2rm

22rm

2r + 1
=

√
1

2k + 2k−r
.

In HAC case we have the following

Theorem 6.4 Suppose that the increments to the HAC counter are uniform and given by θ > 0 with

relative DRAM access frequency η. Then, for the random variable T (A,m) defined above it holds:

E[T (A,m)] = A · 2rm (6.8)

and

V ar[T (A,m)] = A · 2rm · θ(η − 1). (6.9)

Proof: As in the proof of Theorem 6.3, we divide the time into m+1 intervals, each corresponding

to one mode s = 0, 1, . . . , m and denote by W (s) the amount of traffic needed to make one increment

of the HAC counter at mode s. Thus, W (s) is given by the amount of traffic needed for the DRAM

counter B to overflow (ie. become larger than 2rs

η ) which is equal to the sum of b = 2rs

ηθ ) i.i.d. random

variables Zi ≡ θG( 1
η ). Therefore

W (s) =
b∑

i=1

Zi.

For W (s) we have

E[W (s)] =
b∑

i=1

E[Zi] = b · θ · 1
1
η

= 2rs.

and

V ar[W (s)] =
b∑

i=1

V ar[Zi] = b · θ2 ·
1− 1

η
1
η2

= 2rs · θ(η − 1).

Now, the amount of traffic Q(s) that corresponds to mode s is given by the sum of qs i.i.d. random

variables Wj(s) identically distributed as W (s): Q(s) =
∑qs

j=1 Wj(s). Note that V ar[W (s)] = θ(η −
1) · E[W (s)] which implies that

E[Q(s)] = qs · 2rs

and

V ar[Q(s)] = θ(η − 1) · qs · 2rs = θ(η − 1) · E[Q(s)]. (6.10)

Thus, for T (A,m) =
∑m

s=0 Q(s), from the proof of Theorem 6.3 we conclude that (6.8) is satisfied.

Now (6.9) follows from (6.8) and (6.10).

From the previous theorem we get:

δHAC(T (A, m)) =

√
A · 2rm · θ(η − 1)

(A · 2rm)2
=

√
θ(η − 1)
A · 2rm

.
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Comment 6.1 The variance calculated above neglected the initial period when inc
2r·mode[i] > 1

η , during

which the HAC is identical to the SAC. Since the SAC error is smaller than the HAC error in this

regime, we do not use the hybrid scheme until the end of this period. Thus, the real HAC error is

strictly less than the HAC error presented above. However, the difference is small since the initial

period takes a relatively short period of time.

Comment 6.2 Note that from the Cauchy-Schwartz inequality, for any real valued random variable

X:
√

E(X2) ≥ E(|X|). Taking X to be the relative error of T (A,m), X = T (A,m)−A2rm

A2rm , the previous

inequality implies that the expected relative error is not greater than δ(T (A,m)):

E

[∣∣∣∣
T (A,m)−A2rm

A2rm

∣∣∣∣
]
≤ δ(T (A,m)).

6.5 Resource control

In this section we discuss possible approaches for controlling the variables k and η.

6.5.1 Allocating q bits in two parts.

The basic question is the following. Given q bits of available memory for a counter (A,mode), how

many bits should we allocate to A and mode? Allocating more bits to A gives less space for mode and

therefore implies a potentially larger scale r. A larger r implies larger errors for fixed k. Figure 6.3

depicts the graphs of δSAC(T (A,m)) for k = 8 allocating bits for A, in three modes r = 1, 2, 3, in the

SAC case. On the other hand, allocating too much space for storing mode might waste precious space

for A. Thus, for a single counter (of size q) one possible way to choose the values k and l is to pick

k and l = q − k for which δ(T (A(k),mode(k))) is minimized. Thus, assuming that the performance

objective is minimizing the value of δ(T (A(k),mode(k))) then k should be dynamically updated to a

value that minimizes δ(T (A(k),mode(k))).

In the case of multiple counters we should pick a common k for all counters. The performance

objective can depend on various factors. For example some counters might require higher precision

then others; for various applications counters with very low or very high values might be more impor-

tant than others. In general, for n counters: (Ai,modei), picking the optimal k is formally equivalent

to the optimization problem:

min
n∑

i=1

fi(Ai(k),mode(k), δ(T (Ai(k),mode(k)))). (6.11)

Here fi are cost functions. If none of the counters is prioritized by default, fi is independent

of i. One should be careful since changing k might cause change of scale r and all counters should

be re-normalized to take into account the new conditions. This re-normalization can be done in a

straightforward manner and will not be discussed here.
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Figure 6.3: Coefficient of variation δSAC(T (A,m)) for r = 1, 2, 3 and θ = 1, 1000; k = 8.

6.5.2 Controlling the η

In the HAC case an important parameter that determines accuracy of active counters is relative DRAM

access frequency η. A lower η corresponds to better accuracy of the HAC counters. However, there

exist a tradeoff between the usage of DRAM and the accuracy of the HAC scheme. The performance

bottleneck in many network processors is the system bus and DRAM bandwidth. From the point of

exploitation of this resource we can distinguish two cases:

1. The devoted number of DRAM accesses used by HAC in a unit of time ∆ (say 1 sec) is

constant and is given by α.

2. DRAM bandwidth is shared between HAC and other applications.

In both cases we can isolate the buffer for storing the DRAM access queries required by HAC.

The rate by which this buffer is serviced depends on the level of utilization and the DRAM bandwidth

resource allocation algorithm. Bearing in mind that η is the parameter that controls the arrival rate

to this buffer, we can exploit ideas from the large spectrum of AQM algorithms. For example we

can control η based on queue length; by tracking the low pass filter of the queue length as in RED

like schemes [40, 35, 39] we can dynamically update η to keep the queueing delay low. Virtual queue

techniques can be used as well [41, 70], as well as other control strategies. For the stability of such

control schemes, it is beneficial that there does not exist feedback delay unlike the case of TCP/AQM

where feedback delays can be significant and dangerous from the stability point of view.

The HAC algorithm defined in Section 6.3 assumes a constant sampling rate η. In the context

of variable η the augmenting DRAM counters B[i] should take into account the sampling rate. To do

this, we can track η[i] - the sampling rate at the last update of i-th DRAM counter B[i]. At every

update of the counter B[i] we first re-normalize B[i] taking into account the current η:

B[i] := B[i] · η[i]
η

,

then reset η[i] to the current value of η

η[i] := η.
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Figure 6.4: Relative error for a single SAC with unit increments; q = 12, k = 8.

After this, continue with updating the counter B[i]. By doing this unbiasedness of the appropriate

counters is preserved. In normal conditions, measurements [83] show that, on typical 150Mbps+ links,

basic IP parameters (such as the number of active connections, proportion of TCP traffic, aggregate IP

traffic, etc.) do not change dramatically in short time periods which protects η from large oscillations.

Comment 6.3 At highly loaded links, DRAM bandwidth and network processors are also highly uti-

lized and therefore necessitate higher η. While the accuracy of HAC scheme decreases as η increases,

at highly loaded links counter values grow as well which is beneficial for HAC accuracy. However,

we are unable to quantify this tradeoff between link (DRAM bandwidth) utilization and HAC accuracy

since it is a function of other network processor parameters which are hard to characterize.

Comment 6.4 A relatively small queue for storing DRAM updates can (in conjunction with appro-

priate queue management algorithm) ensure virtually zero loss of data (see [127]).

6.6 Evaluation

In the first experiment4 we evaluate the behavior of a single SAC (and HAC) counter over a stream

of unit increments. The stream length is L = 1000000. Figures 6.4 and 6.5 depict observed relative

errors of SAC and HAC respectively, together with the corresponding coefficient of variation. The

counter size is q = 12 and k = 8.

In the following experiment we evaluate the behavior of a single SAC (and HAC) counter over

a stream of nonuniform increments. We used first L = 1000000 packet arrivals of a NLANR uni-

directional trace that we refer to as MRA [84]. Increments are given by the packet size of each of

the first million packets. Figures 6.4 and 6.5 depict observed errors of SAC and HAC respectively,

together with the corresponding coefficient of variation. For the evaluation of δSAC(T (A,m)) and

4All MATLAB simulations used in this section can be downloaded from http://www.hamilton.ie/person/rade/AC/
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Figure 6.5: Relative error for a single HAC with unit increments; q = 12, k = 8.
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Figure 6.6: Relative error for a single SAC with nonuniform increments; q = 12, k = 8.

δHAC(T (A,m)) we used the average increment size for θ. The counter size is the same as in previous

case q = 12 and k = 8.

6.6.1 Errors versus counter size q

In this experiment we evaluate the average errors for SAC and HAC as a function of counter size q.

We use the cost function f(A(k),mode(k), δ(T (A(k), mode(k)))) = δ(A(k),mode(k)) for dividing q

bits in two parts.

Figure 6.8 depicts the results based on a stream with unit increments in the SAC case. Averages

are based on 10 independent runs. Figure 6.8 also contains the δSAC(T (A(k),mode(k))) for k that

minimizes the cost function. As we already noticed (Comment 6.2, Section 6.4.1) the coefficient of

variation δ is greater than the expected relative error.

In the HAC case the comparison between errors and counter size is not that straightforward as

it depend on several other factors: η and the value of the counter A · 2r·mode. In the SAC case the

86



0 1 2 3 4 5 6

x 10
8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

A⋅ 2rm

R
el

at
iv

e 
er

ro
r

Single trajectory
δ

HAC
(T(A,m))

Figure 6.7: Relative error for a single HAC with nonuniform increments; q = 12, k = 8.
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Figure 6.9: HAC. Average errors for different values of q. Stream length 500000 unit increments

MSF q S1 S2

Standard 24 40 24

With AC 9 16 16

Table 6.1: Parameters of MSF counter size and flow entry size.

rounding error which is of order5 O( 1
2k ) is negligible compared to expected δSAC and we neglected

it in computing the expected error δSAC . However, in HAC case δHAC can be much smaller and

for estimating the error we use δ′HAC(T (A,mode)) = δHAC(T (A,mode)) + 1
A . Figure 6.9 depicts the

errors of the HAC estimates after 500000 unit increments averaged over 10 independent runs, and two

different values of η: 8 and 32.

6.6.2 Case study: MSF

In this section we investigate the effects that active counters could have on one of the state-of-the-art

algorithm for identification of heavy hitters: Multistage Filters (MSF) [30]. As we said, previously

proposed passive counters [96, 94, 95, 127] cannot be used since they store full counter information in

DRAM, which is too slow to track the conservative-update step of MSF. MSF uses memory divided

in two parts. The first part contains d levels with b counters (of size of q bits) on each level, while the

second part contains the hash table that keeps information on heavy hitters; we denote by FC the

number of available flow entries and by S the size of a flow entry, in bits. We use S bits of a flow entry

to track information on the flow size (S1 bits) and the flow identifier + hash overhead (S2 = S − S1

bits). Table 6.1 determines the parameters for two cases: one without active counter enhancements

(standard), and another with active counters (with AC).

Smaller sizes of counters allow more counters per stage and more flow entries. The price that

must be paid is the lower accuracy caused by smaller counters. Here we show that the gain obtained

by more counters outweight the inaccuracy of small counters. We run MSF over two unidirectional

NLANR traces: MRA and FRG [84]. The average number of packets per second is 60K (MRA)

and 69K (FRG). The average throughput is 285Mbps (MRA) and 428Mbps (FRG). The available

5We track the top k bits(A ∼ 2k).
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Figure 6.10: MRA trace. The errors in estimation of the top K flows. MSF without any AC (with

40Kbit of memory), MSF + SAC (with 40Kbit of memory) and MSF + SAC (with 20Kbit of memory).

SRAM memory is 40Kbit. We use the recommendation from [30] to determine other parameters of

MSF (b,d and FC) in both cases. Since in both cases counters are not large enough (the largest

is of order of magnitude of 107) to exploit the benefit of HAC for simplicity we use only SAC6. By

using the cost function fi(Ai(k),modei(k), δSAC(T (Ai(k), modei(k)))) = δSAC(T (Ai(k),modei(k)))

the optimization criterion stabilizes k at value k1 = 6 for the basic 9-bit counters. For 16-bit (flow

container) counters that track flow sizes the value of k that solves the same optimization problem is

k2 = 12.

The metric of interest is the average error for the set of flows indexed by the set I defined as in

[30] by:

Err(I) =
∑

i∈I |est(fi)− r(fi)|∑
i∈I r(fi)

(6.12)

Here r(fi) is the exact size of flow fi and est(fi) is the MSF estimate. By LK we denote the set of

top-K flows. We evaluate the average errors for the top-100, top-250, top-500 and top-1000 flows.

The results are presented in Figures 6.10 and 6.11. Observe that the errors of top-100 flows are

approximately the same both with and without SAC, while the ratio between the errors Err(LK) for

MSF with standard counters and MSF with SAC grows as K grows: MSF with SAC gives up to 6

times smaller errors in measuring the top-1000 flows. In parallel we show the errors of MSF with SAC

using half as much memory (20Kbit).

6.7 Summary

In this chapter we propose two randomized active counters algorithms, SAC and HAC, prove their

unbiasedness and evaluate the variance of the corresponding random variables. While active counters
6Using HAC would give errors that are strictly less then using only SAC, but the difference is not significant in the

present experiment, so we concentrate on SAC only.
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Figure 6.11: FRG trace. The errors in estimation of the top K flows. MSF without any AC (with

40Kbit of memory), MSF + SAC (with 40Kbit of memory) and MSF + SAC (with 20Kbit of memory).

are essential for a number of recently proposed data streaming and/or packet sampling algorithms

[30, 15, 22, 124], they can also be beneficial for other applications like remote monitoring at heavily

loaded network processors (See Section 6.1.2).

SAC uses only SRAM but exhibits larger errors than HAC which uses augmenting DRAM for

storing information on the recent history to reduce the variance. Storing full counter information in

SRAM and recent history information in DRAM is a paradigm shift from the previous passive counters

proposals [94, 127, 95, 96] that use DRAM for full counter information and SRAM for recent history

details. Having in mind the possible high load of DRAM bandwidth caused by other applications we

suggest dynamic control of the DRAM access frequency. This enhancement can be directly exploited by

other SRAM/DRAM proposals that usually neglect the variability of the available DRAM bandwidth.

Finally we conclude with a list of open problems that we plan to investigate in the future.

Open problem 1. Let Λ be a data streaming algorithm that uses limited memory (given by S

bytes) and active counters architecture with q-bits per counter. Pick q such that cost C(Λ) (errors,

false positives, false negatives, or something else) is minimized.

Open problem 2. Characterize available DRAM bandwidth at (heavily loaded) network proces-

sors and investigate (adaptive) hybrid SRAM/DRAM schemes under variable DRAM access frequency

using rich AQM theory.

Open problem 3. The proposed solutions can be immediately extended to multi-operations

arithmetics (present solutions consider only additive counters). Could the theory be extended? Are

there applications that need it?
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CHAPTER 7

Scalable HH identification

Abstract - In this chapter we address the problem of real-time identification of rate-heavy-hitters on

very high speed links, using small amounts of SRAM memory. Assuming a nonuniform distribution

of flow rates, runs (where two randomly selected bytes belong to the same flow) occur predominantly

in the heaviest flows. Based on this observation we present RHE (Realtime Heavy-hitter Estimator),

a measurement tool which uses a small amount of memory for extracting the heaviest flows. Using

this tool a queue management algorithm called HH (Heavy-hitter Hold) is presented that approximates

fair bandwidth allocations. RHE possesses very low memory requirements, scales with line speeds

of several tens of Gbps and covers a wide range of flow rate distributions. Measurements over real

Internet traces show the high efficiency of RHE, achieving a high accuracy with a very small amount

of SRAM memory. Compared to Estan-Varghese’s Multistage Filters and Lucent’s CATE estimator,

RHE achieves up to 10 times smaller errors in measuring high-rate flows on a number of synthetic

traces. Packet level ns2 simulations in a synthetic heavy-tailed environment are presented to illustrate

efficacy of HH.

7.1 Introduction

Measurement of traffic on high speed links is essential for appropriate network management. In order

to optimize performance, network operators need traffic measurements that provide insights at both

quantitative and qualitative level. Long-term measurements can be used for traffic engineering in

developing network architecture or rerouting traffic. Short-time measurements that monitor traffic on

a scale of few seconds to few hours are needed for intrusion detection. Real time measurements can

be used for managing flow control and providing QoS. Also, practical knowledge of various aspects of

network traffic provides necessary feedback to researchers that work on analysis of IP networks.

Having its importance in mind, traffic measurement, as a research area, has attracted significant

attention in last few years. The basic problem behind this research lies in the inability of large DRAM
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memory devices to process packets quickly enough and fast SRAM memories to allow enough space

for full per-flow state. Namely, the number of concurrent flows on high speed links (≥ 1Gbps) can be

more than a million. A naive approach, of keeping per flow state for each flow cannot be implemented

on large DRAM since it is not possible to manage per-flow counters at speeds of current backbone

links; moreover one cannot expect in the near future that the speeds of DRAMs (which increase

approximately 7% per year) will reach speeds of backbone links (which roughly double every year)

[30, 2]. On the other hand, using fast SRAM is not feasible since the size of available SRAM chips is

significantly smaller than needed for keeping per-flow state for all flows at very high speeds [2, 94, 127].

Based on the observation that on most internet links a small number of flows account for large

amount of bandwidth, the authors of the seminal paper [30], have developed 2 efficient algorithms

for measuring of these heavy-hitters – flows that account for most of bandwidth. However, these

algorithms are passive in sense that they measure size of flows rather than their rates. Efficient, real-

time, measurements of flow rates rather than flow sizes would be essential in QoS per-flow management

and for enforcing fairness in networks in which users use heterogenous congestion control algorithms,

or do not react on congestion signals at all. In environments with flows that have a fixed sending

rate, measuring the flow size and the flow rate over an interval is equivalent. In environments with

TCP-like flows, where the rate may increase and decrease, one should be much more careful when

measuring flow rates.

In this chapter we develop a novel technique, called RHE, for real-time measuring of rates of

flows with the highest rates on very high speed links. We then apply this to develop an Active Queue

Management(AQM) scheme called HH that controls fairness using information on measured rates.

For the purpose of measuring flows with highest rates we introduce a data structure that is built

of memory cells. Each memory cell corresponds to certain set of flows that are mapped to it. Assuming

nonuniform distribution of flow rates, information kept in a memory cell is enough to extract (with

high probability) the flow with the highest rate that maps to that cell.

Measurements over synthetic streams show that RHE achieves up to 10 times smaller errors in

measuring heavy flows, compared to state of the art methods: Multistage Filters (MSF) [30] and

Coincidence bAsed Rate Estimator1 (CATE) [44]. On the other hand, a number of measurements

performed on the real packet traces show high accuracy of RHE with extremely small amount of

memory.

The chapter is structured as follows. In Section 7.2 we describe previous work and define the

problem of interest. Section 7.3 will present the technique RHE for dynamic tracking of flows with

highest rates. Analysis of RHE will be given in Section 7.4. In Section 7.5 we apply RHE to introduce

an AQM scheme HH that will control fairness2. We will experimentally evaluate both RHE and HH

in Section 7.6.
1CATE is the final version of runs based estimators developed by Lucent group and its performance is strictly better

than the previous incarnations RATE [61] and ACCEL-RATE [43].
2Throughout this chapter we accept max-min definition of fairness [102].
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7.2 Preliminaries

7.2.1 Previous work

The most widely used tool for traffic measurements is Cisco NetFlow [82]. NetFlow keeps per-flow

state for each user in a large DRAM memory. At very high speeds NetFlow deals with the following

two issues: (a) packet inter-arrival times can be significantly smaller than time needed for processing of

a packet; (b) the amount of traffic measurement data can be enormous. To overcome these problems

NetFlow uses sampling, with a sampling rate as a parameter that is set manually. However, it is

clear that in order to optimize memory usage and accuracy, traffic conditions must be considered

when choosing the sampling rate. The paper [32] deals with this problem by introducing self-tuning

NetFlow, where the sampling rate adapts to current traffic measurements. See [46] or [23] for review

of sampling methods in traffic measurements.

In order to move from slow3 DRAM to fast SRAM the authors of [30] suggest a method called

Multistage Filtering (MSF) that attempts to monitor only flows with volume greater than a certain

threshold, T , in a certain measurement interval, and to neglect all smaller flows. In order to meet this

goal, MSF contains two components: hash filters and a flow container. On every packet arrival the

flow identifier is used as an index for computing hash in several stages. Each stage uses an independent

hash function and each counter at every stage contains the aggregate amount of traffic for all flows

that map to that counter. The volume of a flow is then estimated as the least value of all counters

that this flow maps to. If the estimated volume of a flow is greater than the threshold T the flow is

added to the flow container. It is obvious that if a certain flow has a volume greater than T then the

estimated volume will be at least T and it will be added to the flow container, assuming that there is

space for it. In order to prevent flows with volume smaller than T being wrongly identified as large,

two enhancements are introduced: shielding and conservative updates. Assuming that the sending

rates do not vary over the measurement intervals and that the objective is finding the total volume

over the measurement interval rather than the sending rate of a flow, MSF together with conservative

updates and shielding achieve this goal with high accuracy for heavy hitters in environments with

heavy-tailed flow size distributions. For flow control one needs rate, rather than the volume of a flow

over long measurement intervals and a quick response to this information. The main contribution of

this chapter is RHE which will meet these requirements using only small and fast SRAM memory.

In [61], in order to save memory, the authors propose a mechanism, called RATE, for estimating

elephant flows by counting runs: events that correspond to the situation where an arriving packet

belongs to the same flow as some sampled packet that has recently arrived at the link. However,

to give an accurate estimate of elephant flows on links with large number of users RATE needs a

long time. In order to solve this scalability problem, the same authors propose ACCEL-RATE [43]

and CATE [44] which require more per packet processing and memory. As it is shown in [44] these

algorithms “...tend to slightly over-estimate flow rates.” over real IP traces. This problem is caused
3Current access times are in range 50− 100ns for DRAM, and 2− 6ns for SRAM [127].
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by two factors: (a) the bursty nature of internet traffic, and (b) the fact that many flows do not have

a constant rate but rather a variable rate, or even more drastically on/off patterns. Factor (a) can be

resolved by introducing buffer for counting runs. Factor (b) appears to be much harder to resolve and

is the main cause of inaccuracy of RATE-like algorithms that try to use a run counter as the main

source of measurements. However, counting runs can give some important insights on flow rates. We

are going to exploit this idea, but in a different way, as we will see in later sections.

Another interesting approach in traffic measurements is the accurate estimation of the number

of very small flows as they would indicate potential DDoS or Internet worm attacks. In [66] the

authors use a Bayesian statistical method, Expectation Maximization, together with the efficient

implementation of sequence of counters proposed in previous chapter to give a very accurate estimation

of the flow size distribution4. A potential weakness of this work is a vulnerability in the number of

counters. Namely, it is shown in [66] that accuracy of the proposed algorithm drops considerably when

number of flows is larger than 2*(number of available counters). See [65] for another memory efficient

scheme that utilizes a multiresolution-Bloom-filter technique to capture the (heavy) flow rates. For

caching techniques used in heavy-hitter identification see [13] and references therein.

Fair queueing has been an important research area in networking for the past two decades,

motivated by the idea that in heterogenous network conditions, the service that a user gets should

not depend on the aggressiveness of its congestion control algorithm. Various approaches include

fair scheduling [18, 100], keeping state information on overly aggressive users [73, 76, 88] or change

of IP infrastructure and exploiting state information written in IP header for controlling fairness as

in [110, 55]. The way information is extracted about highly aggressive flows in [73, 76, 88] is by

straightforward sampling and requires relatively large amounts of memory on very high speed links.

HH goes further in this direction and by exploiting efficacy of RHE we aim to control flow rates even

on very high speed links with low memory usage.

7.2.2 Problem definition

A flow can be defined as set of packets that satisfy a certain condition that is called the flow key. In

most cases the flow key is defined as some function of the following information kept from a packet

header: IP address of source and destination, port numbers, protocol ID, etc.

Our goal is to do real-time accurate measurement of the rates of flows with the highest rates with

the finite amount of SRAM memory. In order to do so, the most important question is “What flows

have the biggest rate?”. Thus the problem of interest for us is following:

For a given positive integer M identify and monitor as many as possible among the M flows with

the highest sending rate using approximately 10 ·M bytes of SRAM memory.

An important assumption that has to be taken in consideration is that per-packet processing

should be less than few hundreds of ns, or equivalently less than the time of processing an average-
4Note that problem of estimation of flow size/rate distribution is different from the problem of heavy-hitter identifi-

cation since the first problem ignores identities of the flows.
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sized packet at given high-speed link. Thus, although we are concerned with elephant flows, our

objective is to monitor the M “biggest” flows rather than flows with size greater than some threshold

T .

The notion of flow rate is not strictly defined in networking literature. However, there is consensus

that for applications related to flow control, flow rates should involve some kind of weighted averaging

in order to smooth out possible large variations that can occurs as a consequence of bursty traffic and

on/off traffic patterns. For example, the authors of [110] define flow rate as a weighted average that

depends on inter-arrival time T between the previous and the current packet of size l:

Anew = (1− e−T/K)
l

T
+ e−T/KAold,

where Anew and Aold denote estimated rates for the current and previous packet respectively and K is

a smoothing parameter. Implementing a strategy like this would require keeping per-flow time-stamps

as well as using a “CPU-expensive” exponential function. Since our goal is the estimation of rates

with as small amount of memory usage as possible that runs at line speed for high speed links, we

will try to avoid keeping the time-stamps and use functions with lower computational cost in our

definition of flow rate.

We define the sending rate of flow f in the following way: we divide the time from beginning of

a measurement into sub-measurement intervals of length δ. Let vol(f)(a, b) be the volume of data in

the interval (a, b) in bytes. At time t ∈ (sδ, (s + 1)δ], the rate of flow f in bytes per second is defined

as:

rf (t) =
1

qδ + (1− q)(t− sδ)
(qδ · rf (sδ) + (1− q) · vol(f)(sδ, t)) (7.1)

This can be seen as weighted averaging5 of rates over sub-measurement intervals with weighting

parameter q: packets that arrive in the last sub-measurement interval have weight 1− q, packets that

arrive in the previous sub-measurement interval are accounted with weight q(1 − q),..., packets that

arrive in the k-th previous sub-measurement interval are accounted with weight qk(1−q). Throughout

this chapter we will calibrate parameters q and δ in such fashion that weights of bytes decreases

approximately exponentially with factor e per second. The weight of a byte that arrived at time

t = τ0 − 1 is q−1/δ times6 smaller than weight of a byte arrived at time t = τ0. Thus, our calibration

rule is q1/δ ≈ e−1. For q close to 1, we can approximate:

e−1 ≈ q1/δ =
(
(1− (1− q))

1
1−q

) 1−q
δ ≈ e−

1−q
δ .

Therefore, choosing q and δ to satisfy a simple rule δ = 1 − q, implies approximately exponential

decrease of weights with rate of e per second.

We will now show how one can effectively compute the rate of a flow f defined by (7.1). Let co

be a counter that is incremented by the packet size of each arriving packet that belongs to flow f . At
5Weighted averaging (or low pass filtering) is a technique widely used for the de-noising of noisy data. While other

more subtle signal-processing methods are possible (see for example [20]), in our case the weighted averaging performs

good in the de-noising flow rates and can be effectively implemented.
6We assume that δ is measured in seconds; then 1/δ is the number of sub-measurement intervals in one second.
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the time ts = sδ, the value of the counter co is updated by co ← q · co. Now, at time t ∈ (sδ, (s + 1)δ],

the rate of flow f is given by

rf (t) = co · 1− q

qδ + (1− q)(t− sδ)

The RHE measurement tool described in next section, is motivated by applications in flow control

and therefore is designed for measuring flow rates. However, for the purpose of measuring flow sizes

one can take δ = 1 and discard the scaling factor. With this minor change one can adapt RHE for

flow sizes measurement (but throughout this chapter we assume that q < 1 and that RHE measures

rates rather than sizes).

7.2.3 How to check if an element of the set is maximal?

Here we present the argument that can help to build the intuition behind RHE.

Suppose that we have a set A of positive real numbers, that all sum up to 1:
∑

x∈A x = 1. How

can we check whether one of them, say x1 ∈ A, is the maximal element of the set A using a small

amount of memory? In some extreme cases no additional memory is needed to answer this question7.

Suppose now that value of md =
∑

x∈A xd is available as well, for some d > 1. Then:

lim
d→∞

md

xd
1

= lim
d→∞

∑

x∈A

(
x

x1

)d

= 1 if x1 = max(A),

and

lim
d→∞

md

xd
1

= lim
d→∞

∑

x∈A

(
x

x1

)d

= +∞ if x1 < max(A).

In practice, for a finite d, one can chose a threshold M such that x1 is declared as maximal if and

only if md

xd
1

< Md. By choosing the appropriate M , the confidence of the above decision can be very

high as we will see in next section.

In our context (of heavy-hitter identification) the set A corresponds to the set of flow rates

(typically few dozens of flows) that map to a cell. By using the idea from RATE, i.e. by counting

runs, one can obtain an estimate of m2 with very small memory overhead and small computational

complexity. Using higher powers (d > 2) is possible also, but it would increase memory overhead

needed for calculating md, and our initial experiments show no benefit by choosing higher d so we

concentrate on d = 2 in the rest of the chapter.

7.3 RHE

In this section we present tool for measuring flows with the highest rates. The basic idea is as follows:

at each packet arrival a hash of a flow is computed and the packet is mapped to a memory cell. Since

many flows can map to same memory cell, our goal is to identify the one with highest sending rate.

In order to do it we introduce data structure sketched on Figure 7.1.
7For example, if x1 > 0.5 then it is clearly the largest element of A.
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cRate (2B) eqPairs (2B)

rateTyp (2B) SampledB (2B)

typPkt (2B) LF (1bit)

Figure 7.1: Layout of a memory cell.

A memory cell contains cRate, information on aggregate rate of all flows that map to this cell and

rateTyp, information on rate of a flow that is a candidate for the highest rate among flows that maps

to this cell that is further identified by typPkt: another 16bit hash value of its flow key. Counters

cRate, rateTyp and eqPairs (which will be described shortly) mimics the technique introduced in

Section 7.2.2, for tracking the rate with one counter without time-stamps. Thus, whenever a packet

from a flow that maps to the memory cell arrives, its size is added to counter cRate; if it belongs

to flow with hash value equal to typPkt, counter rateTyp is incremented by size of arriving packet.

Finally at the end of each sub-measurement interval of length δ we set

(cRate, rateTyp, eqPairs) ← q(cRate, rateTyp, eqPairs),

with q ∈ (0, 1) as a weighted averaging parameter. By doing this we follow the definition of the flow

rate given by (7.1), so the aggregate flow rate at time t ∈ (sδ, (s + 1)δ] in bytes per second is given by

cRate · 1−q
qδ+(1−q)(t−sδ) and similarly the rate of “candidate” flow is given by rateTyp · 1−q

qδ+(1−q)(t−sδ) .

The question is “how do we know if the candidate is the one with highest sending rate?”. To answer

this question we exploit the heavy tailed nature of the Internet flow rate distribution, and introduce

an idea that is at the core of our method and applies the reasoning discussed in Section 7.2.3.

Each memory cell contains SampledB: a 16bit hash value of flow ID for some uniformly sampled

byte (rather than packet) that arrived in this cell. On each arrival SampledB is compared with the

arriving packet’s 16bit hash value and if they match then the size of arriving packet is added to

counter eqPairs 8. As we already said, at the end of each sub-measurement interval of length δ, the

counter eqPairs9 is set to q · eqPairs. We claim that once we have this information then we can say

with high confidence if the flow represented by typPkt has highest rate (or one of the highest rates)

among flows that map to this cell. To support this statement we will have to understand the meaning

of the counter eqPairs. Let r1, r2 . . . , rn be the rates of all flows that map into same cell and let R

be the aggregate rate: R = r1 + · · · + rn = cRate 1−q
qδ+(1−q)(t−sδ) . Sampling SampledB byte-wise and

assuming no hash collision we have that

SampledB = i with probability zi =
ri

R
.

8The idea of the comparing the arriving packet’s flow ID with the flow ID of some previously arrived packet has

been exploited in AQM design in Stabilized RED [86] and CHOKe [89] as well as in recently proposed traffic estimators

[61, 44].
9Following the terminology of RATE [61], counter eqPairs can be seen as the total number of runs weighted by

packet sizes.
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Figure 7.2: CDF for Pareto distribution for k = 0.5, 1, 1.5, 2, 2.5, 3, m = 40.
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Figure 7.3: Histograms of
√∑n

i z2
i / max (zi), n = 20.

Therefore, the expected value of eqPairs can be estimated by:

E(eqPairs) =
qδ + (1− q)(t− sδ)

1− q

n∑

i=1

riP (SampledB = i) =

=
qδ + (1− q)(t− sδ)

1− q
·

n∑

i=1

(R · zi) · zi = cRate

n∑

i=1

z2
i (7.2)

In the large number of packets-per-second regime variance of eqPairs is small and
∑n

i z2
i can be

accurately approximated with eqPairs/cRate. On the other hand, for the Internet-like (heavy-tailed)

flow rate distributions
∑n

i z2
i is dominated by the maximal value of zi.

To see this we plot histograms of
√∑n

i z2
i / max (zi) for six different cumulative distribution of zi

given in Figure 7.2. These six CDF’s, correspond to Pareto distribution with k = 0.5, 1, 1.5, 2, 2.5, 3

and m = 40 (P (Xk > m + i) ∼ ( 1
m+i )

k). Figure 7.3 contain histograms for n = 20; Figure 7.4 contain

histograms for n = 100.

As we can see from Figures 7.3 and 7.4, with very high confidence one can declare that
√∑n

i z2
i / max (zi)

is less than 2.5 (in the first case) or 3.5 (in the second case). We use this to define a test for deciding

if the candidate flow, represented by its hash value typPkt and with rate rateTyp is the “high-rate”

flow. We know that rateTyp = zi · cRate for some i ∈ {1, . . . , n}. By using the estimate (7.2), we

conclude that if
√

eqP airs
cRate

typRate
cRate

is large, then this implies that the candidate flow is not one with max-

imal rate and we should continue with the search for maximal one. Formally, at the end of each
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Figure 7.4: Histograms of
√∑n

i z2
i / max (zi), n = 100.

sub-measurement interval of length δ, we do the test described in Figure 7.5. One can notice that

we use the CPU-expensive
√· function in defining the test. However one can ask (equivalently) if

eqPairs · cRate > (c0 · typRate)2. We emphasize again that this test is done only once in a sub-

measurement interval of length δ and therefore its expense is not essential.

. if
√

eqPairs
cRate > c0

typRate
cRate

. replace typPkt with SampledB.

. end if

Figure 7.5: Testing of a candidate for high-rate flow.

Here c0 ∈ [1, 4] is a parameter that should be chosen to reflect traffic conditions. In the section

7.4.2 we will show how to calibrate c0.

Thus we have described an algorithm that will eventually give us the hash of the flow ID for the

flow that satisfy
√

eqPairs
cRate < c0

typRate
cRate . This flow might not be the largest among flows that map to

the same cell, but in that case,

(
typRate

cRate
)2 + max (

ri

cRate
)
2
≤

n∑

i

z2
i < c2

0(
typRate

cRate
)2.

This means that

typRate ≥
√

1
c2
0 − 1

max (ri).

Having some kind of heavy-tailed flow rate distribution, we can chose c0 to be in the interval (2, 4)

and therefore the presented algorithm will give us a flow with a rate that is either the flow with largest

rate or a flow whose rate is within an order of magnitude of the largest rate among flows that map to

that cell.

Sometimes two or more heavy flows can map to the same cell. In order to identify as many large-

rate flows as possible, we divide the available memory of M memory cells into several stages. The

first stage with size bM(1− ρ)c, the second with size bM(1− ρ)ρc, the third with size bM(1− ρ)ρ2c
and so on. Since we want to reduce per-packet processing we will use small ρ, say ρ ≤ 1/2. At

every packet arrival, if the packet belongs to the flow represented by typPkt its rate is estimated by

rateTyp · 1−q
qδ+(1−q)(t−sδ) . If the packet does not belong to the flow represented by typPkt and if the
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. if 1−q
qδ+(1−q)(t−sδ)cRate

√
eqPairs
cRate − ( typRate

cRate )2 > T

. LF ← 1

. else

. LF ← 0

. end if.

Figure 7.6: LF bit update rule

bit LF (bit LF is described in the next paragraph and indicates existence of some Large Flow among

non-typPkt flows that map to the cell) is set to 1, the packet is hashed in one of cells in the next

stage. If the arriving packet does not belong to the flow represented by typPkt and LF bit is 0, the

flow the arriving packet belongs to is identified as small, and its rate is estimated by T/2, where T is

threshold that will be introduced in next paragraph.

In order to allow as few small flows to pass this stage as possible, the bit LF bit is updated

once, or several times (depending on abilities of hardware) per sub-measurement interval, in the way

sketched on Figure 7.6.

By doing this we ensure that if there is a flow that sends at a rate greater than threshold T , it

will be allowed to go to next stage. Indeed, suppose that LF is set to 0 then

T ≥ 1− q

qδ + (1− q)(t− sδ)
cRate

√
eqPairs

cRate
− (

typRate

cRate
)2 =

1− q

qδ + (1− q)(t− sδ)
cRate

√√√√
n∑

i=1

z2
i − (

typRate

cRate
)2 =

1− q

qδ + (1− q)(t− sδ)
cRate

√√√√
n∑

i 6=typPkt

z2
i ≥

1− q

qδ + (1− q)(t− sδ)
cRate max (zi | i 6= typPkt) =

max (ri | i 6= typPkt).

Thus, if there is at least one flow that maps to the cell that is not represented by typPkt and

with rate greater than T , then the LF bit will not be set to 0, and therefore it will be allowed to

pass to next stage (together with all other non-typPkt flows). Note that although the LF bit set to 1

does not necessary mean that there is a flow with rate greater than T among the flows that pass from

the cell to the next stage, it will indicate the existence of a flow with rate that is within an order of

magnitude of T in this set of flows, assuming heavy-tailed flow rate distribution. In other words, if

there does not exist a flow whose rate is within an order of magnitude of T , then the LF bit will be

set to 0 and these flows will not be processed in the next stage.

In Subsection 7.3.2 we will show how to adapt the value of threshold T in order to ensure effective

usage of memory. Until then we will assume that T is a parameter that is chosen manually.
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. Input - packet: pkt, integer: s

. CELL ← fs(ID(pkt)) \∗ hash on flow ID of pkt

. cRate(CELL) ← cRate(CELL) + size(pkt)

. h ← f0(ID(pkt)) \∗ second hash

. if (h == typPkt(CELL))

. rateTyp(CELL) ← rateTyp(CELL) + size(pkt)

. end if

. if(h == SampledB(CELL))

. eqPairs(CELL) ← eqPairs(CELL) + size(pkt)

. end if

. with probability p = size(pkt)
MaxPktSize do

. SampledB(CELL) ← h

. end do

Figure 7.7: Per-packet update of memory cell at stage s.

7.3.1 Implementation issues

The data structure used in RHE is composed of M memory cells (with structure sketched at Figure

7.1) divided into the number of stages whose sizes decrease roughly geometrically with coefficient ρ.

At the beginning of the measurement all values of all memory cells are initialized to 0. Whenever a

packet arrives, the hash function of its flow key is computed. This maps the packet to one memory cell,

and the counter cRate is incremented by the size of arriving packet in bytes. Another hash function

is computed on the flow identifier of the arriving packet that maps each flow to a 16bit integer h. If

h is equal to value typPkt then the counter rateTyp is incremented for the size of the arriving packet

in bytes. Also, if h is equal to SampledB, then the counter eqPairs is incremented by the size of

the arriving packet. Finally with probability p = PktSize
MaxPktSize the SampledB field is updated with h.

Here the parameter MaxPktSize is the maximal possible size of a packet that can be seen at the link.

Since more than 99.99% of all packets in the Internet are 9000B or less we set MaxPktSize = 900010.

Pseudo code for the processing of a packet at stage s is given in Figure 7.7. The complete sequence

of actions for an arriving packet is shown on Figure 7.8

In order to avoid random number generation (that might consume a lot of CPU time), we suggest

the following: one register should contain 16bit integer RN . Instead of calling a random num-

ber generator to update SampledB we add the packet size to RN : RN ← RN + size(pkt). If

RN ≥ MaxPktSize then update SampledB and set RN ← ((RN + 1) mod MaxPktSize), other-

wise do nothing. By doing this, the value RN will mimic a random integer uniformly distributed on

[0, MaxPktSize− 1] and the probability that SampledB is updated is proportional to the size of the

arriving packet. Histograms of RN using the first million arrivals of MRA trace [84] shows uniform

10Once MTU increases for a significant amount of traffic, then MaxPktSize can be increased to follow this change.
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Figure 7.8: Flow chart
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Figure 7.9: Histogram of RN using trace MRA(top) and appropriate histogram of random numbers

generated by MATLAB random generator.

distribution of RN on [0,MaxPktSize− 1].

If we do not require 100% accuracy, we can reduce the number of bits of a counter co using the

active counters architecture proposed in [106].

7.3.2 Self tuning of threshold T

The threshold T is used by RHE for reducing the amount of traffic that passes from one stage of

memory cells to another. Using too high value of T might cause underutilization of memory cell space

in higher level stages, and a loss of accuracy for flows with rate less than T , since RHE does not

care about accuracy of flows with sending rate less than T . On the other hand, setting T too low

results in a large amount of traffic passing from one stage to another. This will imply the following

undesirable features. Firstly, since the number of cells per stage decreases geometrically, the number

of flows that will map to the same cell grows implying a loss of confidence in our test (Figure 7.5)

as well as increasing the time to search for a flow with one of the highest rates. Secondly, a large

number of packets passing this “threshold test” would imply larger average per-packet processing

times. Knowing the flow rate distribution, one can manually set a threshold that would be close to

optimal for a given amount of memory cells11.

However we propose a simple adaptation algorithm that will control amount of traffic that passes

from one stage to another. The basic idea is the following: if the number of cells with the LF bit set

to 1 is less then half of number of cells at the first stage, then the filtering should be amplified and so

T should be increased, otherwise T should be decreased. Our algorithm uses simple MIMD12 strategy

with parameters α1 = 1.1, α2 = 0.9 that updates T once per sub-measurement interval. Pseudo code

is given on Figure 7.10.
11For example, with M memory cells one possible approach is to chose a T value around M/2-th highest flow rate.
12Multiplicative-Increase, Multiplicative Decrease. Other control strategies are possible as well, but in our case MIMD

is satisfactory.
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Once per sub-measurement interval of length δ

. if ((
∑

LF on stage 1 )>0.5·(Size of stage 1 ))

. T ← T · 1.1

. else

. T ← T · 0.9

. end if

Figure 7.10: MIMD algorithm for adaptation of threshold T .

7.4 Calibration of parameters

7.4.1 Effect of ρ

In this section we evaluate how the choice of ρ can affect the number of identified top flows. Going

back to the question stated in Section 7.2.2, our goal was monitoring of as much as possible of the

largest M flows with the memory equivalent to the M memory cells. A perfect algorithm would

identify and monitor all M largest flows. However, using RHE there might exist “bad” cells that no

one of the largest M flows map to. Since the total number of cells is M , the number of the largest

M flows that can be monitored is at most (M - number of “bad” cells). By estimating the number of

“bad” cells we will give bounds on the number of large flows that can be tracked by M memory cells.

We will see that these bounds are not far from simulation results presented in Section 7.6.

Questions of interest are as follows:

(1) Estimate G - the number of cells that contain at least one of the largest M flows. We denote

the set of the largest M flows by LM .

(2) Estimate V G - the number of cells that contain at least one of the largest M/2 flows. We

denote the set of the largest M/2 flows by LM/2.

The following analysis will estimate G and V G as function of ρ. Since we are interested in the

upper bounds for G and V G, we will assume, for simplicity, that the threshold is such that all LM

flows passes from one stage to another. This will slightly decrease the accuracy of our bound, but the

main objective of this section is to give some intuition on how much we can expect from RHE.

Let ak be the average number of flows that map to one cell at k-th stage. Denoting by Nk the

total number of flows at k-th stage, we have that

ak =
Nk

Mρk−1(1− ρ)
.

The probability that among a1 flows at first stage there is no one from set LM is

P ((f1 6∈ LM ) ∧ · · · ∧ (fa1 6∈ LM )) = P (f1 6∈ LM )a1 =
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Figure 7.11: f(ρ) - Bound on the proportion of identified flows from LM for ρ ∈ (0, 0.5).

(
1− M

N1

)a1

=

((
1− 1

a1(1− ρ)

)a1(1−ρ)
) 1

1−ρ

≈ e−
1

1−ρ

Therefore at first stage, the number of “bad” cells one can expect is roughly:

B1 = M(1− ρ)e−
1

1−ρ .

Thus, at the first stage one can expect roughly G1 = M(1 − ρ) − B1 “good” cells. In the perfect

case (where each cell extract the flow with the highest rate) at the second stage one can expect

approximately M −G1 = M(ρ + (1− ρ)(1− e−
1

1−ρ )) flows from LM . Therefore, the probability that

a cell from the second stage is “bad” is

P ((f (2)
1 6∈ LM ) ∧ · · · ∧ (f (2)

a2
6∈ LM )) =

(
P (f (2)

1 6∈ LM )
)a2

=

(
1− M −G1

N2

)a2

=

(
1− ρ + (1− ρ)e−

1
1−ρ

a2ρ(1− ρ)

)a2

≈ e−
ρ+(1−ρ)e

− 1
1−ρ

ρ(1−ρ) .

Thus the number of “bad” cells on the second stage is roughly

B2 = Mρ(1− ρ)e−
ρ+(1−ρ)e

− 1
1−ρ

ρ(1−ρ) .

Similarly, at the k-th stage the number of bad cells can be approximated with

Bk = Mρk−1(1− ρ)e−
ρk−1+(B1+···+Bk−1)/M

ρk−1(1−ρ) .

Having this value the proportion of identified LM flows is upper-bounded by

f(ρ) =
M −∑∞

k=1 Bk

M
. (7.3)

On Figure 7.11 we plot the quantity f(ρ), for ρ ∈ (0, 0.5).

From Figure 7.11 we can see that by choosing a higher ρ we can enforce a lower number of “bad”

cells. The price for this would be a larger number of stages and therefore a larger per-packet processing

time.

The bound given by (7.3) gives a rough approximation to G - the number of “good” cells as

function of ρ. The number of identified LM flows is not larger than

G = f(ρ) ·M. (7.4)
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Figure 7.12: g(ρ) - Bound on the proportion of identified flows from LM/2 for ρ ∈ (0, 0.5).

Using similar arguments we obtain a bound for V G:

V G = g(ρ)
M

2

where

g(ρ) =
∑∞

k=0 Ak

M
2

. (7.5)

The sequence Ak satisfies: A0 = 0 and

Ak = (1− ρ)ρk−1M(1− e
−

1
2−(A0+···+Ak−1)/M

ρk−1(1−ρ) ).

The plots in Figures 7.11 and 7.12 also depicts simulation results on the proportion of identified

LM and LM/2 flows with RHE for various values of ρ. Two sets of simulations were performed

over 10000 flows with a cumulative distribution of flow rates given by Pareto distribution with k =

0.5, m = 40, as depicted in Figure 7.2: one with 1000 memory cells another with 200 memory cells.

Since the number of flows per memory cell in the second case is larger than in the first case, the test

for identifying the highest flow has lower confidence in the second than in the first case. Therefore, we

see that the proportion of identified LM and LM/2 flows with 200 memory cells is slightly lower than

with 1000 memory cells (although we see for ρ ≤ 0.1 the opposite effect; this effect is consequence of

threshold adaptation that is neglected in our analysis).

7.4.2 Choosing c0

We saw in the Section 7.3 that if n numbers, z1, . . . , zn, are drawn with some heavy tailed distribution

D then the distribution
√∑n

i z2
i / max (zi) is concentrated close to 1; see Figures 7.3 and 7.4. The

parameter c0, that defines test given on Figure 7.5, should be chosen is such fashion that following

probability is minimized:

p0(D, n, c0) = Prob((z1, . . . , zn)|
√∑n

i z2
i

max (zi)
> c0).

The value p0 represents the probability that the test will not eventually finish its search once
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the heaviest flow is found13. Note that even in that case (test does not finish), the maximal flow will

be hashed to the next stage(s) (and will be given chance for identifying there) as long as its rate is

greater than the threshold T .

Figure 7.13 depicts (empirically obtained) values of c0 for which p0 = 0.02 when zi are drawn with

Pareto distribution for two different values of parameter k and m = 40. Formally, it depicts graphs

of c̄0(Pareto1, n) and c̄0(Pareto3, n) for the distributions Pareto1 (k = 1,m = 40) and Pareto3

(k = 3,m = 40), where c̄0 is defined by:

c̄0(D, n) = x0 for which p0(D, n, x0) = 0.02

Throughout this chapter we assume that for the distribution of flow rates D holds following

Assumption 7.1

c̄0(D, n) ≤ c̄0(Pareto3, n) (7.6)

Informally, it says that the distribution D is “more” heavy-tailed than Pareto3. We performed

an analysis on a number of real Internet traces and we have not found a single trace that does not

satisfy Assumption 9.1. Assuming (7.6), for choosing c0, we first estimate the number of flows of a

single memory cell using bitmap technique [31](b is the size of the bitmap, we use b = 200; z is the

number of zero bits):

n̂ = b ln(
b

z
).

Then we use

c0 = c̄0(Pareto3, n̂). (7.7)

13Recall that choosing too large c0 might cause the algorithm to stop searching for the heaviest flow by finding a flow

(with rate typRate) that satisfies
√

eqPairs
cRate

≤ c0
typRate
cRate

.
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7.5 Application: Heavy-hitter Hold - HH

In this section we present a queue management scheme called HH, that will be built on RHE. The

main objective of HH is enforcing max-min fair bandwidth allocation. The reasons for employing

“fair queueing” and its importance can be found in [110], [88] and [33]. In particular, a queue scheme

that enforces fair bandwidth allocation would protect responsive and not too aggressive flows from

non-responsive and aggressive ones, and could be essential for providing QoS requirements once the

number of users that use some of the high-speed [58, 37] or loss-insensitive transport protocols becomes

large (compared to the total number of users).

The pseoudocode of HH is given in Figure 7.14. We use a MIMD (Multiplicative Increase-

Multiplicative Decrease) algorithm for controlling the variable FAIR (representing the maximal al-

lowable rate): whenever the estimated rate, estc, of the flow the arriving packet belongs to, is greater

than FAIR, the packet should be dropped with probability (estc−FAIR)/estc. We chose to update

the variable FAIR once per interval of length δ, with same δ as in RHE (but of course the frequency

of updating FAIR and RHE parameters do not have to be same). Our performance goal is to keep

utilization of the link at the prescribed value util. On each update of FAIR we ask whether the

utilization is less then util or not and update FAIR with the MIMD parameters t1 > 1 and t2 > 1.

Having information on FAIR, RHE will use threshold T = FAIR/2 rather than manually setting

the threshold or self-tuning of the threshold. Setting the threshold on value T = FAIR/2 allows the

monitoring of a long-lasting TCP flow after it responds to packet loss by halving its congestion

window.

In the pseudocode given in Figure 7.14, RHEEstRate(pkt) and EstCELL(pkt) represent the

estimated rate of the flow packet pkt belongs to and the memory cell that has given this estimate.

In order to prevent multiple losses for TCP (or more generally loss-responsive) flows, we intro-

duced a 2bit variable marked attached to each cell. For the memory cell CELL, marked(CELL) is 0

if no packet that corresponds to CELL has been dropped in both the current and previous update in-

terval; marked(CELL) is 1 if some packet that corresponds to CELL has been dropped in the current

update interval but no packet that corresponds to CELL is dropped in the previous update interval;

marked(CELL) is 2 if some packet that corresponds to CELL has been dropped in the previous

update interval but no packet that corresponds to CELL is dropped in current update interval and

marked(CELL) is 3 if some packets that correspond to CELL have been dropped in both the previous

and the current update interval. If marked(CELL) is equal to 1 no packets with EstCELL(pkt)

equal to CELL will be dropped until the next FAIR update when marked(CELL) is updated to

reflect the definition we have already given.
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On arrival of packet pkt

. [estc, CELL] = [RHEEstRate(pkt) EstCELL(pkt)]

. if (estc < FAIR)

. ShouldDrop ← 0;

. else

. rand = Random :: uniform(0, 1);

. if (rand < (estc− FAIR)/estc)

. ShouldDrop ← 1;

. end if

. end if

. if marked(CELL) == 1

. ShouldDrop ← 0;

. end if

. if ShouldDrop == 1

. Drop(pkt);

. if (marked(CELL) mod 2 == 0);

. marked(CELL) ← marked(CELL) + 1;

. end if

. end if

. if (now − LastUpdate > δ)

. if (CurrentThroughput/Capacity < util)

. FAIR = FAIR ∗ t1;

. else

. FAIR = FAIR/t2;

. end if

. LastUpdate = now;

. for CELL = 1 : memorysize

. if (marked(CELL) mod 2 == 1);

. marked(CELL) ← 2

. else if (marked(CELL) == 2)

. marked(CELL) ← 0

. end if

. end for

. end if

Figure 7.14: Pseudocode of HH
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Figure 7.15: MSF vs CATE vs RHE. Average errors ERR(L200), ERR(L500) and ERR(L1000) for

different values of Pareto parameter.

7.6 Evaluation

Following the analysis from section 7.4.1 we set ρ = 0.3 in the following experiments14. Setting

ρ = 0.3 implies g(ρ) ≈ 1, meaning that number of cells that contain at least one of the largest M/2

flows is approximately equal to M/2, allowing high probability of identifying this top-M/2 flows. The

parameter c0 is tuned according to rule (7.7).

7.6.1 Comparison between Multistage Filters, CATE and RHE

We will compare MSF [30], CATE [44], and RHE over 6 different synthetic streams where flow size dis-

tribution follows Pareto distribution with parameter k = 0.5, 1, 1.5, 2, 2.5, 3, and m = 40. Cumulative

Distribution Functions (CDF) of this six distributions are shown in Figure 7.2.

For each k, the length of stream is L = 500000, and the total number of flows is NF = 10000,

each member of the stream has unit size and belongs to flow i ∈ {1, 2 . . . , NF} with probability wi

where wi are chosen with Pareto distribution with parameter k whose CDF is depicted in Figure

7.2. The parameters for the weighted averaging of flow rates are δ = 0.5sec, q = 0.5. The length

of measurement interval for MSF is δ1 = 2sec. The number of arrivals per second is 50000, giving

total length of single test 10 seconds. The available memory for RHE is M = 1000 memory cells. We
14Code used in this section can be found at http://www.hamilton.ie/person/rade/RHE/.
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assume that the relative size of counters is 20% of a memory cell, and that the relative size of flow

entry (flow identifier + counter + pointer needed for hash table) is 40% of the size of a memory cell.

For the given memory of 1000 memory cells, the values for the number of stages (d), the number of

counters per stage (b) and the number of flow entries (FC) are derived from the recommendations

given in Section 6.1 in [30]: d = 4, b = 615, FC = 1270. For CATE, we use k = 50 comparisons per

packet15, as recommended in [44].

The metric of interest is the average error between estimated traffic share and real traffic share

defined as in [30] by the ratio between the sum of the absolute values of the differences between the

estimated and real traffic share divided by total sum of the real traffic share16. Thus, for a set of flows

indexed by set I, the error is defined as:

ERR(I) =
∑

i∈I |est(fi)− r(fi)|∑
i∈I r(fi)

(7.8)

We evaluated the average errors for the top 200, top 500 and top 1000 flows, indexed by sets

L200, L500 and L1000. Our findings are presented in Figure 7.15. We observe that the ratio between

the average errors of MSF and RHE grows as k grows, which shows a much higher sensitivity of

MSF on the “heavy-tail assumption”. We also note the low insensitivity of CATE to the “heavy-tail

assumption”: errors grow slowly with Pareto parameter k. However, the high variance of CATE

implies relatively large errors.

Comment 7.1 Note that the basic Multistage filtering algorithm (without shielding and conservative

updates) identifies a flow as being large based on the information on mini(AggrV ol(Ci) | i = 1 : d). In

the case of large number of flows per counter(say > 10) the quantity AggrV ol(Ci) will be (with high

probability) within order of magnitude with volume of the heaviest flow that maps to that counter Ci

only in the very heavy-tailed environments. Indeed, the ratio AggrV ol(Ci) / max(V ol(f) | f ∈ Ci) =

(
∑

f∈Ci
zf )/ maxf∈Ci(zf ) has a probability distribution that has a much larger mean than√

(
∑

f∈Ci
(zf )2)/ maxf∈Ci(zf ) and therefore the quantity maxf∈Ci(V ol(f)) is not dominant in AggrV ol(Ci)

if either number of flows per counter is large or size distribution does not have very heavy tail. As we

already noted in Section 7.2.1, the authors of MSF introduced multiple stages, shielding and conser-

vative updates to improve confidence in finding heavy-hitters, while RHE uses additional information

given in the memory cell to solve same problem.

Comment 7.2 Multiple stages in MSF are an integral part of MSF algorithm, and a packet have to

pass all stages twice (once for the counter increments and once for the conservative-update correction).

However, RHE attempts to identify the heaviest flow at single stage and additional stages (with sizes

that decrease geometrically) are introduced only because of possible collision when two heavy flows

15Using more comparisons would be computationally expensive for high speed links(> 1Gbps).
16RHE measures flow rates while CATE and MSF measure flow sizes so we use generic term “traffic share” to refer

to flow rates in RHE case and flow sizes in MSF and CATE case.
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mapping to same cell. The following table shows average number of stages (ANS) per packet for RHE,

for six different values of parameter k:

k 0.5 1 1.5 2 2.5 3

ANS 1.457 1.351 1.372 1.352 1.360 1.356

Comment 7.3 In [29] MSF is compared with a number of sketch based approaches (see [16, 63] and

references therein) for identifying the heavy-hitters. It is claimed that MSF needs less memory to

achieve given task. To quote [29]: “...the conclusion is that multistage filters as I use them identify

heavy hitters with less memory than sketches...”.

7.6.2 Measurements on real packet traces.

In this section we present experimental results over 3 NLANR unidirectional traces [84] that we refer

to as MRA, FRG and ALB. In all our experiments we use the definition of a flow at the granularity of

TCP connections, i.e. a flow is defined by the 5-tuple of source and destination IP address, and port

and protocol numbers. We choose to compare the measured and real rates at the moment t1 = 15sec

from the start of measurement t0 = 0sec. The number of flows, the number of packets, and the

average (total) throughput of these three traces in the interval [t0, t1] are given in the following table:

Trace # of flows # of packets Avg throughput

MRA 70826 905312 285.7 Mbps

FRG 27393 1030953 428.7 Mbps

ALB 181394 2501702 919.1 Mbps

The parameters used are: δ = 0.1sec, q = 0.9, and the number of memory cells in MRA and FRG

measurements is M = 500 and for larger ALB we set M = 1000.

In Table 7.1 we present our results. The metrics of interest are: the proportion of identi-

fied LM/5(top M/5 flows), LM/2 and LM flows(we denote proportion of identified Lk flows by

PropIden(k)), the average error for LM/5, LM/2 and LM flows and the average number of stages(ANS)

per-packet. We also provide the average errors for LM flows obtained by CATE (with k = 50 compar-

isons) and MSF with memory space equivalent to M memory cells(see previous subsection) on these

three packet traces. Large errors with CATE are due to relatively small sample (15 seconds of trace)

and therefore high variance.

The average number of flows per memory cell on the first stage is around 200 on MRA and

ALB traces and around 80 on FRG trace. In spite of this large number of flows per memory cell,

RHE is able to extract almost all the top-M/5 flows and about 90% of M/2 flows with highest rates.

The difference between the number of identified LM/2 and LM flows, and the upper bounds given in

Section 7.4, is mainly caused by the fact that the threshold T often stabilizes around a value that does

not allow for some non-identified flows from LM and LM/2 to pass from one stage to another. We

should also observe results for the average number of stages per cell. On the most challenging trace
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Metrics MRA FRG ALB

PropIden(M/5) 0.99 1.00 1.00

PropIden(M/2) 0.904 0.896 0.960

PropIden(M) 0.648 0.694 0.730

ERR(LM/5) 0.0073 0.0122 0.0094

ERR(LM/2) 0.0277 0.0312 0.0241

ERR(LM ) 0.0409 0.0408 0.0412

ANS 1.5593 1.4057 1.5909

ERR(LM )(MSF) 0.2837 0.1368 0.0625

ERR(LM )(CATE) 0.3850 0.4780 0.4967

Table 7.1: The proportion of identified LM/5, LM/2 and LM flows; the average error for flows from

LM/5, LM/2 and LM ; the average number of stages(ANS) per-packet; MSF and CATE errors for LM

flows.

ALB, with aggregate throughput of more than 900Mbps, the average number of packets per second

is around 166000. With 1.5909 stages per-packet, this gives more than 3µs per-packet update on one

stage, defined on Figure 7.7. Assuming fast SRAM with access time of 4ns17, a packet update would

take less than 100ns, which is roughly 30 times less than that needed on trace ALB with aggregate

throughput of about 919Mbps.

For the trace A, let k(A) be the largest integer such that all top-k(A) flows are identified;

we will denote by TT (A) the proportion of traffic taken by top-k(A) flows. On all three traces

TT (MRA), TT (FRG), TT (ALB) are greater than 60%. Thus, RHE is able to fully identify top flows

responsible for more than 60% of traffic on the gigabit links with only several kilobytes of SRAM

memory. Figure 7.16 graphically illustrates the accuracy of RHE for all 3 traces.

7.6.3 Performance of HH.

In this subsection we will present ns2 packet level simulation results that will illustrate the behavior

of HH. To do this we initiated 1000 TCP flows divided in three groups18, whose TCP parameters are

described in the Table 7.6.3 that share 40 Mbit/s link. We ran two experiments with these 1000 flows:

one over the link with a Drop Tail queue and another over a HH queue. The queue size in both cases

is 300Kbytes which is 60ms of buffering on 40Mbit/s link.

The HH parameters are util = 0.98, t1 = 1.003, t2 = 1.003. The weighting-average, parameters

are the same as in the previous subsection δ = 0.1sec, q = 0.9 and the number of memory cells is

M = 40. Flows from the first group do not have maximal congestion window limitation and they

account for 67.36% of bandwidth in the DropTail case. In the HH case, the total share of bandwidth

for flows from the first group is reduced to 41.03%, while the total share of bandwidth for other two
17Current SRAM access time varies between 2ns and 5ns[127].
18The first group mimics elephant flows, the second kangaroos and the third mice flows.
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Figure 7.16: The estimated vs. real rates on MRA (left), FRG (middle) and ALB (right) trace. The

top figures depicts all flows, the middle figures zoom in on flows with rates ≤ 500KB/sec and the

bottom zoom in on flows with rates ≤ 100KB/sec.
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Flow ID (u) maxcwnd RTT (ms) packetSize(B)

u ∈ 1..20 ∞ 20 + 20u 1500

u ∈ 21..120 30 8u 650− 5u

u ∈ 121..1000 3 8u + 40 60000/u

Table 7.2: Characteristics of 1000 TCP connections.
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Figure 7.17: Throughput for flows from the first group under DropTail and HH.

groups increased significantly as is sketched in Table 7.3 (here TOT (a..b) denotes share of bandwidth

taken by flows a, a + 1, . . . , b). The utilization in the DropTail case is slightly higher than in the HH

case which is almost equal to desired util = 0.98.

In the networking literature, the standard metric used for evaluating the level of fairness for

certain bandwidth allocations is Jain’s fairness index(JFI) [50]. For a set of k numbers a1, . . . , ak, the

JFI is the square of the ratio between arithmetic and quadratic mean of these k numbers:

JFI(a1, . . . , ak) =
(a1 + · · ·+ ak)2

k(a2
1 + · · ·+ ak

2)

The last row in Table 7.3 contains the JFI for share of bandwidth for flows from the first group in

both the DropTail and HH case. Figure 7.17 graphically illustrates the share of bandwidth for flows

from the first group in both scenarios.

Metrics DropTail HH

TOT (1..20) 0.6736 0.4103

TOT (21..120) 0.2933 0.5539

TOT (121..1000) 0.0330 0.0356

Utilization 0.9916 0.9799

Average queueing delay(ms) 43.7 10.9

JFI(1..20) 0.5706 0.9984

1

Table 7.3: Experimental results for DropTail and HH queue.
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7.7 Summary

In this chapter we present a heuristic method named RHE for realtime identification of flows that

account for most of the bandwidth. If positive numbers z1, . . . , zn are taken with some heavy tailed

probability distribution then
∑n

i=1 z2
i is dominated by the maximum of zi. Assuming that zi are

Internet flow rates, efficient estimation of
∑n

i=1 z2
i allows us to design an algorithm that with high

confidence identifies the highest rate flows. The presented method is highly scalable in the following

sense(s)

- Computationally. Per packet processing requires only 3 comparisons, one hashing and up to 4

additions per stage. The design of RHE allows only a very few packets to higher levels and therefore

the average number of stages per packet is just slightly above 1 (in all experiments presented here it

is in range [1.3,1.6]). As a result of this, RHE can scale with line speeds of up to several tens of Gbps.

- Memory space. RHE needs a very small amount of memory. Experiments in Section 7.6.2 show

high efficacy with just several kilobytes of SRAM memory on Gbps-traces. Low memory requirements

of our scheme allow usage comparatively scarce on-chip SRAM which is highly desirable at highly

loaded network processors.

- Heavy-tail assumption. RHE covers a wide range of flow rate distributions and is much more

robust to heavy-tailed assumption, compared to MSF.

- Number of active flows.

Our main motivation for developing RHE was flow control. The proposed queue management

scheme HH exploits the efficacy of RHE and controls fairness using a very small amount of memory.

An important, highly nontrivial and open question that arises in the study of the “fair queueing”

algorithms is:

(*) What would the Internet flow rate distribution look like if routers employed fair queueing?

In the context of a queueing scheme whose efficacy relies on the assumption of heavy-tailed

traffic19, the change in the flow rate distribution caused by fair queueing is an important metric that

affects the performance of these algorithms. Our algorithms depend on the flow rate distribution

only through the constant c0 that defines the test given in Figure 7.5. Initial measurements indicate

that Assumption 9.1 used for tuning c0 is satisfied for all tested traces. However, analytical research

is necessary to answer the question (*) en route to an efficient, scalable and robust “fair queueing”

algorithm for the current and future Internet.

19The efficacy of most of Fair-queueing schemes depends on the flow rate distribution, see [62].
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Part III

Utilization versus Queueing delays

tradeoff
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CHAPTER 8

Adaptive tuning of DropTail queues

Abstract - Internet router buffers are used to accommodate packets that arrive in bursts and to

maintain high utilization of the egress link. Such buffers can lead to large queueing delays. We propose

a simple algorithm, Active Drop-Tail (ADT), which regulates the queue size, based on prevailing traffic

conditions, to a minimum size that still allows for a desired (high) level of utilization. Packet level ns2

simulations are provided to show that Adaptive Drop-Tail achieves significantly smaller queues than

current approaches at the expense of 1-2% of the link utilization.

8.1 Introduction

Traditionally, router buffers have been provisioned according to the delay-bandwidth product (DBP)

rule: namely, one chooses the buffer size as q = B × T , where B is the rate of the link served

by the router, and T is the “typical” 1 round trip time (RTT) experienced by connections utilizing

the buffer. This amount of buffering allows for 100% utilization of the egress link under all traffic

conditions. Following this rule, most router buffers are designed to have 100-250ms of buffering. This,

together with the TCP mechanism of congestion avoidance, ensures high link utilization. In the last

few years, several studies related to buffer sizing at a congested router have occurred [19, 2, 119, 5].

For example, it is claimed in [2] that the amount of buffer space needed for high utilization of a

link is highly dependent on the number of active flows on the link. Namely, they claim that, if N is

the number of active TCP flows, the buffer space required for 99% utilization of the link capacity is

BAKM = B×T√
N

.

Having small buffers is attractive as it reduces the amount of memory, required physical space,

energy consumption, and price of the router. From our point of view, however, the main advantage
1In [19], it is suggested that in order to ensure full utilization of the link one should use B × Th of buffering, where

Th is the harmonic mean of round trip times for all bottlenecked connections passing through the link. In this chapter

we use the term “typical” RTT for harmonic mean Th
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of having small buffers is the reduction in queueing delays and jitter. In the current Internet the

average number of hops on a random path is about 13 [113]. For a single flow with that many hops

it is possible to expect several congested links on the path. Thus buffering of several hundreds ms at

each router would imply very large queueing delays.

The 1√
N

bound in [2] depends on the number of active users accessing a bottleneck link and

the distribution of RTTs. Since, for any congested link, these quantities vary and are difficult to

estimate, a network operator must provide as much buffer space as is necessary for the least possible

number of active users in order to keep utilization high at all times. Assuming that a router uses a

drop-tail queue of sufficient size to ensure high utilization in the low number of users regime, queueing

delays will be much larger than necessary in regimes with a large number of users. Motivated by this

observation we develop a simple algorithm, called Active Drop-Tail (ADT), which keeps the available

buffer space as small as possible while maintaining a certain level of utilization. Thus, for a large

number of users the available queue size will be low, and for a low number of users will be as large as

necessary to achieve high utilization.

8.2 Active Drop-Tail algorithm

We propose a discrete-time queue management algorithm, called Active Drop-Tail (ADT), that tries

to “find” the smallest queue size that allows the outgoing link to operate at a given desired utilization

u. ADT has two stages: (i) estimating the (average) throughput of the link and (ii) adjusting the

available buffer space once per sampling period based on this measurement. In order to estimate the

throughput, at each sampling time we first compute the current throughput as the number of bytes

enqueued normalized by the length of the sampling interval. We then compute a weighted average of

the throughput. We will control the available buffer space based on this weighted average.

ADT maintains an internal variable qADT that corresponds to the number of packets that can

be accommodated in the buffer. The basic idea is to modify qADT based on the estimated average

throughput. If the average throughput is less than the desired utilization, qADT is increased to allow

more buffering, yielding higher utilization. On the other hand, if the average throughput is greater

than the desired utilization, we decrease qADT to regulate utilization to the desired level. For the

purposes of adjusting qADT we use a Multiplicative Increase - Multiplicative Decrease (MIMD) strat-

egy. While other control strategies are possible, our simulations show that a simple MIMD approach

works well to reduce the queue size needed to maintain a certain level of utilization. Assuming that

network conditions do not vary quickly2, the MIMD parameter should be chosen to allow qADT to

be halved/doubled in a few seconds up to one minute. ADT deals with arriving packets in the same

fashion as drop-tail with qADT as the queue limit, i.e. if, at the moment of packet arrival, the queue

has size less than qADT − 1, then the packet is enqueued. Otherwise it is dropped3. Pseudo-code
2Measurements [83] show that, on typical 150Mbps+ links, basic IP parameters (such as the number of active

connections, proportion of TCP traffic, aggregate IP traffic, etc.) do not change dramatically in short time periods.
3We assume that the buffer is configured in packets. However one can easily change the algorithm to track qADT
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describing the ADT algorithm is given in the table below. The parameters of ADT are as follows. ρ

is an averageing parameter in (0, 1) and is used to calculate the weighted average of the throughput.

c > 1 is the MIMD parameter for controlling qADT . SamplePeriod and u are the sampling period

and desired utilization respectively.

On every packet arrival:

if (now − LastUpdate) > SamplePeriod

. CurThr := NmbBEnq(now)−NmbBEnq(LastUpdate)
now−LastUpdate

. thr := ρ CurThr + (1-ρ)thr

. if ( thr
ServiceRate < u)

. qADT := qADT · c

. otherwise

. qADT := qADT

c

. end

. qADT := min(qADT , SizeOfBuffer)

. LastUpdate := now

end

In the above table NmbBEnq(t) denotes the number of enqueued bytes in the interval [0, t], and

now is the current sample time. The parameter ρ is used to filter possible transient effects, such as a

flash crowd or a sudden decrease in arrival traffic, and should be chosen such that weighted averaging

is performed over several congestion epochs4. While in most cases congestion epochs last less than

a few seconds, some extreme situations (e.g., high bandwidth-low number of users) might require a

lower choice of ρ. Such situations can be easily identified and dealt with by adapting ρ online: due to

space restrictions we do not describe the adaptation of ρ here other than to note that it can be done

in a straightforward manner.

Comment 8.1 In the case of a noncongested link, as long as the average arrival rate is less than the

desired utilization u, the ADT algorithm will keep qADT at SizeOfBuffer; i.e. at the actual buffer

size. However, in noncongested links queueing delays are negligible, and there is no need for ADT.

Comment 8.2 ADT is designed for loss based TCP. Delay-based TCP proposals, like Vegas or FAST,

require a certain level of queueing delay as a congestion signal. Adaptation of available buffer space

in such circumstances is not beneficial.

and queue size in bytes instead packets.
4A congestion epoch is the time between two consecutive packet losses.
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Figure 8.1: Queue sizes for Drop-Tail, ADT-0.99, and Adaptive RED

8.3 Evaluation

In this section we present ns2 packet level simulation results on the performance of ADT5. Throughout

this section we use the following set of ADT parameters: ρ = 0.1, SamplePeriod = 0.3sec, c = 1.01,

and desired utilization u = 0.99.

A. ADT, Drop-Tail, and Adaptive RED : Our first ns2 simulations are for 1000 TCP users

with RTTs uniformly distributed in the interval 40 to 440ms, and a packet size 1500B, all competing

through a single bottleneck link with capacity 200Mb/sec. Figure 8.1 shows the queue occupancy for

a Drop-Tail (DT) queue with a buffer size of 500 packets (30msec of buffering), an ADT queue, and an

Adaptive RED [39] queue. The following table contains the average utilization (AU), loss rate (LR),

average queueing delay (aQd), and Jain’s fairness index (JFI) [50] for each of these three disciplines.

In order to show how ADT adapts the available buffer space in the case of a congested reverse path we

performed a simulation with 1000 TCP connections in both directions competing over ADT queues.

. AU(%) LR(%) aQd(ms) JFI

DT 99.99 4.73 23.78 0.58

ADT 99.03 4.87 6.66 0.56

ARED 100.00 4.90 17.99 0.79

ADT(R) 99.04 4.73 17.14 0.70

As we can see from the previous table, the utilization of Drop-Tail and Adaptive RED is 100%

while the utilization of ADT is 99.03%. The loss rates of all three queueing disciplines are similar

and are mainly driven by the congestion control algorithms of the users. A stated secondary goal of

most RED-like schemes is to keep queueing delays small. However, having designed ADT specifically

to minimize queueing delay, we see that the average queueing delay of ADT, in this example, is three

times less than that of Adaptive RED. We note that even with reverse path traffic and heavy conges-
5ns2 software used in these simulations can be found at http://www.hamilton.ie/person/rade/ADT/.
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Figure 8.2: Average qADT (top), loss rates (middle), and utilization (bottom).

tion in both directions (i.e., ACK accumulation and larger bursts) ADT is able to adapt the available

queue size in order to achieve the desired utilization (although because of ACK losses goodput is

significantly reduced).

B. Queue size, number of users, and loss rate : Here we investigate the relationship be-

tween queue size, number of users, and loss rate. In order to compare our results with the 1√
N

bound

from [2] we consider N TCP flows with RTTs uniformly distributed in [80, 100]ms6 with a packet size

of 1500B. All flows compete via a bottleneck link of 200Mb/sec with an ADT queue. We vary N

from 4 to 2000 and evaluate loss rate and average qADT . In Figure 8.2 (top) we compare the average

queue size for a fixed number of users with the estimate given in [2]. We observed close fit to the

theoretical bound from [2]. As we can see from Figure 8.2 (middle) the loss rate increases slowly with

N . This is a consequence of the time-out mechanism of TCP.

C. ADT and a varying number of users : We now allow the number of users to vary with

time7. We consider a bottleneck link with capacity 100Mb/s where the number of active TCP users

varies from 10 to 500 and back to 10 again, with one user becoming active or inactive every two

seconds as depicted in Figure 8.3 (top). The RTT’s are randomly chosen uniformly from the interval

10 to 300ms. As we can see in Figure 8.3 (middle and bottom), qADT falls below 40 packets for large

numbers of users, while for a small number of active users the required queue size is over 400 packets.

D. Selection of parameters : ADT is highly robust to the choice of its parameters. To illustrate

this we ran a set of N TCP connections, over a 100Mb/s link and varied the ADT parameters as

6In deriving their 1√
N

bound the authors of [2] assume uniform RTTs. For this reason we chose the RTTs in the

range [80, 100]ms, to emulate the condition of “almost the same” RTT.
7As we deal with slowly varying environments, in our simulation we vary the number of active users in a continuous

manner rather than abruptly.
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Figure 8.3: Utilization and qADT with changing number of active TCP users.
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Figure 8.4: Average utilization (5 minutes) for different choices of parameters.

follows: SampleT ime in range [100, 1000]msec; c ∈ {1.002, 1.01, 1.05}. We fixed the weighted average

factor ρ = 0.1. We evaluated two cases, low number of users: N = 20, and high number of users:

N = 200. Recall, that the performance goal of ADT is to regulate utilization at a prescribed level; in

our case u = 0.99. The ability of ADT to achieve this objective for different choices of parameters is

depicted in Figure 8.4.

8.4 Summary

In this chapter we have presented a simple algorithm, ADT, for keeping queueing delays small, while

maintaining a certain desired utilization. Via packet level simulations, we have shown that, for

networks serving a large number of TCP flows, by allowing a 1-2% underutilization of a bottleneck

link, we can realise smaller average queueing delays than in other queueing disciplines. We point out

that this algorithm is easy to implement in current routers, requiring a minimum amount of processing

power. Finally, we note that ADT strives to adjust the available buffer space to accommodate bursts
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through the network buffers irrespective of their generating mechanisms.
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CHAPTER 9

How expensive is link utilization

Abstract - Understanding the relationship between queueing delays and link utilization for general

traffic conditions is an important open problem in networking research. Difficulties in understanding

this relationship stem from the fact that it depends on the complex nature of arriving traffic and the

problems associated with modelling such traffic. Existing AQM schemes achieve a “low delay” and

“high utilization” by responding early to congestion without considering the exact relationship between

delay and utilization. However, in the context of exploiting the delay/utilization tradeoff, the optimal

choice of a queueing scheme’s control parameter depends on the cost associated with the relative im-

portance of queueing delay and utilization. The optimal choice of control parameter is the one that

maximizes a benefit that can be defined as the difference between utilization and cost associated with

queuing delay. We present two practical algorithms, Optimal Drop-Tail (ODT) and Optimal BLUE

(OB), that are designed with a common performance goal: namely, maximizing this benefit. Their

novelty lies in fact that they maximize the benefit in an online manner, without requiring knowledge

of the traffic conditions, specific delay-utilization models, nor do they require complex parameter esti-

mation. Packet level ns2 simulations are given to demonstrate the efficacy of the proposed algorithms

and the framework in which they are designed.

9.1 Introduction

Measurements from a number of sources suggest that traffic generated by TCP users accounts for

85-95% of the Internet traffic [30, 34]. Van Jacobson’s congestion control algorithm [49] is one of the

main reasons for the robustness of the Internet and the prevention of the congestion collapse over last

two decades. Given the success of TCP and the stability of the current internet it is unlikely that

other, conceptually different, transport protocols will replace TCP in the near future.

Most Internet routers use FIFO Drop-Tail buffers. Current router buffers are generally sized

by the rule-of-thumb given in the Villamizar&Song paper [115]: router buffers require approximately
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space for B = RTT × C packets, where RTT is the “average” round trip time for connections that

use the link and C is capacity of the link. Following this rule, most router buffers are designed in

such a fashion that they result in up to 100ms to 250ms of queueing. This, together with TCP’s

mechanism of congestion avoidance, serves to ensure a high link utilization. In the last few years

several studies related to buffer sizing for congested routers have appeared. It is claimed in [2] that

the amount of buffer space required for high link utilization can in some circumstances be far less than

that suggested by the Bandwidth-Delay-Product rule. However, it is also shown in this paper that the

required buffering highly depends on the number of active flows using the link. In particular, briefly,

assuming a single congested link topology, and N homogenous, unsynchronized, long TCP flows, with

a “typical”1 round trip time RTT , then the buffer space required for a link utilization of u ·C is given

by:

BAKM (u) = A(u)
RTT × C√

N
. (9.1)

Here, A : (0, 1) 7→ (0,∞) is a real function for which A(0.99) ≈ 1 and A(0.9999997) ≈ 2. One

should note that, although the bound (9.1) is derived in the context of drop-tail queues, it is also

applicable to other AQM schemes as well. Namely, in order to ensure utilization of u ·C, one needs a

physical buffer space for accommodating packets of N unsynchronized TCP flows, given by (9.1).

Although the bound (9.1) yields important theoretical insights into the relation between link

utilization and the required buffering it is not immediately applicable to size buffers in the real In-

ternet routers for a number of reasons. Firstly, the bound (9.1) depends on the number of active

users that are bottlenecked at the link, as well as their RTT distribution. These quantities vary, and

are also usually hard to estimate. Secondly, the mathematical assumptions used in deriving (9.1) are

not realistic and do not take into account the various and variable traffic mixes possible, the level of

synchronization, the existence of non-TCP traffic, etc. Most importantly, while it is useful to know

that delay and utilization are related in some manner, it is not immediately clear how to utilize this

relationship in a meaningful manner. Specifically, an important practical question that arises in the

queue management design is:

(*) “What is more important: low queueing delays or high utilization?”

To illustrate this question, say that for a given traffic mix, the relation between average queueing

delays (aQd) and utilization (u) is given in Table 3:

In this table, t is some parameter that defines the queue management scheme. For example, t

can be interpreted as available buffer space, or the per packet drop probability. Now, the important

practical question is, which t should a network operator chose under this traffic mix? The answer to
1It is suggested in [19] that in environments without synchronization, one should use harmonic mean of the RTTs

of the active connections as ”typical” RTT.
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t t1 t2 t3 t4

aQd(t)(sec) 0.1 0.02 0.005 0.001

u(t) 1.00 0.98 0.90 0.60

Table 9.1: Synthetic example of aQd(t) and u(t) for 4 different possible choices of parameter t.

this question depends on the relative importance of utilization and queueing delays. To formalize this

notion we can define the benefit B(t) as the difference between utilization and cost a network operator

is willing to pay that is an increasing function of queueing delays. Having defined this cost function,

which specifies formally the tradeoff between utilization and delays, the problem then becomes that of

choosing the optimal queueing scheme parameter t. This is a problem of maximizing the benefit B(t)

and can be solved in an optimization framework. In the Section 9.3 we will formalize the framework

described above.

As we already noted, although there exist a number of mathematical models [2, 5, 6, 19, 27] that

can give us some insight into the delay-utilization relationship, it appears extremely hard to evalu-

ate this relationship for general traffic environments. Moreover, even if one has reasonably accurate

theoretical predictions between delay and utilization for a given traffic mix, these predictions would

certainly be a function of traffic parameters such as the number of active flows, the number of active

TCP flows, the proportion of TCP traffic, per flow responsiveness, the distribution of round trip times,

the level of loss synchronization, the level of congestion on other links in the network, etc. From a

measurement point of view, estimation of these quantities is very demanding and requires significant

amount of computational and physical resources [31, 52, 51, 114].

(**) “It is highly nontrivial to predict or estimate in real-time, relation between

queueing delays and utilization, for congested high-speed Internet links.”

Having (**) as the starting point, we will try to maximize overall the benefit B(t) online rather

than estimating the delay-utilization relationship. Here we propose two practical queue management

schemes that have the same common goal: namely, maximizing the benefit B(t), by controlling the

parameter t online. In the first scheme, called Optimal Drop-Tail (ODT), t is the maximum available

buffer space in the FIFO Drop-Tail queue, while in the second scheme, called Optimal BLUE (OB),

the parameter t is the probability that an arriving packet is dropped.

The rest of the chapter is organized as follows. Existing models of the delay-utilization relationship

and AQM schemes are disscused in the Section 9.2. In Section 9.3 we define the optimization problem

to be addressed and provide a theoretical analysis of the possible approaches to solving it. The queue

management schemes Optimal Drop-Tail and Optimal BLUE are introduced in Sections 9.4 and 9.5

respectively. In Section 9.6 we provide detailed packet level ns2 simulations to show behavior of both

ODT and OB. Finally we summarize our findings and discuss open issues in Section 9.7.
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9.2 Previous work

Within this section we discuss existing models for the delay-utilization relationship as well as Active

Queue Management schemes that aim to reduce queueing delays.

Models. Over last few years, a number of models have been proposed to estimate the relationship

between queueing delays and utilization. Most of these consider the problem of sizing FIFO Drop-Tail

buffers for achieving a certain level of link utilization under the assumption of a single bottleneck link

servicing N long TCP transfers. In [2] the authors give a O( 1√
n
) bound (9.1). Another bound of this

type is given in [5]. It is showed there (under the assumption of N unsynchronised homogenous TCP

users with the same round trip time RTT ) that to achieve 100% of utilization one needs a buffer size

of :

BAAP =
(RTT × C)2

2N(4N − 1)2
≈ (RTT × C)2

32N3
. (9.2)

The bound (9.2) is derived from a fluid model which assumes full unsynchronization (ie. only

one source loses packets per congestion event). The authors [27] are even more optimistic and claim

that if TCP users have bounded the maximal congestion window maxcwnd−, then the needed queue

size for achieving high throughput is of form of O(log(maxcwnd−)). Such an approach assumes a low

maximum cwnd−, or equivalently a high loss rate, and does not allow high speed connections [37, 58].

Another important problem that could result from extra small buffers is the problem of extreme

unfairness between flows. To see this, consider a congested link, without per-flow management, with

a loss rate p and an average queueing delay d0. From the square root formula [87], the sending rate

(in packets per second) of flow with base RTT given by RTTb is equal to

r = θ
1√

p(RTTb + d0)
. (9.3)

Bearing in mind that a typical range of base RTT’s spans from a few microseconds to several

seconds, and assuming that d0 is in the range of few microseconds (as suggested in all-optical framework

in [119, 27]) then this would imply unfairness between competing connections in the range 1 : 105. In

such situations, long-RTT connections would suffer heavily, and will not have any benefit in reducing

queueing delays. Allowing a few milliseconds of queueing delays would decrease unfairness level to

range 1 : 100, which is several order of magnitude more acceptable.

A very different approach has been presented in [19]. Namely, they suggest that an important

performance metric in dimensioning router buffers is loss rate. By exploiting the window based nature

of the TCP congestion control algorithm, they provide bound for buffer sizes that ensure loss rates

lower than certain, prescribed, value.

As we already have noted, the insight obtained by theoretical analysis of the proposed models is

highly valuable for understanding the problem of interest, but there is a significant gap between them

and their application in real Internet links.
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AQMs. Active queue management generally stands for a mechanism that has, as its ultimate

objective, of keeping utilization as high as possible without incurring “large queueing delays”. In TCP

environments, the main cause of low utilization is synchronization. By breaking synchronization and

responding early (but not “too early”), AQM schemes like RED, BLUE, PI and AVQ, aims to achieve

high throughput together with low delays. However, no existing AQM takes in account the interaction

between queueing delays and utilization. Low queueing delays and high utilization are mainly an ad

hoc consequence of early response, rather than a formal performance goal.

9.3 Optimization framework

Lets go back to the example from the introduction illustrated in Table 9.1. For simplicity, assume for

the moment that the parameter t is the available buffer space on the congested FIFO Drop-Tail queue;

for buffer size equal to t1 the average queue delay is 100ms and the utilization is 100%, for buffer

size equal to t2 the average queue delay is 20ms and the utilization is 98%, and so on. Which choice

of t is optimal (among 4 possible in this example), depends on the “importance” of low queueing

delays. To formalize this, one can identify the “importance” by the relative price between utilization

and queueing delays. Let P : [0,∞) 7→ [0,∞) be a function that specifies relative price between

utilization and delays. In other words, a queueing delay of d seconds has same price as utilization of

P (d). Formally, a price function is any function that satisfies the following definition.

Definition 9.1 The function P : [0,∞) 7→ [0,∞) is a price function if it is twice differentiable, in-

creasing and convex. In other words if:

(a) ∀d ∈ [0,∞) ∃P ′′(d)

(b) ∀d ∈ [0,∞) P ′(d) ≥ 0

(c) ∀d ∈ [0,∞) P ′′(d) ≥ 0

The following simple technical lemma will be useful in later discussion.

Lemma 9.1 Let E ⊂ R be a segment (E = [a1, a2] for some real a1 and a2). If f : E 7→ [0,∞) is

a twice differentiable, convex function and P an arbitrary price function, then P ◦ f : E → [0,∞) is

convex as well.

Proof. The proof is straightforward. It is enough to prove that (P (f(t))′′ ≥ 0 for all t ∈ E.

(P (f(t))′′ = (P ′(f(t)) · f ′(t))′ =

P ′′(f(t)) · (f ′(t)))2 + P ′(f(t)) · f ′′(t) ≥ 0.

¤
Having defined a price function, the overall benefit, in the case given by the parameter t, can be

written in the form:
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B(t) = u(t)− P (aQd(t)). (9.4)

Comment 9.1 Notion similar to the benefit B(t) is introduced in [5] for t representing the available

buffer size.

The definition of benefit allows us to define a notion of optimal choice, as the value of t that

maximizes the benefit. Formally:

Definition 9.2 For a given price function P and set T of possible choices of t, an optimal Delay-

Utilization(D-U) choice is any t0 such that

B(t0) = max{B(t) | t ∈ T }, (9.5)

if the maximum on the right hand side exist.

Comment 9.2 In the rest of the chapter we will consider exclusively the following two cases: (1) the

set T is finite; then the maximum in (9.5) clearly exists; (2) the set T is closed and bounded in metric

space2 R, and B : T 7→ R is continuous function - in this case the maximum in (9.5) exists as well.

In the example given in Table 9.1, if we completely ignore the importance of low queueing delays,

by setting P (d) ≡ 0 for all d, then the optimal D-U choice is given by t1, as this maximizes the benefit

B(t) = u(t) − P (aQd(t)) = u(t) on the set T = {t1, t2, t3, t4}. For the price function P (d) = 5 · d,

the optimal D-U choice is t2, and for the price function P (d) = 100 · d, the optimal D-U choice is t4.

Linear price functions P (d) = γ ·d, are a simple way of specifying the relative price of queueing delays

in sense that a% of utilization is equivalent with a·0.01
γ sec = 10·a

γ msec of queueing delays. Thus, a

high γ gives high importance of low queueing delays, while a low γ gives priority to high utilization.

Throughout this chapter we assume:

Assumption 9.1 Under static traffic conditions the overall benefit given by (9.4) is a concave func-

tion of t.

In the previous discussion, we have referred to t as a parameter which defines a queueing scheme.

In later sections we will be concerned with the following two cases:

Case A. tS defines the available buffer space, and packets are queued in Drop-Tail queue of size tS .

Case B. tp defines the drop probability, and each packet is dropped on arrival with probability

tp.

2With euclidian distance.
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Figure 9.1: tS : Drop - Tail queue size vs. u(tS) (top) and aQd(tS) (bottom).

In the next two sections we present two queue management algorithms: Optimal Drop-Tail (ODT)

and Optimal BLUE (OB). Both of these have a common performance goal: to maximize the overall

benefit given by (9.4). ODT achieves this goal by adaptation of the available buffer space, while OB

tunes the drop probability tp in order to maximize B(tp).

Comment 9.3 Other approaches might be possible as well. For example, in the framework of Virtual

Queue (VQ) schemes [41], t can be seen as virtual queue capacity. Following our optimization method-

ology, one can design an virtual queue management algorithm by adapting the virtual queue capacity

subject to the performance goal that maximize the benefit B(t) rather than keeping the utilization at

certain level γ as it has been done in the Kunniyur and Srikant’s AVQ [70] algorithm.

In the rest of this section we discuss the validity of the Assumption 9.1, the existance/uniqueness

of optimal D-U choice and possible strategies for online solving optimization problem (9.5).

Assumption 9.1 is very hard to formally check. In a theoretical framework, this would require ac-

curate models of various traffic mixes, and as we already noted, modelling such complex environments

is highly nontrivial. Some results related to the convex relationship between utilization and buffer

size in non-elastic traffic environments are developed in [67, 68]. However, our empirical observations

suggest that for the traffic mix that is consisted from the static number of TCP and UDP flows,

Assumption 9.1 holds in both Case A and Case B. To illustrate this we run two sets of packet level

ns2 simulations, and evaluate the utilization and the average queueing delay.

Simulation A. In the first set of simulations, we consider a FIFO Drop-Tail queue with a service

rate of 10MBps and size of tS packets. This queue is shared by 50 TCP connections with round trip

times uniformly distributed in range [20, 220]ms and with packet size of 1000 bytes. We varied tS

from 1 to 300 packets, and plotted u(tS) and aQd(tS) in Figure 9.1. The convexity of aQd(tS), by

Lemma 9.1, implies the convexity of P (aQd(tS)), and this together with concavity of u(tS) implies

concavity of the benefit B(tS), for arbitrary price function P .
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Figure 9.2: tp : Drop probability vs. u(tp) (top) and aQd(tp) (bottom).

Simulation B. In the second set of simulations, we consider a queue with service rate of 10MBps,

of size of 10000 packets (so that no packet is dropped because of overflow), such that every packet is

dropped with probability tp on the arrival to the queue. This queue is shared by the same set of 50

TCP connections as in first simulation. We varied tp in the range [10−3, 10−2], and plotted u(tp) and

aQd(tp) in Figure 9.2. As in the previous case, convexity of aQd(tp), together with concavity of u(tp)

implies concavity of the benefit B(tp), for arbitrary price function P .

Convex optimization has been widely employed in the networking community. For example, opti-

mization methods are essential in the analysis and design of distributed congestion control algorithms

[102, 57]. In our case, we need efficient algorithms for solving (9.5). A standard control strategy for

solving (9.5) is given by

ṫ = g(t) ·B′(t), g(t) ≥ ε > 0, (9.6)

or its discrete version:

t(k + 1) = t(k)
(

1 + g(k)
B(t(k))−B(t(k − 1))

t(k)− t(k − 1)

)
, g(k) ≥ ε > 0, (9.7)

The problem with employing one of these strategies in the present case is twofold. First, as we

do not have explicit relationship between t and B(t), we can not instantly compute the derivative

B′(t). Second, the signal to noise3 ratio in measuring of both queueing delays and utilization can be

very large especially in the neighborhood of the solution of (9.5). This would potentially imply low

confidence in the estimation of B′(t) in the neighborhood of the solution of (9.5). One approach to

this problem is the use of larger sampling times and low pass filter for smoothing out the results. To

illustrate the level of noise one can expect in queue measurements we ran the following ns2 simulation.
3By definition B(t) is function of average utilization u(t) and average queueing delay aQd(t). Instantaneous utilization

(queueing delay) can be seen as random variable that is sum of u(t) (aQd(t)) and appropriate zero mean random variable,

that we refer to as noise.
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Figure 9.3: d∆(k) (top), and d∆(k) (bottom); ∆ = 2sec, qw = 0.2.
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Figure 9.4: d∆(k) (top), and d∆(k) (bottom); ∆ = 5sec, qw = 0.2.

Simulation C. We consider the same setup of 50 TCP flows competing over a link with service rate

of 10MBps, as in Simulation B. We drop each packet on arrival with constant probability tp = 0.005.

The quantities of interest are the following: d∆(k) is the average queueing delay in the k-th sampling

period [(k − 1)∆, k∆], and the weighted average d∆(k), with weighting factor qw, given by:

d∆(k) = (1− qw) · d∆(k − 1) + qw · d∆(k).

Figures 9.3 and 9.4, depict measured values of d∆(k) (left top) and d∆(k) (left bottom) from the

simulation, for ∆ = 2sec and ∆ = 5sec. The right hand side plots show the histograms of quantities

depicted on left plots.

We observed a similar level of noise in measurements of link utilization. We also ran the same

simulation over Drop-Tail instead of constant drop rate queues, and the level of noise in queueing delay

and utilization measurements are approximately of the same order of magnitude as in Simulation C.

In the next two sections we will present two novel queue management algorithms for which the

performance goal is given by maximization of the benefit defined by (9.4). The first one, Optimal

Drop-Tail(ODT), achieves this goal, by adaptation of tS - the available Drop-Tail queue space, while

the second one, Optimal BLUE(OB), adapts tp - the per packet drop probability. Both ODT and OB
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use a form of MIMD4 algorithm, where at the end of each sampling period control variable t (that is

tS or tp) is updated by the rule:

t(k + 1) = t(k) ·m(k). (9.8)

where m(k) is either α or 1/α, for some α greater 1, and m(k) determines direction in which t should

go. Algorithms of this type cannot settle to constant value, but rather continuously search for the

point on the grid Tα = {t(0) · αn, n ∈ Z}, that maximizes B(t), t ∈ Tα. However, choosing α to be

close to 1, the point on the grid Tα that maximizes B(t) will be close to the global optimal value.

9.4 Optimal Drop-Tail

Drop-Tail queueing is the scheme that is employed by the majority of the current Internet routers.

Drop-Tail queues have a single parameter S that determines the available size5 of the queue, and is

usually manually configured by a network operator. The following simple observation is the basis for

the spectrum of algorithms presented here. That, by controlling the value tS - available queue size6,

the objective of achieving certain performance goals, given in terms of utilization and queueing delays,

can be met.

By controlling tS, one can control both utilization and queueing delays.

For example, if the performance goal is given by keeping the average utilization at a certain level

λ, one can design a strategy for achieving that goal by controlling tS . Similarly, if the performance

objective is keeping the average queueing delay (at the times of congestion) at a prescribed level d0,

another control strategy can be designed for solving that problem. At this point we should note that

by controlling tS one can control not only utilization and queueing delays, but also other (important)

performance metrics such as jitter and loss rate. Embedding them into an optimization framework

could be done in straightforward manner.

Following the delay-utilization optimization framework developed in the previous section, the

performance goal of interest will be the maximization of the benefit B(tS). We proceed by presenting

an ODT algorithm, a strategy with that performance goal.

The ODT algorithm controls the variable tS that represent available queue size. In other words,

on every packet arrival, a packet is dropped, if by its enqueuing to the existing queue, the queue

length would be greater than tS , otherwise the packet is enqueued. The value tS is updated once per

sample time period (∆) in the following manner:

4Multiplicative Increase Multiplicative Decrease.
5Size can be configured in either bytes or packets.
6We write tS instead S to distinguish cases between variable queue size (for which we use tS) and constant queue

size (for which we use S).
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tS(k + 1) = tS(k) ·m(k), (9.9)

where m(k) is defined by:

m(k) = α, if
B̂(l(k))− B̂(l(k − 1))

tS(k)− tS(k − 1)
≥ 0,

m(k) =
1
α

, if
B̂(l(k))− B̂(l(k − 1))

tS(k)− tS(k − 1)
< 0.

Here, α > 1 is a constant parameter, close to 1. The choice of α determines the responsiveness of

the algorithm. Since tS is either multiplied with α or divided by α, in each step k, tS(k) = tS(0) ·αl(k),

for some integer l(k). By B̂(l(k)) we denote the estimated value of B(x) at the point x = tS(k) =

tS(0) · αl(k). Algorithms of this type can be seen as a version of (9.7) that do not allow arbitrarily

small steps. Strategies of the form of (9.7) are inappropriate in our problem for the following two

reasons. First, any algorithm of type (9.7) that allows very small changes in the parameter tS would

suffer from a high noise to signal ratio around global maximum of B(tS), and would require long time

for accurate estimation of B in the neighborhood of the global maximum. Second, it has been proved

in [90], using information-theoretical techniques, that any algorithm for finding an optimum using

noisy observations of a benefit function has slow expected convergence. Namely, O(ε−4) queries have

to be made before one can ensure ε-accuracy in the estimation of the optimum x∗. Under dynamic,

Internet-like traffic conditions, frequent (small) changes of the traffic patterns might not allow such

algorithms to converge, and can potentially cause undesirable large oscillations.

Algorithms of the form of (9.9) that do not converge to the certain value, but rather continuously

search for the optimal value have been extensively used in the networking literature. Examples of such

algorithms are AIMD7 cwnd− control in TCP [49], AIAD algorithm for controlling the drop probability

in BLUE [36] as well as MIMD algorithm for the adaptation of RED parameters in Self-Configuring

RED [35].

Now we proceed by describing the technique for estimation of B̂(l(k)).

In every sampling interval, we have that tS(k) = t(0)αl(k) for some integer l(k), and this integer

is uniquely determined. In other words the mapping between the set of all possible values of tS , Tα,

and set of integers given by t(0)αm 7→ m is bijective. This allows us to use the history at each possible

value of tS(k) independently for computing the estimate B̂(l(k)). For each possible integer m we will

keep the value: n−(m) which is the number of sample intervals within previous W0 sampling intervals

for which l(k) was equal to m. Thus at sampling interval k we have:

n−(m) = #{k1 : k1 ∈ (k −W0, k], l(k1) = m}.

Denote by ˜B(k) the instantaneous benefit in the k-th sampling interval : [(k − 1)∆, k∆], i.e.:

7Additive Increase Multiplicative Decrease.
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˜B(k) = ũ(k)− P (d̃(k)),

where ũ(k) and d̃(k) are the instantaneous utilization and queueing delay in the k-th sampling interval

respectively, we will estimate B̂(l(k)) using the following weighted average:

B̂(l(k)) = û(k)− P (d̂(k)), (9.10)

where:

û(l(k)) =
1

n−(l(k))
û(l(k)) + (1− 1

n−(l(k))
)ũ(k),

and

d̂(l(k)) =
1

n−(l(k))
d̂(l(k)) + (1− 1

n−(l(k))
)d̃(k).

The rationale for the estimation technique given by (9.10) is the following. If some m has a

large number of occupancies in the recent history of l(k) then this indicates that the corresponding

tS = tS(0)αm is close to the optimal value and a finer estimation of the benefit is required. If m has a

small number of appearances in the previous W0 sampling periods we need less accuracy, but a faster

response to changes in the traffic conditions. If m had no appearances in the previous W0 sampling

periods, all history will be forgotten in the future estimation of B̂(tS(0)αm).

We use one additional correction step, that is rarely needed under static conditions but is im-

portant for improving accuracy for new values tS that have had very few visits in the recent history.

Namely, we do not allow non-monotonicity in the estimation of û and d̂. Set i = l(k). Then:

if û(i) > û(i + 1) or û(i) < û(i− 1) then

û(i) =
n−(i− 1)û(i− 1) + n−(i)û(i) + n−(i + 1)û(i + 1)

n−(i− 1) + n−(i) + n−(i + 1)
, (9.11)

if d̂(i) > d̂(i + 1) or d̂(i) < d̂(i− 1) then

d̂(i) =
n−(i− 1)d̂(i− 1) + n−(i)d̂(i) + n−(i + 1)d̂(i + 1)

n−(i− 1) + n−(i) + n−(i + 1)
. (9.12)

Recall that n−(m) represents the number of sampling periods k, in the recent history (driven by

sliding window of size W0), in which l(k) was equal to m. We have a confidence in the estimate of û

and d̂ that is roughly proportional to n−. This is exploited in (9.11) and (9.12).

Note that we need to store four sequences, aug (augmenting sequence of length W0 for computing

n−), n−, û and d̂, for implementing this estimator. The size of the sequence aug is W0, while the size

of sequences n−, d̂ and û depend on the choice of α in a logarithmic fashion: if the physical buffer

space is S0 bytes, then the size of sequences d̂, û and n− should be logα S0 to cover the range from

1 to S0 bytes. For example, with α = 1.01, a sequence of size 2000 will cover the range from 1 to

S0 = 1.012000 ≈ 439286205 bytes with a granularity of 1%.

From the computational point of view, ODT is a very light scheme. Namely, for the computation

of the instantaneous utilization ũ(k), and the instantaneous queueing delay d̃(k), we use three counters:
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P (d) price function

∆ length of sampling period

α MIMD parameter

W0 history window

Table 9.2: Parameters of ODT, OB.

NmbBytes (number of processed bytes since last update), NmbArrivals (number of packet arrivals

since last update) and TotQDelay (sum of potential queueing delays for all NmbArrivals packets

since last update)8. All of these three counters are updated once per packet and these updates are

the only per packet operations required.

The input parameters for ODT are given in the Table 2. While in general P (d) can be an arbitrary

function that satisfies Definition 9.1, throughout this chapter we will mainly use functions that are

linear in d:

Pγ(d) = γd, γ > 0. (9.13)

If we restrict ourselves to price functions of this form then the parameter Pγ(d) can be specified

by a single scalar γ. A higher value of γ assigns more importance to low delays and vise versa. The

sampling period time ∆ should be chosen to cover several “typical” round trip times, in order to allow

traffic to respond to change of tS . Choosing ∆ in range [1sec, 5sec] usually satisfies this condition.

The parameter α determines the responsiveness of ODT, and should be selected such that it allows

doubling/halving of tS within several seconds (up to one minute). The parameter W0, is the one that

determines importance of old measurements in the current estimation, a large W0 is appropriate for

static or very slowly varying environments, while a small W0 is necessary for more dynamic conditions.

In our experiments we use W0 such that ∆W0 is within an order of magnitude of one minute.

At this point we discuss the notion of variability in the traffic conditions. Measurements from [83]

show that on typical 150Mbps+ links, basic IP parameters such as the number of active connections,

the proportion of TCP traffic, the aggregate IP traffic, etc., do not change dramatically. Although

we do not exclude the possibility that there can be drastic changes in the traffic mixes, our basic

presumption in the design of ODT is that such events are rare enough to be considered as exception

rather than rule. Thus, ODT is designed to search for an optimal solution in the “regular” intervals,

during which traffic conditions vary slowly. In the cases of dynamic traffic conditions, one can perform

self tuning of the parameters W0 and ∆ depending on the level of changes in the traffic conditions.

However, for the reasons discussed above, present ODT algorithm does not incorporate this adaptation

of the parameters.

The following theorem shows that, assuming that estimators B̂ preserves order of B on the grid

Tα = {t(0) · αn, n ∈ Z} the controller (9.9) runs system to the state that is close to global optima.

8Having this information ũ(k) is computed as ratio NmbBytes/∆, while d̃(k) = TotQDelay/NmbArrivals, at the

end of the k-th sampling period.
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Theorem 9.1 Let t∗ be the point where global maximum of B is attained. Suppose that estimator B̂

preserves the order on the grid Tα, ie. for all m1,m2 ∈ Z:

B̂(m1) ≥ B̂(m2) ⇔ B(t(0)αm1) ≥ B(t(0)αm2). (9.14)

Then there exist m0 such that for all positive integers r:

t(m0 + 2r) = t(m0 + 2r + 2) = t̄

t(m0 + 4r + 1) = t̄α, and t(m0 + 4r − 1) =
t̄

α
,

and the relative error between t̄ and t∗ satisfies:

t̄− t∗

t∗
≤ α− 1. (9.15)

Proof. Suppose without loss of generality that t(0) < t∗. Then by Assumption 9.1 and (9.14) there

exist positive integer k0 such that for all k < k0:

t(k + 1) = αt(k) > t(k)

and

t(k0) > t∗.

Now, we can distinguish two cases:

1st Case: B(t(k0)) ≥ B(t(k0−1)). Then t(k0+1) = αt(k0). By concavity B(t(k0+1)) < B(t(k0))

and therefore t(k0 + 2) = t(k0+1)
α = t(k0), and t(k0 + 3) = t(k0+1)

α .

2nd Case: B(t(k0)) < B(t(k0 − 1)). Then t(k0 + 1) = t(k0)
α = t(k0 − 1) and t(k0 + 2) = t(k0−1)

α .

From concavity of B we get t(k0 + 3) = t(k0 − 1) and t(k0 + 4) = αt(k0 − 1).

By taking t̄ = t(k0) and m0 = k0 in the first case, or t̄ = t(k0 − 1) and m0 = k0 − 1 in the

second case, we conclude the first part of the Theorem. To obtain the inequality (9.15), note that

t̄ ∈ ( t∗
α , t∗α) which is equivalent to

t̄− t∗

t∗
∈ (

1− α

α
, α− 1) ⊂ (−(α− 1), α− 1).

¤

9.5 Optimal BLUE

BLUE is an active queue management algorithm that maintains a single internal variable pm which is

used for calculating the drop probability of arriving packets: each packet is dropped with probability

pm on arrival. Roughly speaking, the performance goal of BLUE is to keep the loss probability as
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low as possible such that no buffer overflow occurs. The variable pm is updated once per interval of

length freeze−time, in an Additive Increase - Additive Decrease (AIAD) fashion with parameters δ1

and δ2: if during the previous freeze−time interval no buffer-overflow losses has occurred then pm

is reduced by δ2, otherwise pm is increased by δ1. By using a strategy of this type, BLUE searches

for the “correct” rate at which it should drop packets. As we can see, there is no formal objective in

terms of utilization or delays. However, we use the idea of controlling the drop probability tp (that is

same as pm in the original BLUE) in order to maximize overall benefit B(tp). The first step in the

design of such scheme is the following observation.

By controlling drop probability, one can control both utilization and queueing delays.

Low drop probabilities keep both queueing delays and utilization large, and high drop probabilities

keep both queueing delays and utilization low; see Simulation B in the Section 9.3. By specifying a

price function P (d) that defines a relative price between delays and utilization, our performance goal

in the design of Optimal BLUE is maximization of the benefit:

B(tp) = u(tp)− P (aQd(tp)).

The quantities of interest for the calculation of the benefit are the average values of utilization and

the queueing delays, and can be seen as the expected values of appropriate random variables. Because

of large noise in the estimation of these quantities, it is helpful to use filtering in conjunction with an

algorithm that continuously searches for the optimum. OB will use same strategy for controlling of

tp as ODT uses for controlling the available queue size tS . We update tp once per sample period of

length ∆ in an MIMD fashion:

tp(k + 1) = tp(k) ·m(k), (9.16)

where m(k) is defined by:

m(k) = α, if
B̂(l(k))− B̂(l(k − 1))

tp(k)− tp(k − 1)
≥ 0

m(k) =
1
α

, if
B̂(l(k))− B̂(l(k − 1))

tp(k)− tp(k − 1)
< 0.

Here l(k) denotes an integer such that tp(k) = tp(0) · αl(k), and B̂(l(k)) is the estimated value of

the benefit B(x) at the point x = tp(k) = tp(0) · αl(k). The method for estimating B̂(l(k)) is same as

in ODT and is given by (9.10). We also exclude non-monotonic estimation of û and d̂. Recall that

u(tS) and aQd(tS) are increasing functions of the available queue size tS , while u(tp) and aQd(tp) are

decreasing functions of tp(see Figures 9.1 and 9.2). Because of this (9.11) is executed if û(i) < û(i+1)

or û(i) > û(i− 1), and (9.12) is executed if d̂(i) < d̂(i + 1) or d̂(i) > d̂(i− 1); i = l(k).
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We use an MIMD strategy for the control of the drop probability tp rather than the original

BLUE-like AIAD, because of scalability reasons. Namely, with an MIMD strategy, if algorithm runs

in a low drop probability regime, absolute changes in tp per step are smaller than absolute changes

in tp per step in higher drop probability regimes. On the other hand, in AIAD schemes, absolute

changes per step are constant and are given by AI and AD parameters.

The memory requirements of OB are same as ODT. Storing four sequences, aug, n−, û and d̂,

requires just several kilobytes. Since all these quantities are used just once per ∆, then they can be

stored off-chip and their size is not important. From the computational point, OB requires one more

operation per packet: random drop. This, makes OB roughly equivalent to RED from the level of the

computational resources they require. The parameters of OB are the same as in ODT and are given

in the Table 2. Comments related to the selection of the parameters of ODT applies to the OB as

well.

9.6 Simulations

Simulation D. Our first set of simulations illustrate the dynamics of tS and tp under static conditions

of 50 TCP flows with RTT’s uniformly distributed in range [20, 220]msec and with packet sizes of

1000 bytes. We run ODT and OB with parameters ∆ = 2sec, α = 1.05, W0 = 30. The price function

used in both cases is P10(d) = 10 · d. Initially: tS(0) = 100Kbytes, tp = 0.002. The off-line (see

Simulation E) optimal values are approximately t∗S ≈ 130Kbytes and t∗p ≈ 0.0048.

Simulation E. The second set of simulations shows how close the average queueing delays and

average utilization are to the optimal values, in static conditions with a constant number TCP flows,

for both ODT and OB. We ran the same set of 50 TCP flows, with RTT’s uniformly distributed

in range [20, 220]ms and packet sizes of 1000 bytes, as in Simulations A and B (Section 9.3). By

running a sequence of long simulations in Section 9.3 we obtained plots given in Figures 9.1 and 9.2,

that represent the dependance between tS , (tp respectively), the average utilization, and the queueing

delays. Having these graphs, we can, in an off-line manner, find the value of tS (tp) that maximizes

benefit B(tS) (resp B(tp)). The red stars on Figures 9.7 (ODT) and 9.8 (OB) show these off-line

optimal values for this optimization problem (9.5) (defined by price functions Pγ(d) = γ · d) for

γ = 2, 10, 20. Having Pγ(d) as a parameter of the scheme, we ran ODT and OB. The other simulation

parameters were: ∆ = 2sec, α = 1.05, W0 = 30. The blue crosses on Figures 9.7 and 9.8 represent

the long-run (5 minutes) averages of queueing delays and utilization for γ = 2, 10, 20. The numerical

results for this simulation are shown in the Table 3.

It is important to notice here that in TCP environments, OB outperforms ODT in terms of

maximization the benefit B. This is because a Drop-Tail queue that achieves average queueing delay

d0 achieves less throughput than a queue with on-arrival random dropping, with the same average

queueing delay d0. The reason for this lies in the phenomenon of (partial) synchronization of losses

that is a feature of Drop-Tail queues. Figure 9.9 illustrates this difference for queues servicing 50 TCP
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Figure 9.5: Simulation D. Queue occupancy, available buffer space(tS), and utilization for ODT

servicing 50 TCP flows.
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Figure 9.6: Simulation D. Queue occupancy, drop probability(tp), and utilization for OB servicing 50

TCP flows.
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Figure 9.7: ODT: Off-line vs. online average queueing delays and utilization. Price functions Pγ(d),

for γ = 2, 10, 20.
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Figure 9.8: OB: Off-line vs. online average queueing delays and utilization. Price functions Pγ(d), for

γ = 2, 10, 20.

flows, and is based on data from the simulations A and B.

Scheme, γ aQd(sec) u Bγ

ODT, γ = 2, online 0.01075 0.9890 0.9675

DT, γ = 2, off-line 0.01058 0.9876 0.9664

ODT, γ = 10, online 0.00471 0.9544 0.9074

DT, γ = 10, off-line 0.00521 0.9589 0.9067

ODT, γ = 20, online 0.00283 0.9222 0.8655

DT, γ = 20, off-line 0.00293 0.9269 0.8683

OB, γ = 2, online 0.00975 0.9941 0.9730

CDP, γ = 2, off-line 0.00973 0.9945 0.9749

OB, γ = 10, online 0.00591 0.9745 0.9153

CDP, γ = 10, off-line 0.00531 0.9725 0.9193

OB, γ = 20, online 0.00385 0.9493 0.8723

CDP, γ = 20, off-line 0.00394 0.9562 0.8774

Table 9.3: Numerical results: off-line optima and online ODT and OB averages. The last column

represents Bγ(t) = u(t)− γ · aQd(t). (CDP - stands for Constant Drop Probability queuing)

Remark. At this point we note an important practical issue related to applicability of our

algorithms in the existing Internet routers. The only two pieces of information they require are the

”achieved utilization” and the ”average queueing delay” experienced during one sampling period. At

the end of each sampling period we set new values of the available buffer space (tS in ODT) or drop

probability (tp in OB). While most routers allow configuration of the available buffer space, we are

not aware of option for configurability of the drop probability.

Simulation F. In this simulation we present the behavior of ODT and OB in the case of mixtures

of TCP and UDP traffic. In this simulation, the same set of 50 TCP flows that were defined previously

compete for a bandwidth on 10Mbyte/sec link, with 50 UDP flows that have exponentially distributed

on and off periods. The on-periods have a mean of 1000ms, and the off-periods have mean of 3000ms.
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Figure 9.9: Average queueing delays vs. average utilization for drop tail and constant loss rate queues.
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Figure 9.10: Simulation F. Histogram of aggregate UDP sending rate; sampling intervals 100ms.

The sending rate for the on-periods is 1000Kbit/sec. The aggregate UDP arrival rate has a mean

of 1.4867Mbyte/sec which is approximately 14.9% of the link’s service rate. A histogram, given in

Figure 9.10, shows the distribution of the aggregate UDP sending rate sampled on 100ms intervals.

The ODT and OB parameters are the same as in previous simulations: ∆ = 2sec, α = 1.05,

W0 = 30. The price function used in both cases is P10(d) = 10 · d. Initially: tS(0) = 100Kbytes and

tp(0) = 0.002.

Figures 9.11 and 9.12 depict plots of utilization, queue occupancy and tS(tp resp.). We observed a

slightly larger fluctuation in tS and tp compared to Simulation D. This is consequence of the stochastic

nature of the non-responsive traffic.

Simulation G. In the following simulation we show the behavior of ODT and OB in the case

of sudden changes in the traffic conditions. Two sets of 50 TCP flows in this simulation compete

for bandwidth on a 10Mbyte/sec link. The first set is active during whole simulation in the interval

[0, 900] seconds; connections from the second set are active only in the interval from [300, 600] seconds.

Thus, at time t1 = 300sec, the number of TCP connections is doubled while at time t2 = 600sec, the

number of connections is halved, as is depicted in the Figure 9.13. The ODT and OB parameters are

the same as in previous simulations: ∆ = 2sec, α = 1.05, W0 = 30. The price function used in both

cases is P10(d) = 10 · d. Initially: tS(0) = 50Kbytes and tp(0) = 0.002.

Figures 9.14 and 9.15 illustrate the behavior of ODT and OB in this case. Although ODT and

OB are not designed for environments with sudden changes we see that they adjust their parameters

143



0 50 100 150 200 250 300 350 400
0

100

200

300

400

Q
 o

cc
up

an
cy

(K
by

te
s)

0 50 100 150 200 250 300 350 400
0

100

200

300

t S
(K

by
te

s)

0 50 100 150 200 250 300 350 400
0.8

0.9

1

time(sec)

U
til

iz
at

io
n

Figure 9.11: Simulation F. Queue occupancy, available buffer space(tS), and utilization for ODT

servicing 50 TCP flows and 50 on-off UDP flows.
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Figure 9.12: Simulation F. Queue occupancy, drop probability(tp), and utilization for OB servicing

50 TCP flows and 50 on-off UDP flows.
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Figure 9.13: Simulation G. Number of active TCP flows in time.

144



0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

Q
 o

cc
up

an
cy

(K
by

te
s)

0 100 200 300 400 500 600 700 800 900
0

50

100

150

200

t S(K
by

te
s)

0 100 200 300 400 500 600 700 800 900
0.8

0.9

1

time(sec)
U

til
iz

at
io

n

Figure 9.14: Simulation G. Queue occupancy, available buffer space(tS), and utilization for ODT

servicing a varying number of TCP flows.
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Figure 9.15: Simulation G. Queue occupancy, drop probability(tp), and utilization for OB servicing a

varying number of TCP flows.

to the sudden traffic changes. However, “convergence” to the optimal region takes 1-2 minutes in the

present simulation.

Simulation H. Here we demonstrate how other performance metrics are impacted by changes in

queueing delay. We concentrate on fairness and loss rate. We use Jain’s Fairness Index (JFI) [50] as

a fairness indicator and is defined as follows. For set of users u1, . . . , uk let r = (r1, . . . , rk) be vector

of their achieved average rates during the measurement interval. Then

JFI(r) =

(∑N
i=1 ri

)2

N
∑N

i=1 r2
i

. (9.17)

The simulation setup is same as in Simulations A and B and consists of 50 TCP flows serviced

by 10MBps link with RTT’s uniformly distributed in [20, 200]ms. A basic observation is that the

performance of TCP-like congestion control algorithms, whose dynamics depend on round-trip time,

is significantly affected by queueing delays. By increasing the queueing delay, the aggressiveness of
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Figure 9.16: Simulation H. Loss rates (top) and JFI (bottom) for 50 TCP flows serviced by Drop-Tail

queues of different sizes.

TCP senders is increased, implying lower loss rates. From a fairness perspective, larger queueing

delays decrease bias against long-RTT connections. Indeed, for two TCP connections, with round trip

times RTT1, RTT2, RTT1 < RTT2, bottlenecked at a single link with queueing delay d0, the ratio of

their expected rates9 is RTT1+d0
RTT2+d0

. Increasing, d0 leads this ratio to a value closer to one. Figure 9.16

presents the dependance between available space in FIFO Drop-Tail queue and loss rate and JFI. Each

’+’ corresponds to a 5 minute average. We note that for very small queue sizes (< 50 packets), loss

rates are large and TCP dynamics is dominated by timeouts. In this regime the square root formula

is not valid and fairness is impacted mainly by timeout mechanism. Corresponding average queueing

delays and utilization are depicted in Figure 9.1.

Figure 9.17 depicts the JFI for the same set of 50 flows, on link where each packet is dropped

on arrival with constant probability tp. The corresponding average queueing delays and utilization

are depicted in Figure 9.2. Note that for tp in range [0.005, 0.01], queueing delays are small (< 5ms)

compared to the RTT’s and that the loss rate is small enough implying good accuracy of the square

root formula. As result of this, the JFI is roughly constant in this range.

9.7 Summary

In this chapter we have addressed the problem of utilizing the tradeoff between queueing delays and

link utilization. By specifying the relative importance of queueing delays and utilization, an optimal

choice of a queue management parameter is the one that maximizes the overall benefit defined by (9.4).

Another view on the same problem could be minimization of the total cost where the total cost is

defined by the sum of the proportion of idle time, 1−u, and price of the queueing delays. There could
9This follows from the square root formula (9.3).
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Figure 9.17: Simulation H. JFI for 50 TCP flows serviced by queue with constant drop probability.

be two possible approaches for solving this problem. First, suppose that one can, by accurate modelling

and effective estimation, predict the delay/utilization dependance from the control parameter. Then,

by an off-line solving of the underlying optimization problem we can set the parameter that controls

queue scheme to the optimal value; see [5] for one strategy of this type. And second, where one can

adapt the control parameter such that on average the overall benefit is maximized. We argue, that the

first approach is not feasible because of both nonexistence of accurate and tractable enough models

for the delay/utilization dependance, and the highly nontrivial estimation techniques that such an

approach would require. We thus follow the second approach and design two schemes Optimal Drop-

Tail and Optimal BLUE which aim to solve the underlying optimization problem by online adaptation

of available buffer space (ODT) or drop probability (OB).

The optimization problem (9.5) assumes a linear dependance between utilization and benefit, and

completely neglected other important performance metrics such as jitter, loss probability, and fairness.

In fact, one can define the general overall benefit of the queueing scheme controlled by parameter t

as:

BG(t) = V (u(t))− P1(aQd(t))− P2(j(t))− P3(L(t))− P4(f(t)), (9.18)

where j(t) is jitter, L(t) is the loss rate, f(t) is a fairness indicator, V (u(t)) is the value of the utilization

u(t), and Pi, i = 1, 2, 3, 4 are appropriate price functions. We again emphasize the importance of

fairness in TCP environments where long-RTT connections could heavily suffer from low queueing

delays at the congested links. The embedding of jitter and loss rate into current framework can be

done in straightforward manner. However, including fairness into the optimization framework, would

be much more challenging as we are not aware of any, computationally light, estimation technique

that would faithfully indicate level of fairness. One possible approach to estimate level of the fairness

could be by counting runs10 as suggested in [61]. However, a runs counter would give estimate of

Jain’s fairness index [50] only for flows that have experienced runs and Jain’s fairness index is just

one possible fairness indicator.

In this chapter we implemented two strategies for settling the underlying optimization problem:
10Run is event where arriving packet belongs to the same flow as some, previously arrived packet.
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in one, the control variable is the available queue space, while another controls the drop probability.

Queueing schemes that use different control parameters are possible as well. For example, virtual

queue capacity could be powerful in the control of delay/utilization, and therefore could be basis for

ODT/OB-like scheme.

From the theoretical point of view, an important open issue is convexity (concavity) of the average

utilization/Q-delays/ loss-rates as function of control parameter t (available buffer space, random drop

probability, virtual queue capacity, etc). While some results exist for the nonelastic traffic [67, 68], in

the case of elastic traffic, arrival process depends on the control parameter, which makes modelling of

the corresponding tradeoff curve much more challenging.

Other AQM schemes could be seen in the optimization framework as well. For example an

Adaptive Virtual Queue algorithm described in [70], has the performance goal of keeping utilization

at some prescribed level λ, by controlling C̃ (the service rate of the virtual queue). This can be

translated in the problem of maximizing the benefit B(C̃) = V (u(C̃)), for a concave “value” function

V : [0, 1] 7→ R, that achieves global maximum at the point xmax = λ. Similarly, for a PI controller [47]

that has the performance goal of keeping queue occupancy at level qref , one can define the optimization

problem of minimization of the cost C(p) = P1(q(p)), where q(p) represents average queue occupancy

for the parameter p, and a concave “cost” function P1 : [0, qmax] 7→ R have global minimum at the

point xmin = qref .

The MIMD based ODT and OB algorithms introduced here are just one possible approach for

solving the optimization problem (9.5). In Section 9.4 we discussed the rationale for choosing MIMD

algorithm that continuously searches for optimal value instead of an algorithm that will search for an

exact optimal value under noisy measurements. It will be interesting to investigate other control

strategies with better performance11 than ODT and OB as part of future work, along the lines

presented here.

11Performance metrics of interest can be benefit B(t), speed of convergence to the optimal region, robustness to noise,

etc.
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CHAPTER 10

Conclusions

We started this thesis by studying TCP resource allocation based on the random matrix model pro-

posed in [99]. A main feature of this model is the fact that it models the interaction between TCP flows

and is relatively simple and tractable. We relaxed the IID assumption from [99], gave a fixed-point-

based iteration schemes for calculating the TCP resource allocation and its variance in the Markovian

model. In rest of the thesis we have studied several problems that arise in the design of high-speed

routers.

In Chapter 4 we developed a stateless scheme for enforcing the max-min fairness of TCP flows:

MLC(l). However, there are two important open issues related to practical deployment of MLC(l).

Firstly, the design of MLC(l) is based on the assumption that all the flows use TCP congestion

control; therefore it does not have effects on non-elastic flows and some extension to MLC(l) is

needed to capture the non-elastic flows. Secondly, MLC(l) uses virtually no memory but it could

require a large computational resources under some circumstances. Investigating this tradeoff between

computational resources and memory requirements needed for enforcing (max-min) fairness is an

important unresolved problem.

Markov Active Yield (MAY), the queue management scheme designed in the chapter 5 to resolve

two issues related to MLC(l): (1) controlling the fairness of both elastic and non-elastic flows and

(2) computational expensiveness. The memory requirements in Pareto-like flow size distributions are

equivalent to roughly one-bit per flow which together with currently available devices and state-of-

the-art implementation of hash-tables and statistics-counters allows implementations at line speeds of

over 40Gbps.

The need for efficient statistics-counter architectures is evident as Internet line-speeds are grow-

ing with rate which is significantly greater than rate of growth of the speeds of the appropriate

memory-devices. While several proposals exist for passive applications (counter value information is

not required on per-packet basis), for many active applications such as flow-control, flow-scheduling,

remote control, etc. the counter value information is required on per-packet basis. In Chapter 6 we
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propose a randomized active counters architecture that have small memory requirements as well as

small expected errors.

Heavy-hitter identification has been extensively studied in the recent past. The algorithm pre-

sented in Chapter 7 posses several attractive features: (1) it tracks flow rates rather than flow sizes

(which can significantly differ in the context of Internet flows) (2) it has very low memory requirements

(3) it is relatively robust to heavy-tailed assumption on flow sizes and (4) it is computationally light

and highly scalable in terms of number of active flows.

In the last part of the thesis we discuss the delay-utilization tradeoff in the congested Internet

links. While the first part(s) of this thesis is mainly based on the modelling as the main tool for the

design of the appropriate algorithms, in the last part of the thesis we use models (developed by others)

as motivation and use the measurement-based control approach for settling the problems of interest.

The algorithms presented in Chapters 8 and 9 are surprisingly simple yet effective in searching for

optimal queue-scheme parameter subject to delay-utilization tradeoff. The main issue that remains

unsolved is concavity of the delay-utilization tradeoff for various queue-scheme parameters such as

DropTail queue size, loss rate, virtual-queue capacity, etc. While a number of results exist in open-

loop case, closed-loop nature of TCP traffic makes arrival process dependent on the control parameter,

which makes modelling of the corresponding tradeoff curve much more challenging.

The proposed AQM schemes for enforcing max-min fairness are MLC(l), MAY and HH. While

MLC(l) have mainly theoretical value, MAY and HH possess the potential practical value. While HH

is designed to exploit limited amount of fast SRAM memory it is a rather ad-hoc algorithm without

strict performance bounds. On the other hand, the MAY design is built on the rigorous theoretical

analysis that allows explicit performance bounds and highly efficient use of the SRAM resources

which makes it a better candidate for use in real Internet links with complex traffic mix. Adaptive

algorithms discussed in the last part of the thesis for control of queueing delay vs. throughput tradeoff

are easy to implement since they do not require neither hardware support nor per-packet processing.

We note here, that because of RTT dependance of the TCP throughput ADT-like algorithms for

reducing packet delays might require some mechanism for enforcement of fairness that can be harmed

by extremely small queueing delays.

Finally we discuss one idea that could unify two designs from this thesis: low state consumption

and low buffering. Assume that M bytes of SRAM are available that can be used for buffering and

state information. Let M1 bytes are used for buffering and the rest M2 = M −M1 bytes of SRAM are

used for the state information. Suppose that performance goal is simultaneous achieving low queuing

delays and max-min fair resource allocation. The key observation is that we need: large M1 and

small M2 in small-number-of-users regime or small M1 and large M2 in large-number-of-users regime.

The question of efficient and meaningful allocation of (M1,M2) is an interesting open question left

unanswered in the thesis.
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APPENDIX A

Random matrix model of AIMD congestion control

A.1 Synchronised communication networks

We begin our discussion by considering communication networks for which the following assumptions

are valid: (i) at congestion every source experiences a packet drop; and (ii) each source has the same

round-trip-time (RTT)1. In this case an exact model of the network dynamics may be found as follows

[92].

Let wi(k) denote the congestion window size of source i immediately before the k’th network

congestion event is detected by the source. Over the k’th congestion epoch three important events

can be discerned: ta(k), tb(k) and tc(k); as depicted in Figure A.1. The time ta(k) denotes the instant

at which the number of unacknowledged packets in flight equals βiwi(k); tb(k) is the time at which

the bottleneck queue is full; and tc(k) is the time at which packet drop is detected by the sources,

where time is measured in units of RTT2. It follows from the definition of the AIMD algorithm that
1One RTT is the time between sending a packet and receiving the corresponding acknowledgement when there are

no packet drops.
2Note that measuring time in units of RTT results in a linear rate of increase for each of the congestion window

variables between congestion events.
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Figure A.1: Evolution of window size
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the window evolution is completely defined over all time instants by knowledge of the wi(k) and the

event times ta(k), tb(k) and tc(k) of each congestion epoch. We therefore only need to investigate the

behavior of these quantities.

We assume that each source is informed of congestion one RTT after the queue at the bottleneck

link becomes full; that is tc(k)− tb(k) = 1. Also,

wi(k) ≥ 0,

n∑

i=1

wi(k) = P +
n∑

i=1

αi, ∀k > 0, (A.1)

where P is the maximum number of packets which can be in transit in the network at any time; P is

usually equal to qmax + BTd where qmax is the maximum queue length of the congested link, B is the

service rate of the congested link in packets per second and Td is the round-trip time when the queue

is empty. At the (k + 1)th congestion event

wi(k + 1) = βiwi(k) + αi[tc(k)− ta(k)]. (A.2)

and

tc(k)− ta(k) =
1∑n

i=1 αi
[P −

n∑

i=1

βiwi(k)] + 1. (A.3)

Hence, it follows that

wi(k + 1) = βiwi(k) +
αi∑n

j=1 αj
[

n∑

i=1

(1− βi)wi(k)] (A.4)

and that the dynamics an entire network of such sources is given by

W (k + 1) = AW (k), (A.5)

where WT (k) = [w1(k), · · · , wn(k)], and

A =




β1 0 · · · 0

0 β2 0 0
... 0

. . . 0

0 0 · · · βn




(A.6)

+
1∑n

j=1 αj




α1

α2

· · ·
αn




[
1− β1 1− β2 · · · 1− βn

]
.

The matrix A is a positive matrix (all the entries are positive real numbers) and it follows that

the synchronized network (A.5) is a positive linear system [11].

A.2 Models of unsynchronized network

The preceding discussion illustrates the relationship between important network properties and the

eigensystem of a positive matrix. Unfortunately, the assumptions under which these results are de-

rived, namely of source synchronization and uniform RTT, are quite restrictive (although they may,
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Figure A.2: Evolution of window size over a congestion epoch. T (k) is the length of the congestion

epoch in seconds.

for example, be valid in many long-distance networks [121]). It is therefore of great interest to extend

our approach to more general network conditions. As we will see the model that we obtain shares

many structural and qualitative properties of the synchronized model described above. To distinguish

variables, we will from now on denote the nominal parameters of the sources used in the previous sec-

tion by αs
i , β

s
i , i = 1, . . . , n. Here the index s may remind the reader that these parameters describe

the synchronized case, as well as that these are the parameters that are chosen by each source.

Consider the general case of a number of sources competing for shared bandwidth in a generic

dumbbell topology (where sources may have different round-trip times and drops need not be syn-

chronized). The evolution of the cwnd (wi) of a typical source as a function of time, over the k′th

congestion epoch, is depicted in Figure A.2. As before a number of important events may be discerned,

where we now measure time in seconds, rather than units of RTT . Denote by tai(k) the time at which

the number of packets in flight belonging to source i is equal to βs
i wi(k); tq(k) is the time at which

the bottleneck queue begins to fill; tb(k) is the time at which the bottleneck queue is full; and tci(k)

is the time at which the i’th source is informed of congestion. In this case the evolution of the i’th

congestion window variable does not evolve linearly with time after tq seconds due to the effect of

the bottleneck queue filling and the resulting variation in RTT; namely, the RTT of the i’th source

increases according to RTTi(t) = Tdi + q(t)/B after tq, where Tdi is the RTT of source i when the

bottleneck queue is empty and 0 ≤ q(t) ≤ qmax denotes the number of packets in the queue. Note also

that we do not assume that every source experiences a drop when congestion occurs. For example,

a situation is depicted in Figure A.2 where the i’th source experiences congestion at the end of the

epoch whereas the j’th source does not.

Given these general features it is clear that the modelling task is more involved than in the

synchronized case. Nonetheless, it is possible to relate wi(k) and wi(k+1) using a similar approach to

the synchronized case by accounting for the effect of non-uniform RTT’s and unsynchronized packet

drops as follows.

(i) (i) Unsynchronized source drops : Consider again the situation depicted in Figure A.2.
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Here, the i’th source experiences congestion at the end of the epoch whereas the j’th source does

not. This corresponds to the i’th source reducing its congestion window by the factor βs
i after the

k + 1’th congestion event, and the j’th source not adjusting its window size at the congestion event.

We therefore allow the back-off factor of the i’th source to take one of two values at the k’th congestion

event.

βi(k) ∈ {βs
i , 1} , (A.7)

corresponding to whether the source experiences a packet loss or not.

(ii) Non-uniform RTT : Due to the variation in round trip time, the congestion window of a

flow does not evolve linearly with time over a congestion epoch. Nevertheless, we may relate wi(k)

and wi(k + 1) linearly by defining an average rate αi(k) depending on the k’th congestion epoch:

αi(k) :=
wi(k + 1)− βi(k)w(k)

T (k)
, (A.8)

where T (k) is the duration of the k’th epoch measured in seconds. Equivalently we have

wi(k + 1) = βi(k)wi(k) + αi(k)T (k) . (A.9)

In the case when qmax << BTdi , i = 1, . . . , n, the average αi are (almost) independent of k and given

by αi(k) ≈ αs
i /Tdi for all k ∈ N, i = 1, . . . , n. The situation when

αi ≈ αs
i

Tdi

, i = 1, . . . , n (A.10)

is of considerable practical importance and such networks are the principal concern of this paper.

This corresponds to the case of a network whose bottleneck buffer is small compared with the delay-

bandwidth product for all sources utilizing the congested link. Such conditions prevail on a variety of

networks; for example networks with large delay-bandwidth products, and networks where large jitter

and/or latency cannot be tolerated. In view of (A.7) and (A.9) a convenient representation of the

network dynamics is obtained as follows. At congestion the bottleneck link is operating at its capacity

B, i.e.,
n∑

i=1

wi(k)− αi

RTTi,max
= B, (A.11)

where RTTi,max is the RTT experienced by the i’th flow when the bottleneck queue is full. Note, that

RTTi,max is independent of k. Setting γi := (RTTi,max)−1 we have that
n∑

i=1

γiwi(k) = B +
n∑

i=1

γiαi . (A.12)

By interpreting (A.12) at k + 1 and inserting (A.9) for wi(k + 1) it follows furthermore that
n∑

i=1

γiβi(k)wi(k) + γiαiT (k) = B +
n∑

i=1

γiαi . (A.13)

Using (A.12) again it follows that

T (k) =
1∑n

i=1 γiαi

(
n∑

i=1

γi(1− βi(k))wi(k)

)
. (A.14)
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Inserting this expression into (A.9) we finally obtain

wi(k + 1) = βi(k)wi(k) (A.15)

+
αi∑n

j=1 γjαj




n∑

j=1

γj(1− βj(k))wj(k)




and the dynamics of the entire network of sources at the k-th congestion event are described by

W (k + 1) = A(k)W (k), A(k) ∈ {A1, ..., Am}. (A.16)

where

A(k) =




β1(k) 0 · · · 0

0 β2(k) 0 0
... 0

. . . 0

0 0 · · · βn(k)




(A.17)

+
1∑n

j=1 γjαj




α1

α2

· · ·
αn




[γ1(1− β1(k)), . . . , γn(1− βn(k))]

and where βi(k) is either 1 or βs
i . The non-negative matrices A2, .., Am are constructed by taking

the matrix A1,

A1 =




βs
1 0 · · · 0

0 βs
2 0 0

... 0
. . . 0

0 0 · · · βs
n




(A.18)

+
1∑n

j=1 γjαj




α1

α2

· · ·
αn




[
γ1(1− βs

1), . . . , γn(1− βs
n)

]

and setting some, but not all, of the βi to 1. This gives rise to m = 2n − 1 matrices associated

with the system (A.16) that correspond to the different combinations of source drops that are possible.

We denote the set of these matrices by A.

Finally we note that another, sometimes very useful, representation of the network dynamics can

be obtained by considering the evolution of scaled window sizes at congestion; namely, by considering

the evolution of WT
γ (k) = [γ1w1(k) , γ2w2(k), ...., γnwn(k)]. Here one obtains the following description

of the network dynamics:

Wγ(k + 1) = Ā(k)Wγ(k) (A.19)
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with Ā(k) ∈ Ā = {Ā1, ..., Ām}, m = 2n − 1 and where the Āi are obtained by the similarity

transformation associated with the change of variables. As before the non-negative matrices Ā2, .., Ām

are constructed by taking the matrix Ā1 and setting some, but not all, of the βs
i to 1. All of the matrices

in the set Ā are now column stochastic.
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APPENDIX B

Proof of Theorem 4.1

The proof is heavily based on work [25] which deals with case l = 1 (constant drop probability). Here

we show that for l > 1 appropriate scaling is possible and that same arguments can be employed as

well.

Let sk be the time of k-th loss, ie: sk is the k-th smallest m which satisfies U
(ρ)
m = 1

2U
(ρ)
m−1. Define

Z
(ρ)
0 = 0 and Z

(ρ)
k = U

(ρ)
sk . It follows that Z

(ρ)
k is also a Markov chain and the following theorem

provides insight into the behavior of Z
(ρ)
k for small values of ρ.

Proposition B.1 There exist a Markov chain V k, such that for ρ > 0,

Z
(ρ)
k =

1

RTT
2

l+1 ρ
1

l+1
V k +

1

ρ
1

l+1
R

(ρ)
k ,

where the stochastic process R
(ρ)
k converge to zero in distribution as ρ → 0.

Preamble to Proof of Proposition B.1

The Markov chain U
(ρ)
k can be written as U

(ρ)
k = RTT 2W

(α)
k , where α = ρ/RTT 2l and

W
(α)
k+1 = W

(α)
k + 1 with probability e−α(W

(α)
k )l

W
(α)
k+1 =

1
2
W

(α)
k with probability 1− e−α(W

(α)
k )l

.

Analogously, we can define another associated Markov chain with states of W
(α)
k just after con-

gestion: V
(α)
k = Z

(ρ)
k /RTT 2. Its transition is given by

V
(α)
k+1 =

1
2
(V (α)

k + G
(α)

V
(α)

k

).

Here G
(α)
n is random variable determined by distribution:

P (G(α)
x ≥ y) =

x+byc∏

k=x

e−αkl

.
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Lemma B.1 Let x ≥ 0. Then as α goes to 0, the random variable α
1

l+1 G
(α)

x/α
1

l+1
converges in distri-

bution to a random variable Gx such that for y ≥ 0

P (Gx ≥ y) = e−
1

l+1 ((x+y)l+1−xl+1). (B.1)

Proof: Let x, y ≥ 0 and α < 1. Then

P (α
1

l+1 G
(α)

x/α
1

l+1
> y) = P (G(α)

x/α
1

l+1
> y/α

1
l+1 )

=
b(x+y)/α

1
l+1 c∏

k=x/α
1

l+1

e−αkl

.

Taking logarithms we conclude:

ln(P (α
1

l+1 G
(α)

x/α
1

l+1
> y)) = −α

b(x+y)/α
1

l+1 c∑

k=x/α
1

l+1

kl −→

−→ −α

∫ (x+y)/α
1

l+1

x/α
1

l+1
tldt =

1
l + 1

((x + y)l+1 − xl+1).

Definition B.1 The sequence V n denotes a Markov chain given by V 0 = 0 and transitions:

V n+1 =
1
2
(V n + GV n

).

Here {Gx : x ≥ 0} is a family of random variables independent of V n such that the distribution of

Gx is given by (B.1).

Lemma B.2 The Markov chain α1/(l+1)V
(α)
n converges in distribution to the Markov chain V n.

Proof: The proof of this fact follows same lines as proof of Corollary 1 in paper [25]. Namely,

using uniform continuity of the mapping t → tl, and techniques from the proof of Proposition 1 from

[25], it follows that for any K > 1

lim
α→0

sup
α1/(l+1)<x,y<K

|P (Gx ≥ y)− P (α
1

l+1 G
(α)

x/α
1

l+1
> y)| = 0.

Then, using the previously established uniform convergence, it follows that for any continuous

function f on R+ with compact support:

lim
α→0

sup
x>α1/(l+1)

|E(f(Gx))− E(f(α
1

l+1 G
(α)

x/α
1

l+1
))| = 0.

Finally, again following the same lines as in proof of Proposition 2 from [25] we can conclude

desired convergence in distribution.
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The previous lemma allows us to approximate the Markov chain V
(α)
k with V k with initial value

V 0 = α1/(l+1)V
(α)
0 = 0. We are ready to give:

Proof of Proposition B.1. Recall that Z
(ρ)
k represents throughput just after packet loss and

that α = ρ/RTT 2l. Then for small ρ we can write1

Z
(ρ)
k =

1
RTT 2

V
(α)
k =

1
RTT 2

(
1

α1/(l+1)
V k + o(

1

α
1

l+1
)) =

=
RTT 2l/(l+1)

RTT 2

1
ρ1/(l+1)

V k + o(
1

ρ
1

l+1
) =

=
1

RTT
2

l+1 ρ
1

l+1
V k + o(

1

ρ
1

l+1
)

¥
Thus the Markov chain Z

(ρ)
k of throughput after congestion events can be approximated with the

Markov chain 1

RTT
2

l+1 ρ
1

l+1
V k for small values of ρ as was claimed.

At this point we are concentrating on V k and following the basic ideas from [25]. We shall prove

that (V k)l+1 is autoregressive(AR) process with unique invariant distribution that can be explicitly

written.

Theorem B.1 For the Markov chain V k, the process V
l+1

k is autoregressive with following represen-

tation:

V
l+1

k+1 =
1

2l+1
(V

l+1

k − (l + 1)En)

where En is an IID sequence of exponentially distributed random variables with parameter 1: P (En ≥
y) = e−y. Moreover the Markov chain V k has unique invariant distribution represented by the random

variable V∞ which satisfy:

V∞ = l+1

√√√√(l + 1)
∞∑

n=1

1
2n(l+1)

En, (B.2)

and the process defined with this invariant distribution as initial distribution for V 0 is ergodic.

Proof: By definition we have

V n+1 =
1
2
(V n + GV n

).

Let En = 1
l+1 (2l+1V

l+1

n+1 − V
l+1

n ). Then:

P (En ≥ y) = P (
1

l + 1
(2l+1V

l+1

n+1 − V
l+1

n ) ≥ y) =

= P ((V n + GV n
)l+1 ≥ (l + 1)y + V

l+1

n )

= P (GV n
≥ ((l + 1)y + V

l+1

n )1/(l+1) − V n) =

= e−
1

l+1 ((l+1)y+V
l+1
n −V

l+1
n ) = e−y

1Here, o( 1

α
1

l+1
) represent random variable R(α) such that R(α)/α

1
l+1 → 0 as α → 0
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Thus, the first part of the Theorem is proved. To prove the second part notice that random

variable given by (B.2) represents an invariant probability. To prove its uniqueness we use Theorem

7.16 from [12]. It is enough to prove that there are no two disjoint sets A1, A2 ⊂ R+ such that for

i = 1, 2 and all x ∈ Ai, P (V 2 ∈ Ai| V 1 = x) = 1. Suppose that there exist two such sets A1, A2. Let

x1 ∈ A1. Then since Gx1 has positive density we conclude that [x1
2 ,∞) \A1 has Lebesgue-measure 0.

Similarly for x2 ∈ A2, [x2
2 ,∞) \ A2 has Lebesgue-measure 0 which means that A1 and A2 cannot be

disjoint.

Now we are ready to prove that for small values of ρ0, the steady state throughput can be

approximated by 1

RTT
2

l+1 ρ
1

l+1
0

DCL, where DCL does not depend on ρ0 nor l.

Proof: (of the Theorem 4.1)If we write U
(ρ)
i = RTT 2W

(α)
k , where α = ρ/RTT 2l, the Theorem

is an immediate consequence of the Theorem B.1 and Proposition 9 from [25] for a multiplicative

decrease factor δ = 1
2 .2

2Here constant 3
4

= 1+δ
2δ(1−δ)

, for δ = 0.5.
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