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Smart Procurement Of Naturally Generated Energy
(SPONGE) for PHEV’s

Florian Häusler, Emanuele Crisostomi, Ilja Radusch and Robert Shorten

Abstract—In this paper we propose a new engine management
system for hybrid vehicles to enable energy providers and
car manufacturers to provide new services. Energy forecasts
are used to collaboratively orchestrate the behaviour of engine
management systems of a fleet of PHEV’s to absorb oncoming
energy in an smart manner. Cooperative algorithms are suggested
to manage the energy absorption in an optimal manner for a fleet
of vehicles, and the mobility simulator SUMO is used to show
simple simulations to support the efficacy of the proposed idea.

I. INTRODUCTION

One of the promised advantages of the Smart Grid is the
ability to integrate power generated from renewable sources
into the daily demands of society in a manner that takes into
account the intrinsic fluctuating nature of such intermittently
available power. In spite of the challenges in dealing with
an uncertain supply, several countries have already started
producing a large fraction of electrical power from renewable
sources. For example, wind alone provided more than 30 %
of electricity production in Denmark in 2012, and is foreseen
to supply 50 % of the overall demand by the year 2020 [1].
Further, Denmark’s stated goal goes beyond this objective
with an aspiration to become 100 % renewable by 2050 [2],
with similar aspirations being held in many other countries.
The merits of using renewables is the cleanness of the energy
supply and the associated benefits for both greenhouse gas
emissions and air quality.

A significant impediment to the integration of renewables into
the grid is the need for new demand side management practices
to match power generation with power consumption [3], [4]
on a daily basis. Despite the increasing quantity of energy
that is produced from renewable sources, and despite the
many efforts to encourage consumers to shift loads to times
of the day when renewable energy is available, there is still
a significant mismatch between renewable energy availability
and energy demand, and conventional power plants (e.g., coal
or gas-fired power plants) are still widely used to back-up
energy generation. The necessity to use conventional power
plants is not convenient in terms of economic costs (i.e., fuel
and carbon costs have to be taken into account), and in terms
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of existing and anticipated environmental regulations (e.g.,
emissions of CO2, NOx or other pollutants).

With this in mind, a number of strategies have been proposed
to deal with supply-demand imbalance. First, storage systems
represent an attractive possibility to alleviate the requirement
of continuous matching between energy demand and offer;
see the Economist Technology Quarterly (December 2014)
for a recent discussion of advances in this direction [5].
Roughly speaking, energy generated from renewable sources
can be stored when availability exceeds the energy demand
(e.g., eolic energy at night time), and can be released as
needed as an alternative to switching on a conventional power
plant. Amongst the available storage systems, the ability of
Electric Vehicles (EVs) to act as an ’aggregated’ battery for
such purposes has been given as one of the most important
arguments in favour of EV adoption as a mode of automotive
mobility. To further elaborate: in the event of a high level of
adoption of electric vehicles, a large virtual battery system
would be automatically available without requirements of big
investment in other storage devices [6], [7] and [8]. Such
a possibility would be convenient also from the EV side, as
many studies show that EVs represent a viable solution to
limit emissions particularly if they are charged from energy
coming from renewable sources [9]. Despite the apparent
suitability of EVs to provide battery storage, some studies
have shown that the use of EVs in this manner is not without
problems. Their use as storage devices is currently quite
limited due to low penetration levels, and due to the fact
that, usually, only a small proportion of the EVs’ battery
capacity is available for energy exchange [10] (the main
reason for this is that EV owners are primarily concerned
on having enough battery for their next trip [8]). A further
complication arises due to the fact that renewable energy is,
by its very nature, uncertain. Thus, supplying the EV fleet
with the requited energy needed for mobility creates the
need for complicated optimisation and scheduling algorithms
(and infrastructure) on the supply side, places contractual
requirements on generators of electricity, and requires EV
owners to plug in their vehicles at certain times of the day [11].

A second strategy in dealing with the intermittent nature of
the supply of naturally generated energy is to make devices
smarter. That is, they should be context aware, and change
their behaviours in a manner that enables them to utilise
renewable energy when it becomes available. Clearly, in the
case of EVs this is not possible since there is a very natural
decoupling of the mobility needs of EV owners and the
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available supply of energy from renewable sources. That is,
the grid should always serve the mobility needs of users as
a primary objective. However, in the case of Plug-in Hybrid
Electric Vehicles (PHEVs), there are two power sources for
each vehicle. Thus, vehicle owners have a choice at every
instant of time as to whether the EV engines is utilised, the
ICE, or both. Our objective in this paper is to describe how
this flexibility can be exploited to couple the needs of the
grid with those of the vehicle owner, and to show how this
offers the potential for a truly smart integration of vehicles
into the energy grid. Specifically, using energy forecasting
models, it is possible for PHEVs to act as an energy sponge
and be primed to capture renewable energy as it becomes
available. To do this weather forecast services can be used
to make predictions of how much energy will be available
from solar/wind power plants in the near future (e.g., next
24 hours). Based on these forecasts, elementary cooperative
strategies can be implemented, in a manner that is transparent
to users, to make space in a fleet of vehicles (in the batteries)
for forthcoming energy. Essentially, vehicle owners allow
the EMU (engine management unit) of the vehicle to be
orchestrated by a management service that takes into account
the needs of the grid. By doing this, users fully utilise the
available clean energy as it becomes available (possibly at
zero financial cost if coming from private roof top solar
panels or from self-owned wind source), prevent clean energy
from being wasted by ensuring that there is always enough
capacity available for storage, and help balance energy supply
and demand through active scheduling of energy sourcing
for vehicles in a pro-active manner. We shall also see that
this strategy has the potential to significantly reduce the
complexity burden of charging these vehicles by enabling
best effort charging algorithms to be deployed.

This work presented here complements previous work by the
authors in the context of optimised charging of EV’s and in
developing context cooperative control strategies for hybrid
vehicles. From a technological perspective, the work most
resembles strategies to regulate pollution that have already
been implemented in practice and described [12]. However,
the goals of the current problem statement differ significantly
from the aforementioned work, and open, we believe, signif-
icant market opportunities by presenting mobility and energy
products in a truly integrated manner.

II. PROBLEM STATEMENT AND ASSUMPTIONS

For convenience, and ease of exposition, we make the
following set of simplistic assumptions. We start by indexing
each day (a 24 hour period) with the index k (meaning the
k’th day or time period). We divide the k’th day into two
time periods; a time period when vehicles are charging, and
a time period when vehicles are not charging and possibly in
transit. Furthermore:

(i) We assume a group of N ∈ (1, ..., nmax) plug-in hybrid
vehicles that participate in a scheme to absorb available
naturally generated energy. Alternatively, in special

cases, if needed, they might also provide energy to the
grid. Although the overall discussion goes along the
same lines, for the sake of simplicity in what follows
we shall primarily consider the G2V (Grid-to-Vehicle)
case, although the V2G (Vehicle-to-Grid) case can be
considered as well.

(ii) Each vehicle is assumed to be capable of operating in
fully EV mode, in ICE mode, or a combination of both
(as in the Toyota Prius).

(iii) We also assume that for some fixed period during
the day, these vehicles are plugged in, and that for
this period, a reliable day-ahead forecast of available
renewable energy is available. We denote this available
energy by Eav(k). For example, a typical assumption
might be that that the vehicles charge from 11pm to 6am,
though it is not necessary for this time period to be the
same for all vehicles. Although, in principle, the future
horizon of optimisation can be longer than one day,
weather forecasts might not be reliable enough to support
optimal decisions over longer time periods, see [13]- [14].

(iv) For the remainder of the day, we assume that vehicles
may be in service, at any instant of time n(t) ≤ N
vehicles are in transit, and that these vehicles can report
their energy consumption over some period to a central
agent.

A. Smart Procurement of Energy: SPONGE

Let us now denote the electric energy dissipated by the i’th
vehicle by Di(k). Our objective is to ensure that

N∑
i=1

Di(k) ≥ Eav(k + 1). (1)

That is, during the k’th day the fleet acts like a sponge and
makes available at least enough space to absorb the available
energy that is expected during the next charging period. As
stated, the problem is essentially a regulation problem that is
depicted in Figure II-A. Under ideal circumstances, a central
authority computes the desired electrical energy consumption,
and then broadcasts some signal which is received by the
vehicles to orchestrate the switching between EV and ICE
mode, so as to satisfy the regulation constraint. For instance,
the signal can be the probability to travel in EV mode rather
than in ICE mode, or can be the proportion of the traction
torque that should be provided by the EV engine rather than
from the ICE engine. We shall denote the problem expressed
by Equation 1 as the basic SPONGE problem.

B. Smart Procurement of Energy: Exact SPONGE

In some cases, the objective can be to make PHEVs travel
in EV mode until they deplete their batteries in order to
exactly match the expected energy that will be available from
renewable sources. We shall denote this problem as “exact
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Fig. 1. Feedback loop for energy dissipation problem

SPONGE”, and its mathematical formulation is as follows:
N∑
i=1

Di(k) = Eav(k + 1). (2)

The main advantage of the exact SPONGE approach is that
when the fleet of vehicles connect to the grid for recharging,
the quantity of required energy is already known in advance
(i.e., it is equal to the expected energy available from renew-
able sources).

C. Optimised access: Optimal SPONGE

In some situations, certain vehicles may have prioritised access
to the oncoming energy Eav(k + 1) via some utility function
fi(Di(k)). Thus, the above problem can be reformulated in
an optimisation framework as:

maximize
N∑
i=1

fi(Di(k))

subject to
N∑
i=1

Di(k) = Eav(k + 1).

(3)

This optimisation may be solved in many ways under suitable
assumptions on the fi(Di(k)). The problem is most interesting
when the the f ′is represent a generalised notion of utility (or
price that the i’th car pays) and is considered to be private
information, not to be revealed to the utility or to other
vehicles. The problem is then to solve the problem in a privacy
preserving manner. Note that the f ′is may be incorporated to
represent various use cases. Some interesting examples include
the following.
(i) For example, OEM’s may partner with utilities to

provide a service where the price of energy is part of
PHEV’s owners car purchase plans. Those paying more
upfront, may have prioritised access to ’free energy’ as
it becomes available [11].

(ii) The fi’s could represent the price paid by an individual
vehicle owner for energy access.

(iii) Or, they could be used to penalise vehicles with a lower
load factor (fewer passengers).

(iv) They could be used to penalise vehicles that drive close
to schools, hospitals, etc.

(v) Another interesting scenario is as follows. Some hybrid
modes blend the EV motor with the ICE to optimise
fuel economy/emissions. An interesting embodiment of
the optimisation scenario is to take the required energy
in a manner that minimises the impact on fuel economy
of the fleet.

With regard to the SPONGE formulation several comments
are appropriate.

Comment 1: Note that the SPONGE solution has
the potential to completely revolutionise the “charging
paradigm”. Hitherto, most charging research has focussed
on how to share the available energy among the connected
fleet of vehicles in a manner that is compliant with the
desires of the EV owners, the constraints of the grid, and the
available power. Note that in this case, there might arise some
problems in the power grid to accept the unexpected load,
with the ultimate possibility of causing thermal overload of
network components, low voltages at sensitive locations of the
network, and increased phase unbalance [17]. Even ignoring
this, the required optimisations often place severe constraints
on the EV owners in the form of inconvenient charging
profiles. On the other hand, in the solution of Problem
(2), one would compute the same quantity in advance, and
deplete the batteries of the vehicles while travelling of the
same quantity. Thus, the charging process becomes fully
schedulable and programmable. The charging problem can
be reduced to a bast-effort problem where the cars share
the available energy during the charging period using some
simple algorithm such as Additive Increase Multiplicative
Decrease (AIMD) algorithms [18], [19]. Thus, clearly, the
difficulties of matching the demand and the offer are shifted
to the driving stage through an optimal orchestration of the
ICE and EV engines.

Comment 2: The discerning reader may ask why the
individual vehicle owners should not simply expend the
electric energy completely before switching to ICE mode.
There are many reasons for doing this. First, in some engines,
electrical power and ICE are combined to reduce overall
consumption, or for other objectives of interest (e.g., extend
the lifetime of the battery) [16]. Thus, it is advantageous to
keep a store of naturally generated electrical energy for this
purpose. Second, access to certain parts of the city may be
restricted to zero emission vehicles. Thus, maintaining a store
of electrical energy for this purpose is also advantageous.
Finally, depleting the battery beyond the energy levels
available during the next charging period, may lead to a
situation where the battery is not filled during the k + 1’th
charging period. Thereby, the ICE may need to be engaged
prematurely in driving, thus leading to unnecessary emissions
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and increased fuel consumption.

Comment 3: Note that in some cases, depending on
the number of vehicles on the road, the previous optimisation
problems might not have a feasible solution. For instance,
in the particular case that there are no vehicles on the road,
then obviously the PHEVs can not deplete their batteries to
make room for the forthcoming energy. In such cases where
the problem does not have a solution, we will be interested
in a ‘best-effort’ solution, where the closest feasible solution
is achieved instead, see for instance [18].

III. METHODS

Clearly there are many ways in which the problems specified
in the previous section may be solved, and we now describe
some simple methods that can be adopted. To this end we
assume that over the period when vehicles are not charging,
denoted θ(k), the aggregate electrical energy consumption of
the fleet is required to be E(k, t) with,∫

θ(k)

E(k, t)dt = Eav(k + 1) (4)

where t denotes time. We also assume that each vehicle is
synchronised with a clock (possibly a multiple of a GPS
clock), and reports its every consumption over the τ ’th clock
period as Di(τi) to a centralised authority. This centralised
authority aggregates this energy consumption and broadcasts
a signal to the vehicles depending on whether the aggregated
consumption exceeds E(k, t) or not. The probability whether
the i’th vehicle travels in fully electric mode in the τi + 1’th
period depends on this broadcasted signal. In the following
two use cases we shall see examples of signals that can be
used to orchestrate the fleet behaviour.

A. Use case 1: Fair energy consumption

The fair energy consumption case refers to the case when all
the vehicles participating to the SPONGE program participate
in the same manner; namely, have the same probability to
travel in EV mode. In the SPONGE case illustrated in Section
II-A, a simple proportional controller can be used:

if
∑N
i=1Di(k) < Eav(k + 1)

then pEVi (k) = g1(Eav(k + 1)−
∑N
i=1Di(k))

(5)

in this case, at every interval of time (e.g., every minute), a
vehicle travels in EV mode with a probability pEVi (k) which
is an increasing function g1(·) of the gap between the desired
target of energy Eav(k+ 1) and the currently available space
in the vehicles

∑N
i=1Di(k). Note that if enough space is

already available, then the vehicles are allowed to travel in
any way they desire. Also note that, as already anticipated,
even if all pEVi (k)’s are set to 1, the goal might not be
accomplished if not enough vehicles are travelling in the time
interval of interest.

Comment 4: Note that the SPONGE problem usually
takes place on a day-scale. For instance, vehicles are
scheduled to spend a given quantity of energy during the

day, and are then recharged at night time, when idle, to
refill the batteries. However, in a practical scenario, it is
more convenient to match the energy over a number of time
windows during the day. This has a number of benefits: if
the match occurs after a few hours, then the cars travelling in
the afternoon are excluded from the programme; on the other
hand, if we split the matching problem in several windows
of time, then every single car, travelling at any time, can
be equally involved in the programme. Also, as soon as a
new time window starts, then the matching problem can
be adjusted taking into account new weather forecasts, if
available, and whether the optimisation problem was feasible
or not in the previous time window. Accordingly, k refers to
a shorter time window, e.g., one minute, in Problem (5).

Comment 5: Note that the request that vehicles have to
travel in EV mode with probability 0.6 can be implemented
in practice either by making 60% of the vehicles travel in EV
mode, or by making 60% of the traction provided by the EV
engine, and the residual by the ICE engine, in every car.

As for the exact SPONGE case illustrated in Section
II-B, then a simple Proportional-Integral (PI) controller can
be adopted in the following manner:

if
∑N
i=1Di(k) < Eav(k + 1)

then pEVi (k) = g2(Eav(k + 1)−
∑N
i=1Di(k))

elseif
∑N
i=1Di(k) ≥ Eav(k + 1)

then pEVi (k) = 0,∀i = 1, ..., N

the main difference in this case, is that the control objective
is to exactly deplete the batteries of the quantity Eav(k + 1),
while vehicles are not allowed to over-deplete their batteries.
Although such a solution may appear to penalise the drivers
(i.e., they are forced to travel in ICE mode to avoid over-
depleting their batteries), it is very convenient for the grid, as
it is possible to predict in advance exactly how much energy
will have to be delivered to the fleet of vehicles. Also, as
already mentioned in Comment 2, there may be good reasons
for drivers to preserve a store of electric energy.

Note that the proposed approaches can be used to tackle
many practical scenarios of interest. For instance, we can
assume that a company provides a free battery-charging
service to the PHEVs of the employees whenever there is
enough power generated from some connected solar/wind
plants in the surroundings of the company buildings. Then,
there should always be some battery available for recharging
whenever there is available energy from natural sources.
Then, the employees collaborate to equally make space in
their batteries to absorb the forthcoming energy. However
note that, although such a scenario gives rise to fair solutions,
still personal constraints of single employees are not taken
into account. In this perspective, the scenario can be made
more complicated as described in the following subsection.

B. Use case 2: Utility maximisation
The third scenario illustrated in Section II-C is different
from the previous two, since different probabilities should be
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computed for different users, taking personal constraints into
account. For instance, the decision to travel in EV mode rep-
resents a potential cost to the owner that can be represented as
an increasing function of Di, i.e., of the energy spent to travel
in EV mode. For example, the cost of travelling in EV mode
can be mathematically formulated as the likelihood to not have
electrical power when it is needed, e.g., because some areas
might be accessible only in EV mode for pollution reasons
(for example, the so-called umweltzonen in Germany1.) Note
that a similar discussion can be made in terms of discomfort
of travelling in ICE mode. This scenario allows the central
infrastructure to explicitly take into account personal needs
of PHEVs’ owners and there are many ways to solve the
mathematical problem that arises. One possible way is to
obtain the solution by formulating the problems as regulation
problems with constraints, and to use these constraints to solve
optimisation problems as they arise. In the next section we
provide one possible solution based on AIMD algorithms [12],
[15].

IV. SIMULATIONS

We now present brief simulation results to show the efficacy
of the proposed idea. The following simulations are performed
using the popular mobility simulator SUMO [20] and the
given TRACI interface. A map of a rural area near Hamburg,
Germany, was extracted from Open Street Map to be used
as the underlying street network, and is shown in Figure 2.
Figure 3 shows the simulation results for the the first two
algorithms. They refer to a time period of 1000 seconds (i.e.,
about 17 minutes). There are 4 time windows of 250 seconds
each, and there are about 600 PHEVs on the road. In our
simulations, we assume that vehicles that are running out of
fuel, or whose battery is getting close to physical constraints
(e.g., 10% of the state of charge) are automatically discarded
from the SPONGE programme. The simulation refers to a
very simple example, and might correspond to the case when
employees go to work using their PHEV vehicles, and the
infrastructure regulates the driving mode in order to meet the
target of energy that will be available at the workplace to
recharge the vehicles.
We assume that vehicles travel in ICE mode when entering
the simulation. In parallel, the infrastructure broadcasts
simple indications that randomly make some vehicles travel
in EV mode to free some space in the batteries. Once the
target energy is matched, vehicles are allowed to travel in the
mode they prefer (Figures 3.1a and 3.1b) or in ICE mode in
the exact SPONGE case (Figures 3.2a and 3.2b). We made
the assumption that when vehicles are allowed to choose
their travelling mode, they choose with equal probability to
travel in ICE or in battery mode. Note that the same pattern
is repeated in every time window, until at the end of the
simulation the overall target is met. The advantage of dividing
the 1000 seconds into a number of smaller time windows of
250 seconds, is that both the vehicles that start their journey
at the beginning and those at the end of the entire time frame,
participate to the SPONGE programme.

1http://gis.uba.de/website/umweltzonen/umweltzonen.php

Fig. 2. Road network in the Lower Saxony area in Germany used for our
simulations, extracted from Open Street Map.

The simulation results of the third scenario (utility
optimisation) are shown in Figures 4. We remind that
in this scenario the exact equality between freed space and
expected forthcoming energy (Figure 4.a) is achieved by
assigning different probabilities to travel in EV mode to
different vehicles, according to some utility functions. We
assumed that the convenience of vehicles in travelling in EV
mode could be described through a convex quadratic function
fi(x̄i) = aix̄i

2, with x̄i being the share of time running in EV
mode up to the current simulation step. Parameters ai were
different for every vehicle, and in our simulation they were
randomly chosen in the interval [0,1]. The evolution of the
utility functions of some randomly selected vehicles is shown
in Figure 4.b. Note that the optimal solution of the Problem
(3) can be obtained by solving a consensus problem on the
derivative of the utility functions (more detailed mathematical
details together with a convergence proof can be found in
[15]). Figure 4.c shows that the utility functions do indeed
converge to the same value. Finally, Figure 4.d shows
that the optimal solution is obtained by giving a different
probability to travel in EV mode to each vehicle. The AIMD
algorithm makes the probability of each vehicle to travel in
EV mode linearly increase until the constraint is matched
(congestion event). At that point, some probabilities decrease
(back-off) in a multiplicative fashion to keep satisfying the
constraint. Vehicles participates to the back-off step with
a probability that is proportional to the derivative of their
own utility function divided by the argument of the utility
function (i.e., ∝ f ′i(x̄i)/x̄i). In this way, the optimal solution
is obtained in a distributed way (i.e., without requiring
vehicle-to-vehicle communication, or vehicle-to-infrastructure

http://gis.uba.de/website/umweltzonen/umweltzonen.php
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Fig. 3. Figures on the left show the total space for energy in the fleet of PHEVs in the two cases, in solid line, while the available energy from the grid is
shown with the dashed line. Figures on the right show the mode in which the vehicles drive in the two cases to achieve the desired goal (dashed blue is EV
mode, solid green is ICE mode). The vertical lines separate the time windows.

communication). The only communication requirement is
from the infrastructure, that has to broadcast to all vehicles
when the congestion event occurs. More details on the
mathematical theory of the aforementioned algorithms, and
more examples as well can be found in [15] and [19], and
are here omitted due to space limits.

V. CONCLUSIONS

In this paper we have presented a new idea that takes
advantage of the ability of PHEVs to both travel in electric
and in fuel mode to absorb naturally generated electrical
energy in a smart manner from the grid. From a theoretical
perspective, such a problem can be easily formulated and
solved using well-known algorithms for sharing a task among
a number of distributed agents, e.g., AIMD algorithms [15],
[19]. From a practical point of view, note that the technology
to remotely control the driving mode is also already available,
as it was developed in [12] for different purposes.

Our current plan is to extend the preliminary simulation
results given in Section IV to more realistic and large-scale
examples. In parallel, we intend to start implementing the
approach in a reduced number of PHEVs, as a proof-of-
concept of the paper idea. We shall adapt the experimental
set-up of [12] to the new case of interest, to remotely control

the EV/ICE engine switching. Also, we shall integrate a
reliable weather forecast software in the overall system, in
order to take optimal decisions about when to switch from
one mode to another mode.
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